Arsenic in the Landfill Environment: Untested Ideas and Open Questions

SBRP Arsenic Conference
Arsenic and Landfills: Protecting Water
Quality
Boston, MA
October 3-4, 2006

Bill Brandon, EPA NE

Acknowledgements

- EPA ORD
- Boston College
- Dave McTigue, G-F
- Carol Stein, G-F
- Devens BCT
- Region 1 Tech Support
- Region 1 Laboratory
- USGS

Introduction

- Central Mass. Landfill Averages on the order of 500 ppb....
- SHL (As up to 6000+ ppb)....
- What is Different about SHL ??

Introductory Questions

- Source = Waste Materials ?
- Source attributable to Particular Geologic Circumstances?
- Both ?
- Or, Is this landfill just better characterized than the norm ??
- Does "Solvent Plume" paradigm hamper
 Conceptual Site Model (CSM) development ?
- Significance of Redox Environment?

Conceptual Site Models (CSMs)

 'Popular' CSMs have emerged but none fully supported by data

- 'Overlap' of existing CSMs
 - Some elements common to more than one

- We don't have all the answers!
 - "Challenge questions" posed

CSM Inputs

- Sources
- Geologic Characterization/Solid Phases
- Hydraulic Characterization/System
- Redox Environment/System
- Contaminant Migration Pathways
- Contaminant Transformation Pathways
- Intermediate Contaminant Fate Accumulation
- Receptors Risk Assessment
- Other?

When MNA Isn't Working... (CSM Updates Needed)...

- increase in concentrations
- detection of contaminants outside of known plume boundary
- rate of decrease is not as expected
- changes in land and/or groundwater use

CSM - v.1

CSM - v.1.2

Relative Arsenic Concentrations in Grove an Plow Shop Ponds

Toxicity Test Results

Working Conceptual Model #1

- Arsenic is present in some bedrock lithologies
- Glacial transport and postdepositional alteration redistribute Fe and As
- As is sorbed by hydrous ferric oxides (HFO) in overburden
- Landfills lower ORP of downgradient groundwater by oxidation of organics
- HFO dissolves ("reductive dissolution"), liberates arsenic

Unified Conceptual Model- Red Cove

Potential Anthropogenic Sources Need Additional Consideration

- Coal Ash (locomotives) ?
- CCA treated wood/Ash (on-site incinerator) ?

Wall Board/Construction Debris?

- Treatment Plant residuals ??
- Arsenical Pesticides ?
- Rat Poison (As2O3)?
- Other Hazardous Waste?
- Other?

Potential Geologic Sources

- HFO coatings on outwash sand grains?
- Rock Chips in outwash sands?
- Bedrock Fractures Coatings (oxides) ?
- Disseminated Sulfides?
- Mineralized zones (veins, shear zones, etc.) ?
- All of the above ?
- Effects of Blasting?

Blasting Presents Fresh Exposures

Interpretive Bedrock Groundwater Surface Map, October 7, 2004

Bedrock Elevation (Pre-Blast)

Pre-Blast Bedrock Exposures at SE Corner of Building Area

Hydrologic Issues

- Impoundments
- Cap Performance ?
- "Run-under" from Shepley's Hill
- Pumping Wells
- Engineered Drainage
- Impervious Surfaces
 - Pavement
 - Landfill caps
- TIME SCALES!??

Storm Drain Installation

Fill Emplacement SW of Building Footprint

Hydrology Affects Geochemistry

(R. Ford, SFBR, 2006)

- Infiltration of precipitation during operational lifetime ('oxic reaction front')
- > Fluctuations in water table for closed landfill
 - Cause alternation between oxidizing and reducing conditions
- Internal redox shifts within landfill mass during degradation of waste material coupled with seasonal fluctuations in microbial activity
- Dynamic fluctuations will tend to maintain arsenic mobility

SHL Groundwater Geochemistry DANGER ZONE

As and ORP in Ground Water

SHEPLEY'S HILL LANDFILL MODELED PARTICLE TRACKS, CURRENT CONDITIONS

SHEPLEY'S HILL LANDFILL MODELED PARTICLE TRACKS, RUN 106C, 50 gpm

SHM-96-22B

Characterization "Quality" Issue

Figure 3. Spatial relationships and relative concentrations of arsenic-bearing wells on the northern boundary of Shepley's Hill Landfill.

Deeper red translates to greater arsenic concentration.

Conceptual Site Model #1 Questions

- What data support/refute cause of reducing conditions (waste vs. naturally occurring)?
- If waste/GW interaction generates low-ORP 'plume'
 - Can 'plume' be mapped self-consistently?
 - Is 'plume' consistent with other leachate indicators, e.g. Cl, conductance?
- Why is As deep?
 - Density flows?
- Other tracers for waste interaction?
 - Rationalize SHM-96-22B (As increasing, Cladecreasing)

Conceptual Site Model #2 Questions

- What are candidate materials?
 - Coal ash: Where are associated trace elements? Why only elevated As?
 - Pesticides (e.g., As₂O₃): Why correlated with Fe in soil and groundwater? Is gross mass balance consistent with pesticide application? Surface application, now capped, cannot be continuing source to groundwater?
 - Why is high As found in deep GW, when waste interaction is shallow?

Overarching Questions Regarding Waste-Groundwater Interaction

- Little apparent geochemical signature of waste interaction
 - Relatively little physical interaction (small saturated volume)
 - Waste is relatively chemically unreactive
- General increase with depth: major-element concentration, TDS, sp. cond., alkalinity, etc.
 - Density?
 - Universal observation: deeper = older, longer residence time (Freeze and Cherry, 1979, p. 241)

LTMP Geochemical Data

Groundwater Characteristics

	Specific Conductance (mS/m)	Alkalinity (mg/L CaCO ₃)	Chloride (mg/L)	Na (mg/L)	Ca (mg/L)	SO₄ (mg/L)
Wisconsin landfills [1]	284 – 1585	960 - 6845	180 - 2651	12 - 1630	200 - 2100	8.4 - 500
SHL [2]	2.1 – 148	3 - 670	1U - 65	2U - 48	1.8 - 140	1.1 - 20.9 [3]
Grove Pond [4]	21 - 364	20.2 - 182	0.5 - 111	16 – 54.3	2.9 – 74.5	0.1 – 44.2

- [1] From Fetter, 1994; typical ranges of site medians
- [2] SHL PMP/LTMP data
- [3] Average of LTMP data, by well, 5/98-6/05
- [4] From Grove Pond Arsenic Investigation, Gannett Fleming 2002

Arsenic Speciation

- Inorganic Species
 - $-As(III): H_3AsO_3^0$
 - -As(V): $H_2AsO_4^-$, $HAsO_4^{-2}$
- Organic Species
 - Monomethyl arsenic (MMA)
 - Dimethyl arsenic (DMA)
 - Arsenobetaine (AsB)

Which forms will be analyzed?

Questions Addressed by Arsenic Speciation Analysis

- Arsenic sources?
 - From waste?
 - Reductive dissolution of HFO?
- Carbon source (for organic species)?
 - C in waste vs. C in peat ("young" vs. "old")?
- Risk issues
 - Bioavailability (organic or inorganic species)?
- How will data be used?
- Sampling and analytical considerations

Red Cove

Sediment and Pore Water Arsenic

