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Many previous studies have examined the use of very long integrations of atmospheric general circulation
models (AGCMs) forced by observed sea surface temperatures (SSTs) as proxies for seasonal atmospheric
predictions. These long simulations explore a boundary-value problem in which significant deviations from the
model’s long-term climatology must be a result of the SST forcing. Seasonal lead simulations starting with
observed initial conditions {ICs) for the atmosphere and land surface while retaining observed SST forcing are
an intermediate step between the pure boundary-value problem and the pure initial-value forecast problem in
which SSTs are also predicted. As part of the Dynamical Seasonal Prediction {DSP} experiment, an ensemble of
AGCM integrations with observed atmospheric ICs and model climatology land surface ICs was integrated from
mid-December through March for 16 years. These DSP simulation ensembles are compared to ensembles of long
boundary-valye simulations from the same AGCM in a perfect-model setting (no comparisons of simulations to
observaiions are attempted). Significant differences must be due to the impact of the DSP 1Cs. Surprisingly large
and long-lived differences are found in both the mean and the variance of the ensembles, Many appear to occur
because the ICs of the DSP runs are inconsistent with the AGCM climatology; an extended period of model “spin-
up’ 18 the result. Some differences are related to local impacts of the land surface ICs while others, like shifts in
the distribution of tropical precipitation and a cooling of the northern hemisphere, are less obviously related to the
ICs. The results suggest that care will be needed when inserting observed ICs into seasonal predictions in order
to avoid the long-term effects of model spin-up.
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1. INTRODUCTION

The global impacts of the 1997-98 El-Nifio event have provided renewed motivation
for investigating the use of numerical models for seasonal predictions of climate, both
in the tropics and mid latitudes. Because of difficulties currently associated with fully
coupled ocean—atmosphere general circulation models (GCMs), much of the research
and most of the operational forecasts for seasonal lead times have been produced using
atmospheric GCMs (AGCMs) forced by specified sea surface temperatures (SSTs).

The Atmospheric Model Intercomparison Project (AMIP; Gates 1992), assembled
long simulations from many GCMs forced by observed SSTs. In addition to allowing a
comparison of model capabilities in general, these simulations have been interpreted as
approximate upper bounds on the seasonal-prediction skill that one could obtain when
faced with the reality of predicting, rather than using observed, SSTs (Livezey et al.
1996). Many operational seasonal-prediction centres have also used AGCMs forced by
specified SSTs (Ji et al. 1998). In these cases, the SSTs are predictions derived using
simpler statistical or numerical models; this methodology has been termed ‘two-tiered’
prediction.

Recently, several large experiments, e.g. Dynamical Seasonal Prediction (DSP) and
PRediction Of climate Variations On Seasonal to interannual Time-scales (PROVOST),
have investigated seasonal predictability including the impact of initial conditions (ICs)
on seasonal prediction (Shukla et a/. 2000; Carson 1998; Brankovié and Palmer 2000;
Graham et al. 2000). In AMIP simulations, the ICs are so far in the past that they
are generally assumed to have no direct impact on the statistics of an ensemble of
simulations. Many seasonal-prediction systems have also assumed that the impact of
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atmospheric and land surface ICs is negligible compared with that of boundary forcing.
On the other hand, most other operational AGCM predictions are for relatively short
forecast lead times and are predicated on the idea that atmospheric, and to a lesser
extent land surface, ICs provide almost all the information needed for the forecast,
while the details of SST forcing are mostly irrelevant. At some intermediate time, the
short-range prediction initial-value problem and the seasonal-prediction boundary-value
problem must overlap, leading to forecast lead times for which both initial and boundary
conditions are important to AGCM predictions. There is evidence that 5T boundary
forcing begins to have an impact on AGCM predictions by approximately ten-day lead
times (Mo and Kalnay 1991; Barsugli ez al. 1999). There is also evidence that ICs still
impact AGCM prediction through at least a month (Nogues-Paegle et al. 1992; White
et al. 1993).

Here, the impact of ICs on seasonal lead AGCM simulations is investigated by
exploring the differences between AMIP-type simulations (hereafter referred to as
AMIP simulations, although these were not official entrants in any US Department of
Energy AMIP projects) that are assumed to have lost all relevant dependence on ICs,
and seasonal simulations from the DSP experiment in which the AGCM is forced by
observed SSTs but started from observed atmospheric ICs and specified land surface
ICs. Differences in the mean and the internal variance are examined, focusing on
forecast lead times of one half to 3.5 months. Significant differences are attributed to
the impact of the ICs on the DSP simulations. Results are discussed in a perfect-model
context in which the AGCM is assumed to have no error; a study of the differences in
AMIP and DSP skill in simulating the cbserved atmosphere would be an interesting
extension but is not included.

The boundary-forced AGCM is believed to be ergodic, so statistics of the DSP and
AMIP ensembles should become indistinguishable if the DSP simulations are extended
for a long time; initially, however, the impact of the ICs causes the statistics to be
different. The size and longevity of differences in the ensemble mean are of particular
interest. In order for ICs to improve traditional measures of simulation skill, the DSP
ensemble means must be significantly different from the AMIP ensemble means. If these
differences are not large, the motivation for using ICs is gone.

