Geochemical Perspectives Linking Arsenic
Fate and Retention to Iron and Sulfur Cycling
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Arsenic In the Environment

e Arsenic not rare in the environment
— “average soil”: about 10 mg As/kg

e Toxic environmental effects associated with
arsenic not rare.

— Effects of arsenic significant even at very low dissolved
levels
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Cambodian rice field in As-impacted area



Natural Sources: Arsenic in Groundwater

» Arsenic concentrations in sediments in Bangladesh and Cambodia are not
high. In fact, they are frequently below average.

e Chemical Conditions create elevated dissolved arsenic concentrations.

— LANDFILLS (lined and unlined) are not unique, but are reactors in
which pH and redox conditions are modulated by a combination of
biological, chemical, and physical processes

 Microbes

« Electron Source (organic matter, H,)




Protect Your Health

The soils and sediments in this area contain harmful levels of lead and other metals.
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What Controls Dissolved Arsenic
Concentrations in Wells?
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Arsenic is normally strongly retained by iron minerals

Microbes change (metabolize) the minerals in the soil and
sediment, thereby releasing arsenic into groundwater.

Conditions usually are reducing (usually +100 to -100 mV) where
dissolved arsenic is found.

Organic carbon quality and content critical to the development of
reducing conditions
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Arsenic, Iron, and Sulfur Cycling
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Trace Metal Retention and Release

Reduction:
Me-Fe(OH); + OM > Me(aq) + Fe** + CO, + H,O

8Me-Fe(OH),; + HS- +15H*—> 8Me(aq) + 8Fe?* + SO,* + 20H,0

However...

Fe(OH),-Me(sorb) FeOOH-Me(sorb) +H,0

Me(aq) + Fe?* + HS- FeS-Me(sorb) + H*

2As(aq) + 3HS As,S;+ 3H*

Pb2* + HS- PbS + H*




Arsenic Seqguestration and
Mobilization in Model Systems

Oxic systems: Fe(lll) oxides and sulfate
Suboxic Systems: Fe(lll) oxides - Fe(ll),,, sulfate

Anoxic Systems: Sulfate - sulfide, possibly Fe(lll)
oxides =2 Fe(ll),,

Field-Based Studies of As Cycling




Arsenic-lron-Sulfur Cycling in 3 Field

Sites

]

« Coakley Superfund Site (NH)
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AsS Source Characterlzatlon

Fe = N pn . B o
<
=

3 Fe-O

@1.99 A 2 4 10 12

3 Fe-Q k (A )
ol @2.YLA | /\ 2Fe-Fe @ 3.04
go) , R
=) 1
e X Fe-Fe @_3.45
c

AY _

(-G o
S| As  E
— X
Wl 4As-Q =

@1.6 :

4 6 8 10
k (A1)
1 As-Fe @ 2.84 A
£ . 1As-Fe @ 3.27 A
4 y "7 VAN
0 1 2 5 6

RJ?A(A%



Coakley: Arsenic Mobilization & Natural
Attenuation

30Fe(OH); + C,Hy + 60H* - 30Fe?* + 6CO, + 78H,0 AG° =-2359.96 kJ
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Coakley: Batch Experiments and Field Data
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Coakley: Batch Experiments and Field Data
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Arsenic-lron-Sulfur Cycling in 3 Field Sites
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CDA: As Distribution (mg/kQg)
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CDA: Dissolved Contaminants
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Selected contaminants often are correlated spatially, but in no
obvious way with distance from source
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Experimental Studies of Sulfate Redox
Transformations Coupled to As Levels: Coeur
d’Alene Mining District
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Incubations

oiI Colletion

Solids:
Bulk XAS

Microbial
Analysis

Solution
Analysis:
ICP-OES
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Time=0
Temporal Change

Paired Fe and As
Release in SRB

RB Full Suppressed
Suppressed Community Microcosms

i

Changes as seen in
representative microcosms

Fe and As were
sequestered when
FeRB and SRB were
active
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Microbial Ties

The suppression via molybdate yields strong evidence for SRB
Involvement in trace element retention

Can we explain this observation via direct methods to identify
specific microbial populations?

Sequencing of cloned 16S rDNA soll extracts



Dominant Microbial Species

— G | actate
(Full Community)
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Observations:

Iron reduction is central to the
release of trace metals

Mineral transformations govern
trace metal sequestration

Implication:

Solution Concentrations are
ultimately governed by
balanced Fe and S Reduction




PRIMARY EXPERIMENTAL METHODS

Flow-through experiments

Effluent
(to fraction collector)

Iron-coated sand
(and/or arsenic
and/or microbes)

Influent



Incubations

- Mixed constantly for life of experiment

- Represent stagnant or low-flow end-member of
groundwater systems

- Products accumulate, reactants are depleted — system
approaches equilibrium
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FACTORS DETERMINING MINERALOGY

How does sulfate input concentration affect
mineralogy in D. desulfuricans columns?

SR 0.8 mM 10 mM 20 mM




FACTORS DETERMINING MINERALOGY

By what mechanisms does flow rate affect
mineralogy In iron oxide-sulfide columns?

Flow rate ~3.5 mL/hr

Flow rate ~6 mL/hr




FACTORS DETERMINING MINERALOGY

What determines which minerals form In
SRB/FeRB systems?

- Magnetite formation -Magnetite + iron sulfide
formation




FACTORS DETERMINING MINERALOGY

What mineral transformations occur under
stagnant conditions in D. desulfuricans
Incubations?

SRBs, 10 mM SO,

Only modest changes in Fe mineralogy
(not enough carbon to reduce all Fe)
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What mechanisms regulate arsenic release
from D. desulfuricans columns?
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COMPLEXITIES OF AQUEOUS RELEASE



What causes differences in patterns of Iron and
Arsenic release caused by SRBs and FeRBs?
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How do changes in 6**S reflect sulfur cycling?

S fraction
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A more complete description of As fate

FeS, FeS,

Fe(OH)4-As(V, 111)

Red, R& Fez++\AS(V’I”)aq AS;S4(S),

Keoa K FeS-As

Fe

FeCOs,,
Feg(PO,)3(OH)

SO,

It is necessary to include sulfate reduction to adequately
describe arsenic concentrations.

Kinetic processes are critical to regulating arsenic levels



Arsenic-lron-Sulfur Cycling in 3 Field Sites
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Soils and Sediments

As (mg/kg) Fe (%) S (mg/kQg)
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 Typical As, S and Fe levels

« Hard to determine composition of aquifer materials based on
surficial environment
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Redox Processes: Sulfate and Iron reduction

T I I I I I

Solution Composition
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10-562a[H,0]

Eh (volts)

Redox Conditions indicate that sulfate reduction and/or Fe
reduction is thermodynamically viable, concentration information
Indicates the extent to which they have occurred.
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Highly elevated As levels are most notably associated with
waters high in Fe and low in sulfate
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