Arsenic in Ground Water at Waste Sites

Robert Ford

U.S. Environmental Protection Agency Office of Research and Development

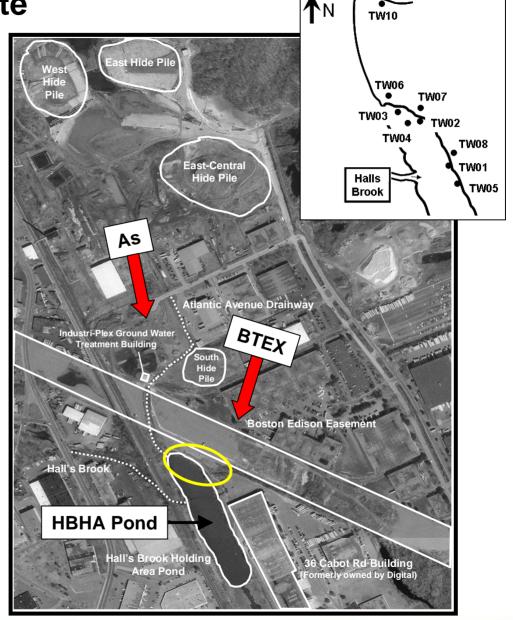
Collaborators:

Richard Wilkin, Frank Beck, Patrick Clark, Cynthia Paul, Steven Acree, Randall Ross, Brad Scroggins, Kirk Scheckel, Aaron Williams, Jack Creed, Joseph LeMay, Bill Brandon

> SBRP Arsenic in Landfills - Boston, MA October 4, 2006

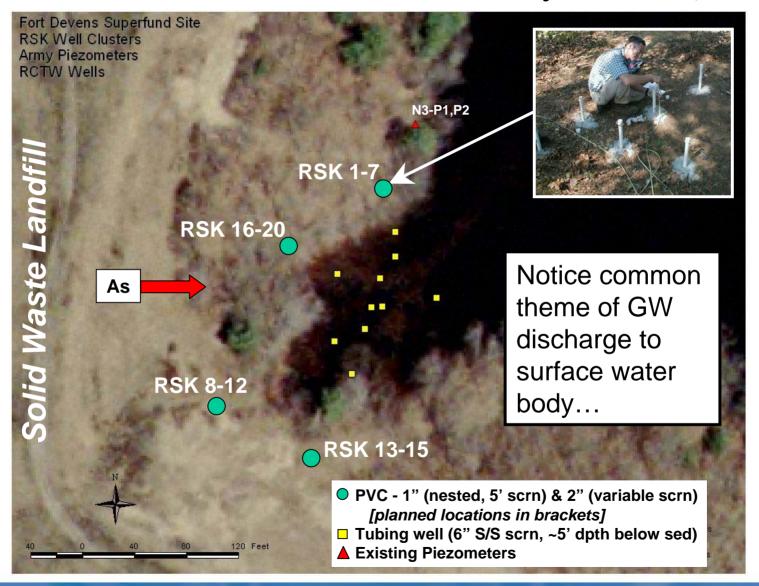
Factors Controlling As Mobilization

- Solid phase association
 - Partitioned in reduced or oxidized forms
 - Present as separate phase or a trace component (adsorption/coprecipitation) in soil/sediment minerals
- Ground-water geochemistry (e.g., oxidizing, reducing, pH, anions)
- Microbial activity and the supply of electron donors and acceptors
 - Manipulation of system redox chemistry (C, Fe, S)
 - Direct transformation of As speciation
- Rate of fluid flow relative to the rates of abiotic or biotic processes influencing aquifer chemistry...


Example Waste Sites

- Industri-Plex Superfund Site
 - Anthropogenic sources of arsenic
 - 'Unlimited' supply of electron donors and acceptors
- Shepley's Hill Landfill (Fort Devens)
 - Possible anthropogenic & natural sources of arsenic
 - Sufficient supply of electron donors and acceptors to maintain As mobility
- Do these sites provide a useful analog for assessing future conditions at operational landfills?