Examining the impact of the ICs on the ensemble variance 1s also important,
because the internal variance, or spread (Barker 1991), is often used to measure the
‘potential predictability’ of a quantity (Stern and Miyakoda 1995; Rowell 1998; bat
also see Wobus and Kalnay 1995). It is often assumed that small internal variance in
an ensemble implies a fairly confident prediction, while large variance implies large
uncertainty. A priori predictions of skill in operational forecasts (Tracton and Kalnay
1993; Buizza and Palmer 1998), in AMIP-type simulations (Ebisuzaki 19935; Chen and
van den Dool 1997) and in long initial/boundary-value integrations (Brankovié et al.
1994) have been somewhat disappointing, with correlations of spread measures with
skill generally being very small. Nevertheless, some measure of variance should be an
increasingly good predictor of the expected skill of a prediction/simulation as models
are improved. Throughout this study, the term ‘potential predictability’ 1s used in this
perfect-model context to refer to the internal variance of the ensemble (see Wittrock
and Ripley (1999) for predictability of land surface values). Improved perfect-model
potential predictability is not necessarily correlated with improved prediction skill.

Naive intuition might suggest that adding information from accurately observed
ICs in the DSP simulations should increase potential predictability. However, this is
inconsistent with many previous studies of the insertion of observed 1Cs into forecast
models. A recurring theme is that inserting ICs that do not satisfy a number of model
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‘balance’ conditions leads to a transient period of adjustment (or ‘spin-up’), during
which there may be a large growth of unbalanced error in the model. Unbalanced ICs
inserted into the DSP simulation could, in fact, lead to ensembles with significantly
larger variance than is found in the AMIP simulations. The existence of instances of
significantly more variance in DSP than in AMIP ensembles would imply that a large
spin-up error is occurring in the DSP simulations.

Unfortunately, the interpretation of many seasonal simulation and prediction results
is complicated by the fact that land surface and, in some cases, sea ice models have
traditionally been treated as integral parts of AGCMs, rather than as separate models
like the ocean. Much of the discussion that follows implicitly assumes that the land
surface model is part of the AGCM. Observations of soil moisture, soil temperature,
snow depth and extent (and other quantities needed for more advanced land surface
models) are extremely sparse (Vinnikov ef al. 1999). It is not clear whether these
land surface properties are more appropriately treated as ICs or boundary conditions
(like SST) for seasonal-prediction research. Given the dearth of available observations
that would allow the land surface properties to be specified like the SSTs, the DSP
experiments have chosen only to specify these as ICs; DSP participants are free to
choose these ICs as they see fit. Since relatively slow time-scales are associated with
many land surface properties, the primary impact of ICs on DSP simulations may come
from the ICs for these fields, rather than from ICs for the free atmosphere. Analysis of
the results 1s even more complex, because some land surface processes actually occur on
time-scales comparable with those of the atmosphere, for mstance the thermal balance
in the upper layers of the soil.

The land surface ICs for the DSP experiments discussed here come from a clima-
tological monthly mean from a long forced integration of a previous version of the
AGCM. Identical land surface ICs are used in every ensemble member; only the atmos-
pheric ICs vary between ensemble members. Ideally, one would have used observed land
surface ICs and sampled the uncertainty in these observations in the ensemble, but this
1s extremely difficult for available direct land surface observations. If the land surface
ICs used for the DSP are no less compatible with the AMIP model’s climatology than
the available observed ICs, the differences between DSP and AMIP simulations can
be viewed as a rough upper bound on the impacts of using observed land surface ICs.
Discussion in later sections will address the dufficult question of the relative quality of
the land surface ICs used for DSP here, and available observed land surface 1Cs.

Section 2 describes the AGCM used in the AMIP and DSP simulations, the SS8Ts
used for boundary forcing, and the ICs used in the DSP simulations. Section 3 examines
differences between the AMIP and DSP simulations over several regions where large
differences are found. Section 4 discusses the implications of these results for two-tiered
and fully coupled GCM seasonal predictions, and section 5 summarizes and concludes.

2. MODEL AND EXPERIMENTAL DESIGN

(@) AGCM

All integrations described here are made with the same AGCM, the Geophysical
Fhuid Dynamics Laboratory Experimental Prediction GCM version V197 (Shukla er al.
2000). The atmospheric component is a global spectral GCM with T42 truncation (ap-
proximately 2.8° by 2.8°) and 18 sigma levels in the vertical (Gordon and Stern 1982).
Physical parametrizations include: orographic gravity-wave drag; large-scale condensa-
tion; relaxed Arakawa-Schubert (RAS) convection scheme; shallow convection: cloud
prediction (interactive with radiation, Gordon (1992)); radiative transfer (2 h averaged),
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which varies seasonally; stability dependent vertical eddy fluxes of heat, momentum,
and moisture throughout the surface layer, planetary boundary layer, and free atmos-
phere (‘E’ physics as described in Sirutis and Miyakoda (1990)); and horizontal diffu-
sion. Orography has been treated by a Gibbs oscillation reduction method (Navarra et al.
1994). This model, with simpler physics and varying resolutions, has been shown to be
viable for extended-range prediction at the monthly time-scale (Stern and Miyakoda
1989), although systematic biases still contribute significantly to the error fieids. Stern
and Miyakoda (1995) used a global SST dataset to force an ensemble of AGCM inte-
grations (referred to as AMIP-1 integrations). The potential predictability of seasonal
variations in the extratropics by versions of this AGCM has been examined extensively
through various approaches (Anderson 1996; Anderson and Stern 1996; Yang ef al.
1998).

