Role of Microorganisms in the Speciation and Mobility of Arsenic

Jim A Field, Wenjie Sun, Irail Cortinas and Reyes Sierra

Department of Chemical and Environmental Engineering
The University of Arizona

Inorganic Arsenic

Predominant Species of the Biogeochemical Cycle

arsenite As(III)

More toxic than As(V)

Analogue of phosphate

Reacts with R-SH

- Adsorbed by iron and aluminum oxides
- Adsorbed by iron oxides
- Less mobile

More mobile

Organoarsenicals

Methylated Forms are Less Predominant Species in the Biogeochemical Cycle

cid

H₃C As CH₃ DMA(V)

Very Toxic

Pesticides

Metabolite

Metabolite

Unstable

Landfill

Methanogenesis in Landfill

Phase I: Consumption of O₂

Phase II: Formation of organic acids, release NH₄⁺

Phase III: Conversion of organic acids to CH₄ and HCO₃⁻, continued release NH₄⁺, mildly alkaline pH

Landfill

Source: EPA 1997

Toxicity Arsenic to Methanogens

Dose Response Curves of As(III) on Acetoclastic Methanogenesis

Toxicity Arsenic to Methanogens

50% Inhibitory Concentrations of Arsenicals on Methanogensis

Compound	Substrate	IC50 (μM)	IC50 (ppm)
As(III)	acetate	15.5	1.16
As(III)	H_2	27.1	2.03
As(III)	lactate	4.4	0.33
As(V)	acetate	>500.0	
As(V)	H_2	>500.0	
MMA(III)	acetate	9.1	0.68
MMA(V)	acetate	>5,000.0	
DMA(V)	acetate	>5,000.0	

Sierra-Alvarez et al. 2004 AEM 70:5688

Toxicity Arsenic to Methanogens

Sulfhydryl Groups are Central to the Biochemistry of Methanogens

Methyl Reductase: F430 Complex

Microorganisms use Two Strategies for Arsenate Reduction

Arsenate Reductase (ArsC) for Detoxification: As(V) is reduced to As(III) to facilitate pumping it from the cell without accidently pumping out phosphate

Dissimilatory Arsenate Reductase (ArrA): Arsenate is reduced as a terminal electron acceptor during the anoxic respiration coupled to the oxidation of simple substrates

Arsenate Reductase (ArsC): Detoxification

Silver & Phung 2005. AEM 71:599

Dissimilatory Arsenate Reductase (ArrA): Respiration

Silver & Phung 2005. AEM 71:599

Dissimilatory Arsenate Reducing Bacteria

Dissimilatory Arsenate Reducing Bacteria

Example of Reactions

Complete oxidation organic matter

$$CH_3COOH + 4 AsO(OH)_3 \rightarrow 2 CO_2 + 4 As(OH)_3 + 2 H_2O$$

acetate $As(V)$ CO_2 $As(III)$

Partial oxidation organic matter

CH₃CHOHCOOH + 2 AsO(OH)₃
$$\rightarrow$$
 CO₂ + CH₃COOH + 2 As(OH)₃ + H₂O

lactate As(V) CO₂ acetate As(III)

Dissimilatory Arsenate Reducing Bacteria

Electron Donors Known to Support Dissimilatory Arsenate Reducing Microorganisms

Organic Acids Alcohol, Suga		Aromatic	Inorganic	
Lactate	Ethanol	Phenol	H_2	
Pyruvate	Glycerol	Benzoate	H_2^-S	
Fumurate	Glucose	Syringate		
Malate		Ferulate		
Succinate		Toluene		
Citrate				

Formate

Acetate

Butyrate

Niggemyer et al 2001. AEM 67:5568

Liu et al 2004. FEMS Microbiol. Ecol. 48:323

Hoeft et al 2004. AEM 70:2741

Does Arsenate Reduction Occur in a Methanogenic Consortium?

Field et al 2004. Biodegradation 15:185

Arsenate Reduction In a Methanogenic Consortium with Sulfate Added

Methylation of Arsenic

Both Eukaryotes and Prokaryotes Methylate Arsenic

- Challenger Mechanism
- Enzymes Cyt19 in fungi, mammals ArsM in bacteria, archaea
- Methyl Donors S-adenosyl methionine Methyl-Vitamin B12

HO MMA(V) MMA(III) R-CH₃

As(V)

As(III)

R-CH₃

Bentley& Chasteen 2002. MMBR 66:250

Oxidation of Arsenite

There are two physiologically distinct classes of Arsenite Oxidizers

- Chemoorganoheterotrophic Arsenite Oxidizers: Detoxification Mechanism
- Chemolithoautotrophic Arsenite Oxidizers: Arsenite is used as an energy source (electron-donor); CO₂ is fixed

Oxic

Anoxic

 $NO_3^- + 2 H^+ + 5 As(OH)_3 \rightarrow N_2 + 5 AsO(OH)_3 + H_2O$

Respiratory Arsenite Oxidase

Silver & Phung 2005. AEM 71:599

Oxidation of Arsenite

Arsenite Oxidizing Bacteria (▲ ■)

Anoxic Arsenite Oxidation by Municipal Anaerobic Digester Sludge

Formation of As(V) from 0.5 mM As(III)

Anoxic Oxidation of Arsenite is Ubiquitous

Sample	As(V) formation		Time [†]
	+NO ₃ -	-NO ₃ -	(d)
anaer. bioreactor sludge, distillery	+	_	< 4
anaer. bioreactor sludge, paper	-	-	
municipal anaer. digester sludge	+	-	10
thiosulfate-denitrification enrichment	+	-	10
municipal aerobic active sludge	-	-	
duck pond sediments	+	-	< 5
Winogradsky column sediment	+	-	< 5
Pinal Creek sediments (high Mn)	+	+	
groundwater	-	_	

time to oxidize 0.5 mM As(III) to As(V) linked to denitrification

Bioreactor Test for Continuous Anoxic Oxidation of Arsenite

Bioreactor Results

As(V) in Reactor Fed NO₃-

Bioreactor Results

As(V) in Control Reactor not Fed NO₃-

As(III) Oxidation Linked to Complete Denitrification (3.5 mM AsIII)

Experimental: Continuous Columns

sludge

NH₃ + NaHCO₃

volatile fatty acids sludge

NH₃ + NaHCO₃

NH₃ + NaHCO₃

Experimental: Continuous Columns

Activated Aluminum (AA) operated for 257d:

Sierra-Alvarez et al 2005 Water Research 39:199

Biologically Active Column = 17.4% of arsenic released as freely soluble identified arsenic species; loss of 37.2% from AA

The predominate species released was As(III), 85% of soluble species

Abiotic Column = 3.4% of arsenic released as freely soluble identified arsenic species; loss of 7.6% from AA

Granular Ferrihydrite (GFH) operated for 387d:

Results reported in next slides (Cortinas et al. 2006. In preparation)

Experimental: Continuous Columns

Granular Ferrihydrite

Recovery of Mass after 387 days

Schematic Overview GFH Columns

Conclusion 1

Arsenic in Matrix with Fe/Al Oxide Minerals

- Aerobic Conditions: Arsenic immobile
- Anaerobic Conditions: Arsenic mobile

Conclusion 2

Arsenic in Matrix with Sulfide Minerals

- Aerobic Conditions: Arsenic mobile
- Anaerobic Conditions: Arsenic immobile

Graduate Students