Industri-Plex Superfund Site

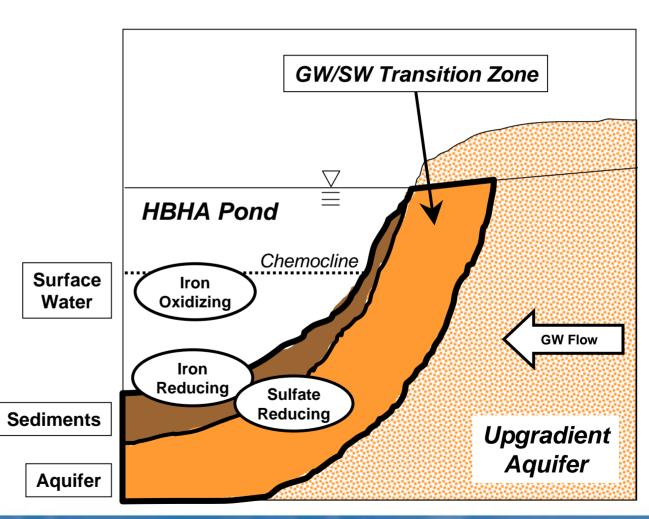

Woburn, MA (Region 1)
Joseph LeMay, RPM

- Land disposal of waste products from production of sulfuric acid, lead arsenical pesticides, various organic compounds and leather tanning
- Continual leaching into shallow ground water and transport to downgradient wetland
- Primary GW plume discharges into Halls Brook Holding Area (HBHA) Pond prior to transport down watershed
- GW contains high concentrations of C (including BTEX), Fe, and SO₄ and nearneutral pH

Fort Devens Superfund Site

Devens, MA (Region 1) Ginny Lombardo, RPM

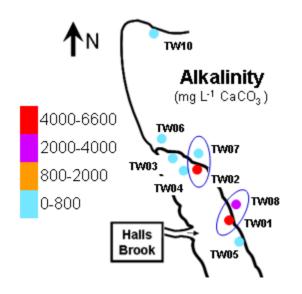
Comparison of 'Leachate' Chemistries


Parameter	Landfills 1	Industri-Plex	Shepley's Hill
pH	4.5-9	5.6-8	6.3-7
Specific conductivity (μS cm ⁻¹)	2500-35 000	500-12 000	280-630
Total organic carbon (TOC)	30-29 000	9-390	1-14
Inorganic macrocomponents			
Chloride	150-4500	70-250	8-30
Sulphate	8-7750	5-3600	0.05-16
Hydrogencarbonate	610-7320	170-5350	200-300
Sodium	70-7700	70-2200	7-25
Potassium	50-3700	10-100	3-13
Ammonium-N	50-2200	4-85	1-10
Calcium	10-7200	20-600	22-65
Magnesium	30-15 000	10-100	3-10
Iron	3-5500	1-70	22-60
Manganese	0.03-1400	0.5-2.5	1-4
Inorganic trace elements			
Arsenic	0.01-1	0.04-2.3	0.25-1.1
Chromium	0.02-1.5	<0.05	<0.001
Zinc	0.03-1000	<0.7	<0.03

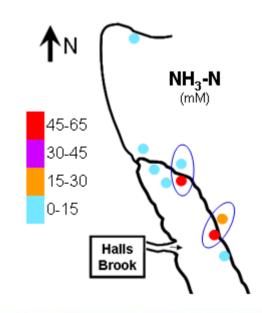
As assessed via down-gradient or side-gradient wells.