The land surface 1s a 3-layer model for the purposes of heat conduction, with the
lowest level set to a chmatological mean temperature at each grid point (Delsol e al.
1971). Heat capacity 1s a function of the soil moisture using the scheme of Deardorf
(1978). Land surface hydrology is modelled by a 3-level bucket, with the lowest bucket
level set to a chimatological mean value at each grid point (ECMWFE 1988}, Land surface
parametrizations include snow cover, which affects albedo and interacts with both the
thermal and hydrologic condition of the top level of the soil. Snow is accumulated over
sea ice and land points, and disappears if the underlying ice melts.

(b)Y AMIP simulations

An ensemble of six AMIP simulations was produced by integrating the AGCM from
1 January 1979 through to the end of 1995, Atmospheric ICs were taken from National
Centers for Environmental Prediction (NCEP) re-analyses for 1 to 6 January 1979; each
analysis was used as an IC, as if it was the analysis for 1 January 1979, Soil moisture and
snow cover ICs were the January climatology from an ensemble of AMIP runs from an
earlier version of the AGCM, that was an official entrant in the AMIP-1 experiments
(Gates 1992; Stern and Miyakoda 1993), using the procedure discussed in the next
subsection. Monthly means from January, February, and March are examined m this
study.

Boundary SSTs are created using version 3.1.6 of the ocean data assimilation
method of Derber and Rosati (1989) and Rosati et al. (19935), which was used to produce
coupled GCM forecasts in Rosati et al. (1997). After 1982, this version of the data
assimilation produces SSTs in which the assimilated SST data lags the real world by
approximately 10 days. In regions with strong seasonal cycles of SST, this leads to
some differences between this SST forcing and that used for the DSP integrations.
Differences are generally less than a tenth of a degree in the tropics and a few tenths
in the extratropics.

(¢} DASP simulations

An ensemble of ten DSP integrations was created starting on 15 December for each
of the years from 1979 to 1994 (Shukla er al. 2000). These simulations extend for 3.5
months to the end of March in the following year, and are referenced by the forecast year
for the January (1980 through 1995). Atmospheric ICs for a given year are taken from
NCEP re-analysis fields at 12 h intervals from 0000 UTC 13 December to 1200 utc 17
December, each treated as if it were the state at 1200 uTC 15 December. Although the
first 16 days of the ensembles are examined to understand the initial evolution of the
DSP ensembles, analysis focuses on monthly means for January, February and March.
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The SST forcing 1s from the Reynolds optimal interpolation dataset {(Reynolds and
Smith 1994 ) that was used in all the DSP experiments. As noted above, there are small
differences between the SST's used in the AMIP simulations and these Reynolds SSTs
before 1982, and slightly larger differences thereafter. These differences are sufficiently
small to appear to have little impact on the results (see section 4).

Soil moisture and snow cover ICs are from the December climatology of the AMIP-1
version of the AGCM (see above). The AMIP-1 model used a single-level bucket to
model land surface hydrology, so a single value of soil moisture between 0 and 15 cm
is available for the IC. This value is mserted into the top level of the 3-level bucket, the
bottom level is set to the specified climatological mean value, and the middle bucket
level 1s set to the average of the top and bottom. The AMIP-1 model was forced with
the official AMIP SST dataset from 1 January 1979 to 31 December 1988, and the
December climatology was the mean of the last nine Decembers (1980-1988). The
AMIP-1 SSTs are very similar over this period to the SST datasets used to force the
AMIP-2 simulations discussed in detail here.

Numerical difficulties, resulting from inconsistencies between climatological snow
cover and soil temperature conditions, make it difficult to insert AMIP-1 climatological
land surface temperatures as ICs for the DSP integrations. Instead, the initial soil
temperature is set through an iterative procedure. A single pass of the AGCM’s radiation
code is performed using a value of 290 K for the atmospheric surface temperature, T,
at all land points, and a new value of 7 is computed at each point. This procedure is
repeated and another updated T is computed at each point. Following this, the AGCM is
integrated for five time steps with no heat conduction through the soil layers. Finally, the
values for the top and middle soil layer temperatures are linearly interpolated between
T and the climatologically specified temperature (Crutcher and Meserve 1970) of the
lowest soil layer. The resulting soil temperature ICs are identical in all ten of the DSP
members for each year.

3. DIFFERENCES BETWEEN AMIP AND DSP SIMULATIONS

Several key differences between the AMIP and DSP simulations are discussed in this
section, focusing first on several regions and then examining hemispheric differences in
upper-level fields. In each case, discussion begins with differences in the ensemble-mean
fields, and progresses to differences in the ensemble variance.

Differences in the 16-year ensemble means of the DSP and AMIP simulations are
examined for January through March; DSP and AMIP values are the mean of 160 and 96
individual monthly means respectively. An unequal-variance ¢-test (Press et al. 1986) is
applied to evaluate the significance of the differences in the means of the DSP and AMIP
sample distributions. Since the AMIP and DSP distributions are often quite different and
non-Gaussian (see for example Figs, 8—10), these significance values must be regarded
as loose approximations. In general, only areas where the means are different at the 99%
confidence level are shown in figures.

The ratio of the internal variance (Rowell 1998) of the DSP ensembles to that for
the AMIP ensembles is also examined. This is computed by first removing the ensemble
mean for a given year from the individual ensemble members from that year. The
variance of the resulting distributions of anomalies from the ensemble mean are then
computed. An f-test (Press et al. 1986) is performed on these sample distributions to
evaluate the significance of differences in the variance. Since internal variance is often

used as a measure of potential predictability in ensembles, this ratio gives a rough idea
of the relative potential predictability in the DSP and AMIP simulations. The difference
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Figure 1. Difference (mm) between Dynamical Seasonal Prediction experiment soil moisture initial conditions
and the 197993 December climatology from the Aimospheric Model Intercomparison Project simuiations;
negative contours are dashed.

in sample size (160 versus 96) in the variance computations could conceivably lead
to spurious differences in variance. However, estimates of sample variance are quite
stable for samples as large as 96, repeating the results with only six ensemble members
selected from the DSP set led to no significant differences in any of the figures or results
discussed. Figures only display the variance ratio where the confidence level of the
f -test exceeds 99%,

Differences in the interannual variability between the DSP and AMIP simulations
are not discussed. A comparison of the results from Shukla er al. (2000) with similar
analyses of the AMIP simulations, suggests that differences in interannual variability
are not large; future work will further explore this issue.

(@) Central Africa

Central Africa 18 discussed first because differences between the AMIP and DSP
simulations appear to be due primarily to direct impacts of the local land surface ICs.

Figure 1 shows differences between the DSP soil moisture ICs (the December
climatology from the old AMIP-1 AGCM) and the December climatology from the
AMIP simulations. The DSP ICs are much less than the AMIP climatology across
much of central Africa, with soil moisture near zero in much of this region in the DSP
ICs; this condition persists into January (Fig. 4(a)). From the first few days of the DSP
integrations, precipitation is greatly reduced relative to the AMIP integrations over these
regions of dry soil, apparently as a direct response to the local supply of water to the
atmosphere (Schar er al. 1999); this behaviour continues into later months and can be
seen in the January mean precipitation differences in Fig. 2(a). This is also reflected in
the sharp reduction in the 850 hPa mixing ratio (¢ 850 hereafter) in the DSP simulations
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Figure 2. Differences (mm day~1) between the 1980-95 mean ensemble mean precipitation for the Dynamical

Seasonal Prediction experiment simulations and the Atmospheric Model Intercomparison Project simulations for:

(a) January, and {(b) March. Negative contours are dashed, and only regions where an unequal-variance #-test

indicates that the difference is significant at greater than 99% confidence are shaded and contoured. The dark
(light) asterisk it (a) marks the point examined in detail in Fig. 9 (Fig. 10).
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Figure 3. As Fig. 2 but for the 850 hPa mixing ratio (g kg™ ). The asterisk in {a) marks the position of the point
examined in detail in Fig. 8.
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Figure 4. As Fig. 2 but for the soil moisture {cm).
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Figure 5. Ratio of Dynamical Seasonal Prediction experiment to Atmospheric Model Intercomparison Project

variance of soil moisture around the corresponding ensemble mean (internal variance; see text for details) for

January. Contours less than unity are dashed and only regions where an f-test indicates that the difference in
variance 1s significant at greater than 99% confidence are shaded and contoured.

Figure 6. As Fig. 5 but for the precipitation.
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Figure 7. As Fig. 5 but for the 850 hPa mixing ratio,

(Fig. 3(a)) for the January mean difference. As the simulations proceed into February
and March, differences in precipitation, soil moisture, and ¢850 are gradually reduced.
In a given DSP ensemble member, this gradual equilibration toward the AMIP values
occurs when occasional precipitation events lead to increased soil moisture and ¢g850
(Fig. 8 shows hints of this behaviour; see below for discussion); this in turn tends to
encourage more frequent precipitation events. The net result is that each DSP ensemble
member undergoes a slow and sporadic drift towards the AMIP distribution. Differences
in the mean are greatly reduced but not yet eliminated by March (Figs. 2(b), 3(b) and
4(b)).

The soil moisture ICs in all DSP ensemble members are identical, so the initial
variance of the ensemble distribution is zero, By January, the initial soil moisture
distribution over central Africa has spread out somewhat, but stifl has a variance much
smaller than that of the AMIP ensembles (Fig. 5). The January DSP precipitation
distribution also has much less variance than the AMIP ensembles (Fig. 6), as most
of the DSP ensemble members have very little precipitation. Over the northern part
of Africa and the Arabian peninsula, the variance of ¢850 is also greatly reduced
(Fig. 7). In these areas, the lower atmosphere has been dessicated so that the ensemble
distributions are squeezed tightly close to zero. However, in a smaller region over
central Africa, the variance of ¢850 is actually greater in the DSP simulations. An
examination of the details of the distribution at individual grid points shows that the
g 850 distributions are still not entirely dried out in the DSP ensemble. The distribution
shape is similar to the shape of the distributions for the AMIP simulations, with the
mean simply shifted to significantly lower values (Fig. 8). The variance is increased by
a few DSP ensemble members (10 of 160) that have become much moister due to the
chance occurrence of precipitation events, leading to a long positive tail for the DSP
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Figure 8. Distribution of Dynamical Seasonal Prediction (DSP) experiment and Atmospheric Model Intercom-

parison Project {AMIP) ensemble B850 hPa mixing ratio for January, for 1980-93 at 9°N, 37°E (marked by an

asterisk in Fig. 3(a)) over central Africa. The solid {dashed) line shows a (Gaussian kernel summation approxima-

tion of the probability distribution for the DSP (AMIP) ensemble, while the *+' and ‘%’ show the values of the
individual DSP and AMIP ensemble members, respectively.