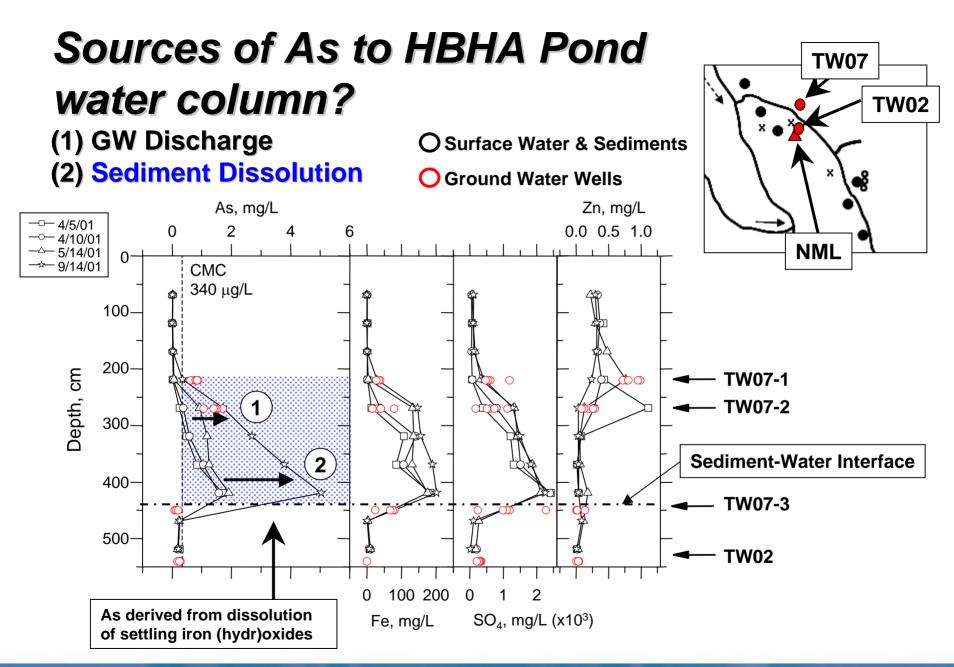
¹ Christensen et al. (2001) Biogeochemistry of landfill leachate plumes: Applied Geochemistry, v. 16, p. 659-718.

Industri-Plex Site: Conceptual Model of Critical Redox Processes

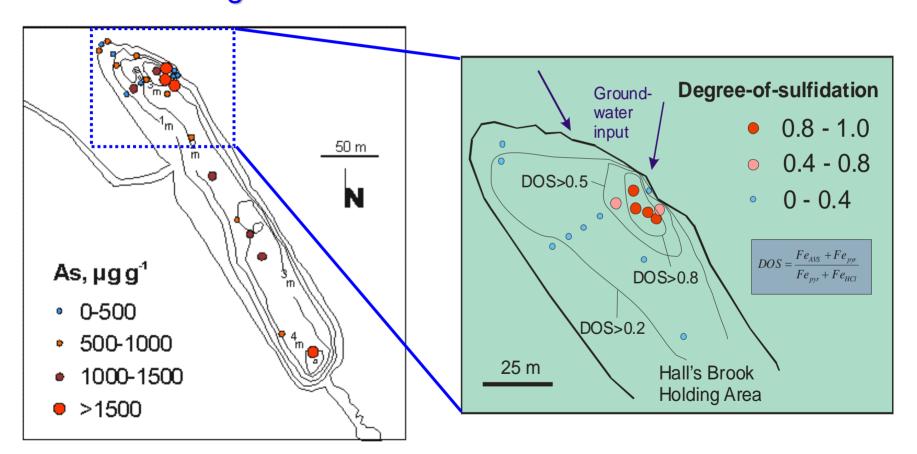

- Possible absence of acidogenesis and/or methanogenic phases
- ➤ Fe reductionoxidation and SO₄ reduction important, but possibly not for landfills – accept gypsum debris
- ▶ Q: Are Fe- and SO₄reduction not observed in landfills?




TOC Benzene (mM) $(\mu g L^{-1})$ ŢΝ 45-60 2500-3500 30-45 1600-2500 15-30 800-1600 0 - 150-800 Halls **Brook**