¢ 850 distributions. These g850 distributions are the first example of fields for which the
DSP variance is larger than the AMIP variance, indicating that the introduction of ICs
has reduced the potential predictability,

As forecast lead time increases through February and March, the variances of the
DSP soil moisture and precipitation fields gradually widen, but they remain significantly
less than the AMIP values through 3.5 months (not shown). The ¢850 variance-ratio
patterns between DSP and AMIP simulations also stay much the same, but the mean
differences gradually reduce in amplitude through February and March (not shown).

(b) Australia, tropical Indian Ocean, and western tropical Pacific

A second region of interest, over Australia and the surrounding waters of the tropical
Indian Ocean and western tropical Pacific, contains the largest differences between the
DSP and AMIP fields for precipitation. Changes in the rainfall distribution and the
related large-scale circulation in this region appear to have profound effects on the global
general circulation, but it is more difficult to assess the mechanism through which the
changes are effected in this region.

Figure 2(a) shows that the DSP mean precipitation is significantly enhanced over
western Australia and the Indian Ocean during January, but greatly reduced over the
extreme western tropical Pacific to the north of Australia. The ¢850 is also significantly
enhanced from western Australia west across the Indian Ocean (Fig. 3(a)), but shows a
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Figure 9. As Fig. 8 but for precipitation at 85°E and the equator (marked by the black asterisk in Fig. 2(a)) over
the tropical Indian Ocean. The small non-zero probability of negative values is an artifact of the application of the
kermel method for producing the continuous representation of the distribution.

much weaker reduction to the north of Australia. The DSP soil moisture ICs are wetter
than the AMIP values over all but the east of Australia, but are much drier over some
of the islands north of Australia and over south-east Asia (Fig. 1). These soil moisture
differences are gradually reduced in January (Fig. 4{a)) and February and disappear
almost entirely in March over Australia (Fig. 4(b)); they disappear more gradually
over the areas north of Australia with significantly low soil moisture persisting through
March. Precipitation and ¢850 differences are also gradually reduced in February and
March, but are still quite large and significant in March (Figs. 2(b) and 3(b}).

The precipitation varitance i1s much larger in the DSP simulations over western
Australia and the Indian Ocean throughout all three months, and is smaller in regions
to the north of Australia (Fig. 6). The ensemble distributions at many individual points
show that this is primarily due to a larger positive tail in the precipitation distribution
over Australia and the Indian Ocean (21% of DSP and 13% of AMIP simulations have
more than 12 mm day™'), Individual DSP ensemble members are more likely to be
very wet over the Indian Ocean (Fig. 9), however, the majority of DSP members are not
significantly wetter than the AMIP simulations. Precipitation variance is reduced to the
north of Australia (Fig. 10), where the DSP distribution 18 relatively tightly constrained
to values of precipitation that are much less than the AMIP mean. The AMIP distribution
is broader and shifted to more positive values, with a long broad tail towards higher
precipitation. The DSP distribution has only a handful of wet cases (only 20 of 160 are
wetter than the AMIP mean), leading to a long but thin tail towards higher precipitation;
the net result is much reduced variance for the DSP ensemble.
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Figure 10, As Fig. 9 but for precipitation at 120°E and the eguator {marked by the white asterigk in Fig. 2(a})
over Indonesia,

The DSP variance of ¢850 is substantially greater over parts of the Indian Ocean
(Fig. 7). In general, this 1s consistent with the precipitation distribution in that there are
a few DSP ensemble members that have significantly enhanced ¢8350 in these regions
(31 of 160 have g850 greater than that of the highest AMIP ¢850 at 25°S, 100°E in
the area of the largest mean difference), while many other members look similar to the
AMIP values. North of Australia, the complete g830 distributions are shifted to drier
values with little change in variance; Fig. 7 shows only limited regions of significant
variance differences north of Australia.

Soil moisture variance over Australia (Fig. 5 for January) is enhanced through all
three months in the DSP runs. In most ensemble members, the DSP soil moisture here
is very low, however, a limited number of members are much wetter, leading to a long
positive tail on the distributions and a significant difference in the means. The opposite 15
seen north of Australia where a few of the DSP ensemble members have greatly reduced
soil moisture, leading to greater variance (this is significant over Borneo and south-east
Asia) and a significant difference in the mean.

It 1s very difficult to explain the differences between DSP and AMIP ensembles
in this region as a direct local impact of land surface ICs. One could argue that the
initially enhanced soil moisture in Australia can lead to enhanced low-level moisture
being advected into the tropical Indian Ocean. Similarly, the Iimited land areas to the
north of Australia can lead to drying of the lower atmosphere there in some ensemble
members. The increased (decreased) lower-level moisture may lead to an increased
(decreased) probability of strong convection over these regions. However, this behaviour
does not appear to be taking place during the first few weeks of the DSP integrations.
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Figure 11. Monthly mean precipitation (mm day™') for January 1987, for: (a) Dynamical Seasonal Prediction
(DSP) ensemble member 3, and (b} DSP member O.

Furthermore, it seems unlikely that simple advection could explain such long-lasting
differences over such large areas. Studies in regions with more land area have shown
that such mechanisms can be important (Bosilovich and Sun 1999),

Increased precipitation over the Indian Ocean and decreased precipitation over the
extreme western Pacific tend to occur together in the DSP ensembles, suggesting that
a modification of the large-scale tropical circulation is playing a role here. Figure 11



2256 . L. ANDERSONand 1. J. PLOSHAY

1[} I E 1 1 | ] I I
" » _
- 8
L
&
o Bk " _
-
8 * *
£ y *
E 41 | ;
*
*
E ar Ke % Ky X X .
= ¥ * E
5 9 X X *x X X g ” .
O E % f‘*‘%Eﬁ ¥
. ,%’“*m WX ok E o Wk
»* . ] 5 X

E ’ Xl x . ®
5 -2f * K o " ,ﬁ‘m&aﬁ " « -
i KEx *
(T W X T *
a. » " % «

d * . x 4

*
-6 -8 -6 -4 -2 0 2 4 5 8 10

PRECIPITATION ANOMALY (mm/day) 85E 0

Figure 12. Scatter plot of Dynamical Seasonal Prediction anomalies of precipitation from the ensemble mean at
85°E and the equator, versus the anomalies at 120°E and the equator.

shows the precipitation patterns from two DSP ensemble members for 1987; the second
member has much more Indian Ocean precipitation and less over the western Pacific.
Figure 12 shows a scatter plot of the DSP precipitation anomalies from the ensemble
mean for the points at the equator and 85°E, and the equator and 120°E (Figs. 9 and
10 show the distributions at these points); the correlation coefficient for these two
distributions 1s —0.35. When a member of the DSP ensemble is dry (wet) in the tropical
Indian Ocean it is likely to be wet (dry) in the western Pacific.

As noted above, this switch in precipitation centres takes place in a minority of
DSP ensemble members (48 of 160 have precipitation greater than 10 mm day™! at
83°E and the equator), and 1n an even smaller percentage of AMIP members (17 of 96).
The result is still an enhanced DSP mean precipitation over the Indian Ocean, and an
increased variance due to the long positive tail of the precipitation distribution in this
region (Fig. 9). Again, the precipitation, g850, and soil moisture distributions tend to
have increased variance in the DSP ensembles over much of this region, which might
lead to the conclusion that the use of ICs is reducing potential predictability. The relative
importance of the msertion of land surface and atmospheric ICs remains unclear in this
analysis.

(¢) Eastern tropical Pacific

Significant differences in mean precipitation (Fig. 2) and 850 (Fig. 3) between
the DSP and AMIP simulations exist in the eastern tropical Pacific. This area includes
much of the Nifio-3 region (5°N-5°S, 150-90°W), which has been argued to be one
of the most efficient areas in the tropics for exciting a northern hemisphere (NH)
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extratropical response (L.au and Nath 1994; Trenberth et al. 1998). The DSP variance
for precipitation (Fig. 6) is also larger than the AMIP variance in this region. There is
significant interannual variability of both precipitation and ¢850 in both DSP and AMIP
simulations associated with the El Nifio Southern Oscillation (ENSO) variability that
is part of the SST forcig; this interannual variability is roughly comparable in the
DSP and AMIP ensembles. This is generally a very dry region in the model, with only
1983 (and to a lesser extent 1992) showing significant amounts of precipitation in most
members of the ensembles. However, there are more cases in which a few of the DSP
ensemble members are wet outliers (at 130°W on the equator, 7 of 160 DSP members

and 2 of 96 AMIP members have precipitation exceeding 8 mm day—1). This is reflected
in the increase in the mean values and the variance of DSP precipitation. The wettest
DSP cases are generally the same cases in which the precipitation is reduced over the
western tropical Pacific Ocean. This suggests that a global modification to the tropical
circulation is responsible for these precipitation changes, since there is no obvious local
impact of differences in land surface ICs in the eastern tropical Pacific.

(d) NH temperature regions

In the NH, there are significant differences between the snow cover ICs for the
DSP simulations and the chimatological December mean snow cover of the AMIP
simulations. The DSP ICs tend to have more snow that extends further south in regions
that are not permanently snow covered. As noted in the next subsection, the DSP
simulations tend to be colder at the surface than the AMIP simulations during January, so
this snow cover difference is enhanced through January, Part of this reduced temperature
is a direct impact of the greater regions of snow cover in the DSP runs, which Jead to
local cooling through enhanced surface albedo and the loss of heat needed to melt snow;
this effect 1s not, however, entirely responsible for the NH cooling over land in the DSP
simulations.

Although the DSP simulations start with no variance in snow cover by definition,
variance grows rapidly during the first few weeks due to synoptic scale ‘noise’ that
deposits snow in essentially random amounts and locations. The warmer AMIP simu-
lations tend to have more precipitation events that are rain, and to have more regions
where snow is absent in all ensemble members. The result is that large areas of the NH
continents have a larger variance of snow cover in the DSP than in the AMIP simulations
by January.

In February and especially in March snow begins to retreat northwards. This serves
to accentuate the variance differences between the DSP and AMIP simulations, as more
and more areas of the AMIP are snow free in most ensemble members while the DSP

runs continue to have varying amounts of snowfall. This enhanced DSP snow cover
variability leads directly to large variability in the surface temperature, which is seen
over significant portions of the NH mid-latitude land surface during March.