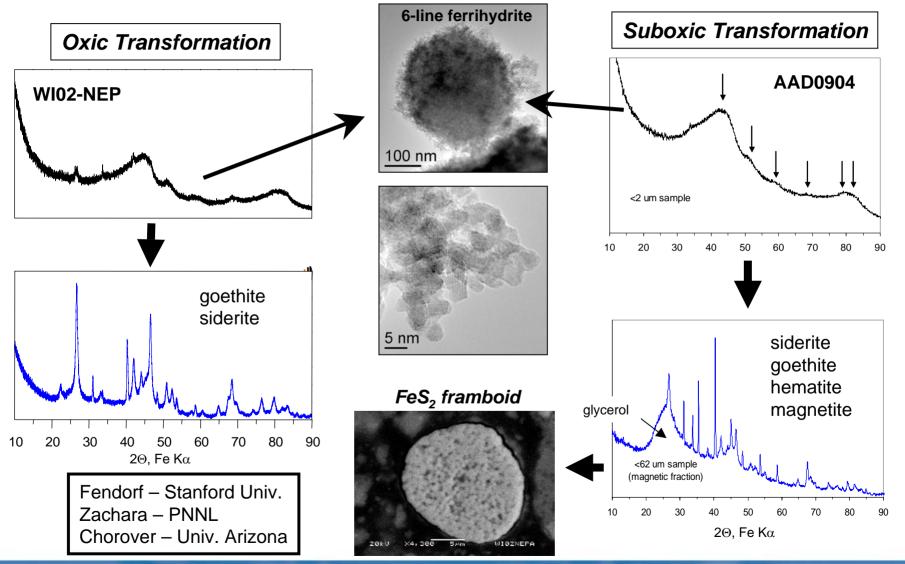
- Region of highest alkalinity corresponds with region of highest BTEX concentrations
- Circled well pairs indicate regions of sulfate reduction and ammonia production – BTEX stimulation
- Arsenic aqueous speciation dominated by inorganic w/ periodic occurrences of MMA, DMA, and DMTA (BTEX region)



What is the analogous landfill situation?

- Infiltration of precipitation during operational lifetime ('oxic reaction front')
- Internal fluctuations in water table for closed landfill
 - Cause alternation between oxidizing and reducing conditions
- Internal redox shifts within landfill mass during degradation of waste material coupled with seasonal fluctuations in microbial activity
- Cyclic fluctuations will tend to maintain arsenic mobility (metastable solid phases) – unidirectional changes may be of less concern

Spatial Pattern in As & Sediment Mineralogy


➤ As accumulation maximum in region of most intense AVS production co-located with primary discharge of benzene and toluene

Implication for landfills?

- Strongly reducing conditions may be beneficial to As immobilization, i.e., sulfate reduction and beyond (As sulfides or Fe sulfides)
- Marginally reducing conditions, i.e., predominantly Fe reduction may enhance As mobility
- ➤ Suggests that management of landfill geochemistry following closure could be a beneficial strategy treat the 'closed' landfill as a engineering system ("bioreactor") & manage As <u>flux</u>

What are possible fates for metastable iron oxyhydroxides (other than dissolution)?

Implication for landfills?

- Not all Fe reduction processes will cause loss of reactive mineral mass available for As sequestration
- Development of a more complete understanding of the Fe biogeochemical cycle in the context of mineral transformations will help reduce the uncertainty of projecting As mobility
- Note that iron oxyhydroxides formed in-situ will likely have properties distinct from treatment residuals (e.g., GFH = mainly akaganeite)

Summary

Our conceptual model should account for both aqueous and solid phase chemistry observed within a system

aqueous

solid

- Multiple lines of evidence provide the best underpinning for the conceptual model developed for the landfill environment
- Since landfills and organic contaminant plumes share some common biogeochemical signatures, there is an opportunity to improve projections of 'landfill' arsenic behavior through analysis of 'plumes' at various life stages

Session-Specific Synthesis Questions

- 1) How prevalent is arsenic contamination...landfills?
 - European studies suggest similar concentrations to those observed at waste sites.
- 2) What is the arsenic content of iron floc deposits? Risks?
 - Arsenic captured at the time of Fe precipitation can result in weight percent contents. Subsequent risk is dependent on ultimate depositional environment (oxic – OK; reduced – labile)
- 3) Effectiveness of engineered cap?
 - Works towards minimizing infiltration of precipitation; does not prevent interaction with subsurface ground-water flow field for landfills interacting with shallow water table or positioned within depressions that are located within drainage basin.
- 4) Comparison of impact of arsenic wastes vs. naturally occurring arsenic?
 - Depends on geologic setting (mineralogy, physical characteristics); anticipate that anthropogenic sources would generate higher concentrations.
- 5) Arsenic as a concern at C&D debris landfills?
 - Landfill construction conducive to generating worst-case scenario, e.g., wall board has both a degradable organic carbon source and an abundant source of electron donor (sulfate).