(e) Extratropical hemispheric differences

There are significant differences in the interhemispheric distribution of tempera-
ture/mass between the DSP and AMIP ensembles; this appears to be in contrast to
results obtained by Wang and Kumar (1998), who found little impact from land sur-
face ICs away from the surface in AGCM experiments. During the first few weeks of
the DSP integrations the NH cools at all levels from the surface to 300 mb, with the
largest cooling 1n the lower troposphere. Since SSTs are prescribed, the surface cooling
is confined to continental regions, while cooling aloft is more homogeneous throughout
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F

gure 13,  As Fig. 2 but for 850 hPa temperature {deg(C).
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Figure 14, Ratio of Dynamical Seasonal Prediction to Atmospheric Model Intercomparison Project variance of
200 hPa ternperature around the corresponding ensemble mean (internal variance; see text for details) for Janoary.
Contours are at 1.2, 1.6, 2.4, 4.0, 10.0 and the reciprocals of these values; contours less than unity are dashed.
Regions where an f-test indicates that the difference in variance is significant at greater than 99%, greater than
90% (but less than 99%) or less than 90% confidence are unshaded, lightly shaded or heavily shaded, respectively.

the hemisphere in January (Fig. 13(a)). In the southern hemisphere a small warming at
the surface increases with height, however, the magnitude of the warming is much less
than that in the NH. The difference between DSP and AMIP temperatures decreases with
forecast lead time, and has been greatly reduced above the surface by March (Fig. 13(b)).
This hemispheric temperature decrease in the NH also leads to a hemispheric decrease
in atmospheric water vapour as seen for January in Fig. 3(a). This decrease is small
compared with the regional signals discussed in earlier subsections, and it also mostly
disappears by March (Fig. 3(b)). The variance of the temperature (and height/pressure)
and the water vapour fields do not show a hemispheric pattern, as this is primarily a
shift of the entire ensemble distribution without changing its shape. The exact cause of
this initial NH cold shift in the DSP ensembies is not fully understood, but will be the
subject of further investigation.

Although the hemispheric cooling does not impact the variance in the NH extra-
tropics, Fig. 14 does show some intriguing differences between the DSP and AMIP
variance for the 200 hPa temperature field for January. Regions of greater variance in
the DSP ensemble appear to correspond with the traditional centre of the Pacific-North
American (PacNA) pattern. Although only one of the centres, over the south-east USA,
appears with greater than 99% confidence, two other centres over the Gulf of Alaska
and the upper midwest appear with confidence greater than 90%. Similar results are
seen for tropospheric height patterns, Figure 6 shows that precipitation variance in the
tropics is increased over large parts of the Indian Ocean and the eastern tropical Pacific
in the DSP ensembles. These regions of tropical convection, in particular the eastern
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tropical Pacific, are known to have impacts on the strength of this model’s PacNA
pattern (Trenberth et al. 1998), consistent with many other models and the observed
atmosphere. Apparently, increased DSP variance in convection in these regions also
leads to increased variance in the PacNA response. This leads to reduced estimates of

potential predictability for the PacNA region for the DSP simulations which make use
of ICs.

4. DISCUSSION

(@) Impact of ICs on ensemble mean predictions

The DSP and AMIP simulations can be viewed in an idealized sense as two ways of
making a seasonal prediction assuming, of course, that SSTs can be predicted perfectly
up to three months in advance. While this is not the case, the slow time-scale of evolution
for anomalous SSTs, especially in the tropics, facilitates highly accurate SST predictions
one month in advance, and reasonably accurate predictions out to at least three months
in many cases.

Given this caveat on S85Ts, the AMIP simulations can be viewed as seasonal
forecasts, in which no information from atmosphere or land surface observations is
used (consistent with this paradigm, the simulations are referred to as forecasts in
this section). The DSP forecasts assume that the observed state of the atmosphere is
represented by the NCEP re-analyses. The DSP forecasts also assume that there exist
complete accurate observations of the soil moisture and snow cover, these observations
being the same each year and coming from the climatological distributions of a long
run of a previous version of the AGCM. The DSP seasonal predictions are produced by
integrating the AGCM forward from these ‘observed’ ICs.

The previous section examined some of the differences between the AMIP forecasts
and the D3P forecasts. The ICs led to large changes in the tropical precipitation distri-
bution and in the statistics of the entire tropical circulation. There were also regional
direct impacts of the land surface ICs, most notably over Africa and in snow covered
regions of the NH mid latitudes. Large-scale extratropical impacts include temperature
changes in the lower levels of the troposphere, especially over the continents. In this
experimental design it 18 not possible to say whether the impact of 1Cs has improved the
quality of the seasonal forecasts (since the observed land surface conditions come from
a model climatology while the atmospheric ICs come from an analysis of the observed
atmosphere). Nevertheless, it seems fair to assume that adding good 1Cs in DSP should
tend to improve forecasts in comparison with the AMIP forecasts.

However, there are a number of examples where inserting ‘unbalanced’ observations
taken from a nmumerical model into that same model can lead to an initial period of
error growth, sometimes referred to as IC shock or ‘spin-up error’ (Miyakoda et al.
1978). Simple examples of this phenomena occur in low-order models that are used for
theoretical predictability studies; for instance, the three-variable model of Lorenz (1963)
which 1s shown to undergo transient initial-error growth by Anderson and Hubeny
(1997). Primitive-equation models of the atmosphere, ranging from the highly truncated
9-variable model of Lorenz (1980) through full dry atmosphenic GCMs, display an
approximately balanced flow when integrated over long periods of time. Again, when
imperfect observations taken from these models are ingerted into the models, a period of
transient error growth, characterized by large-amplitude gravity waves, occurs (Vautard
and Legras 1986; Anderson and Hubeny 1997). Other more subtle balances also exast
in AGCMs. For instance, Anderson and van den Dool (1993) showed a period of
transient error growth in the statistics of atmospheric blocking in integrations of an
AGCM starting from observed atmospheric ICs. There are most likely to be a number
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of other balances that exist in AGCMs that can be destroyed by introducing observed
atmospheric states, independent of the land surface state.

In the DSP forecasts examined here it is still not clear just how large the IC shock
error growth is. If this growth is large, it is not inconceivable that forecasts made using
(accurately) observed land surface ICs could lead to forecasts that are worse than those
made in AMIP forecasts with no ICs. Insufficient evidence is presented here to advocate
strongly for this possibility, but neither can it be ruled out.

A caveat applies to these results due to slight differences in the DSP and AMIP SST
forcing, as noted in section 2. While these differences in SST are generally very small,
especially in the tropics from whence most of the impact of SST forcing is expected
to originate, they might still have some impact on the different mean responses of the
DSP and AMIP ensembles. However, there is evidence that the SST differences are not
responsible for the results discussed in section 3. First, for 1980 and 1981 the SSTs
in the two cases are almost identical, and these two years seem 1o demonstrate the
same behaviour as the longer 16-year period. Second, a single AMIP simulation from
1979 to 1995 has been created with §STs that are almost identical to the SSTs used
in the DSP simulations. This single AMIP simulation appears to be consistent with
the other AMIP ensemble members and an outlier from the DSP ensemble members,
for quantities such as soil moisture, atmospheric moisture content, precipitation, snow
cover and hemispheric temperature distribution that were examined in section 3.

(b) Impacts of ICs on potential predictability

Section 3 also examined the impact of ICs on the internal variance of the ensem-
ble forecast distributions, a quantity related to most common measures of potential
predictability. Naively, one would assume that inserting observations of land surface
processes with no IC vanance (delta function distributions) would not lead to higher
variance {and consequently lower potential predictability) for DSP fields, and might
be expected to lead to reduced variance in the mean. For short DSP forecasts out to a
few days this is true, but the distributions of many model quantities, especially those
related to hydrologic processes, rapidly spread out as the forecast lead grows. Results
presented here suggest that for many atmospheric variables the variance is increased by
the insertion of the ICs. When producing real forecasts behaviour like this could lead to
the counter-intuitive result of reduced estimates of potential predictability (and possibly
reduced forecast skill) when using IC information.

(¢) Implications for coupled model seasonal prediction

True seasonal predictions by numerical models are generally made by two-tiered
forecast systems, in which the second tier is essentially identical to the DSP-type
simulations described here (Ji er al. 1998; Latif et al. 1998). Work is also ongoing
on the development of fully coupled ocean—atmosphere GCMs for seasonal prediction
(Stockdale ef al. 1998; Yang et al. 1998). These fully conupled models tend to have huge
initial drift, and a variety of IC shocks related to the insertion of observed ocean data into
the coupled GCM (Rosati et al. 1997; Yang et al. 1998). Using observed ICs for the land
surface and the atmosphere has potential to introduce even more problems, consistent
with the results for AGCMs presented here.

Given that land surface data are sparse, and in some instances of questionable
quality, it is unlikely that observed ICs for land surface variables would be more
consistent with a GCM than is the case in the DSP experiments here, where the ICs
come from another version of the same AGCM. Hence, it is possible that even bigger IC
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shocks could be associated with introducing observed land surface ICs into second-tier
AGCM or fully coupled GCM forecasts. To reduce this type of IC shock fully coupled
assimilation systems may be necessary, along with methods for reducing imbalances that
may occur in assimilated ICs (Larow and Krishnamurti 1998). Of course, improving
models to be more consistent with the real world should also help in the long run.
Until progress can be made on land surface data availability and assimilation (Houser
et al. 1999), coupled assimilation, and model improvement, one must consider carefully
whether introducing observed ICs for various components of AGCMs will have a
positive impact on seasonal-forecast quality.

5, CONCLUSIONS

AGCM seasonal simulations from the DSP experiment have been compared with
long AMIP simulations using the same AGCM,; both simulations are forced by observed
S8Ts. The ICs for the DSP simulations are taken from observations for the atmosphere,
and from the climatology of a previous version of the AGCM for snow and soil moisture.
Differences between ensembles of DSP and AMIP integrations can be used to simulate
the impacts of using ICs on seasonal lead predictions. Large and significant differences
in the DSP and AMIP fields are found throughout the 3.5-month DSP simulations;
differences are found in both the ensemble-mean quantities and in the variance of
the ensembles. In many cases, especially for fields related directly to hydrological
processes, the internal variance of the DSP simulations is found to exceed that of the
AMIP simulations. This leads to the somewhat counter-intuitive conclusion that the
mntroduction of IC information can lead to a reduction in estimates for the potential
predictability. Although the relative errors of ensemble-mean values cannot be evaluated
in this experimental design, it seems likely that effects of introducing IC information
for the land surface and atmosphere might actually also reduce the skill of seasonal
simulations in some cases. This is interpreted as being the results of initial-error growth
due to the shock of inserting observed ICs into a model with a climatology inconsistent
with these observations. The results suggest that one must carefully evaluate the efficacy
of using ICs when making seasonal predictions with AGCMs or coupled GCMs.
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