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ABSTRACT

Because of the narrow region over which it has high speeds, the Equatorial Undercurrent has
little effect on long waves with large phase speeds, such as long Kelvin and equatorially trapped
inertia-gravity modes with equivalent depths =30 cm. The Rossby branch of the Rossby-gravity
family, and the gravest Rossby modes, have phase velocities comparable to the maximum speed
of the Undercurrent and are significantly modified by this current. Meanders of the Undercurrent that
are due to superimposed neutral (non-amplifying) waves must have westward phase propagation;
standing or eastward traveling meanders are possible only if the Equatorial Undercurrent is unstable.

1. Introduction

In the proposed explanations for a number of
physical phenomena, the role of the equator as a
waveguide is of central importance. This is true,
for example, of Lighthill’s (1969) explanation for the
generation of the Somali Current, and of the ex-
planation of McCreary (1976) and of Hurlburt
et al. (1976) for the initiation of El Nifio events off
the Peruvian coast. In these various models the
existence of mean equatorial currents is neglected.
The most intense of these currents is the Equatorial
Undercurrent. Since this current can attain speeds
comparable to the phase speeds of equatorially
trapped waves, it is of importance to know to what
extent the Undercurrent can modify these waves.
The observations of -equatorially trapped waves in
the Pacific and Atlantic Oceans (Wunsch and Gill
1975; Weisberg et al., 1978a,b) provide a further
motivation for a study that addresses this question.
Of the measurements in the Atlantic, which were
made below the core of the Undercurrent in a region
of relatively weak mean currents, one can ask
how the observed waves were modified when they
propagated downward through the Undercurrent. In
the Pacific Ocean there is less information concern-
ing equatorially trapped waves but the available
data are in reasonable agreement with linear theory.
Does this imply that the effect of the Undercurrent
on the observed inertia-gravity waves is small?

The differential equations that describe the effect
of mean currents with latitudinal and vertical shear
on equatorial waves are, in general, nonseparable
and hence difficult to solve. Considerable prog-
ress has been made in the meteorologically rele-
vant case where the scale of the vertical shear of
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the mean flow far exceeds the vertical wavelength
of the waves. {See Holton (1975) and Boyd (1979)
for reviews of the subject.] This is not the case that is
of most interest to oceanographers. The Equatorial
Undercurrent is confined to a shallow surface layer
(~150 m deep) in an ocean with a total depth of
~4 km. The two cases of most oceanographic
interest therefore correspond to waves with vertical
scales comparable to that of the Undercurrent,
and waves with vertical scales larger than that of
the Undercurrent. For example, the first baroclinic
mode has a node at a depth of ~1500 m in the tropics
and therefore has a vertical scale greater than that
of the Undercurrent. The second baroclinic mode,
on the other hand, has a large amplitude pri-
marily in the upper 150 m because of internal re-
flection in the strong shallow tropical thermocline.
Its scale, therefore, is comparable to that of the
Undercurrent.

The simplest problem that can be posed concerns
the effect of the Equatorial Undercurrent on a wave
with the same vertical structure as the current, If
we assume that the Undercurrent has no vertical
shear and that it is in geostrophic balance in a
homogeneous layer of depth H (below which there
is a motionless, infinitely deep layer of slightly
higher density), then the equations for linearized
wave perturbations which are also confined to, the
layer of depth H are

~i(o — Uk)u + vU, — Byv = —ikg'{, (1a)
—i(o — Uk)v + Byu = —g'{,, (1b)
—i(o — Uk), + ikHu + (Hv), = 0. (1c)

The mean current U and mean layer-depth H de-
pend on latitude y only and are related by the geo-
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strophic equation. Zonal (#) and meridional (v)
velocity perturbations and layer-depth perturbations
({) are assumed to have time (¢) and longitude (x) de-
pendence of the form ei**—79 Reduced gravity is
denoted by g’. For a given mean flow U(y) there
are two external parameters that determine the
character of the perturbed flow, viz., 8 and g'H,
where H, is the mean depth of the layer. The
second parameter is usually written gh where 4 is
the equivalent depth. The idealized model described
by Egs. (1) could be considered reasonable for the
study of modifications to second baroclinic mode
waves by the Equatorial Undercurrent, provided
h has a value appropriate for a second baroclinic
mode (25 cm). The solutions to (1) will also give in-
sight into the effect of the Undercurrent on waves
with longer vertical scales, such as the first baro-
clinic mode for which # = 60 cm. This can be ex-
plained by first pointing out that Egs. (1) are satis-
fied by waves in the presence of a mean current
U(y) that depends on latitude only, in a fiuid with
mean stratification N(z) that depends on depth
z only. In such a situation the velocity coraponents
are pressure fields are separable and can be written
as w(2u(x,y,t), v(z)v(x,y,t) and w(z){(x,y,t), re-
spectively. The vertical structure of the flow is de-
scribed by

(-L-'ﬂ'z) +—1-—7T=0, 2
N2 z gh

where 4 is the constant of separation. The horizontal
structure is described by (1) provided g'H is re-
placed by the constant gh. It is evident from (2) that
we are dealing with vertically propagating waves
and that /4 is a measure of the vertical wavelength
of the perturbations. Hence the slightly modified
Egs. (1) describe the horizontal structure of waves
that propagate vertically through a mean current
with no vertical shear, in a fluid whose stratifica-
tion depends on depth only.

This case at first appears uninteresting because we
are primarily interested in waves with vertical scales
that exceed that of the Undercurrent. However, we
consider a two-layer system in which the shallow
upper layer has stratification N,(z) and the lower
deep layer has stratification N,(z). (Both N, and
N, depend on depth only.) In the upper layer there
is a mean current U(y) that depends on latitude only.
In the lower layer we could permit a different mean
zonal flow but we shall assume that there is no
mean motion in the deep layer. The interface
between the two layers slopes in accordance with
geostrophic balance and since U is discontinuous
there, the density field must be discont'nuous at
the interface. In each of the two layers the de-
pendent variables are separable and the flow satis-
fies Eqs. (1) and (2) as discussed above. The major
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difficulty now is in matching the solutions at the
interface where all the vertical shear is concen-
trated. Before discussing this problem, we briefly re-
view perturbations when there are no mean currents.

In the absence of a mean flow (U = 0), Egs. (1)
and (2) describe linear waves on an equatorial 8
plane. For given values of o and k, Egs. (1) con-
stitute an eigenvalue problem; & is the eigenvalue.
The solution to this problem is well known (and has
most recently been discussed by Philander, 1978b).
If the solutions are required to be bounded at large
distances from the equator then the eigenvalues
can be determined from the dispersion relation

2
S BB i,

ghi o (gh)'”

1=0,1,2. 3)

The associated eigenfunctions can be expressed in
terms of Hermite functions. Their structure is such
that the integer ! can be identified with a discrete
meridional wavenumber. These latitudinal modes
are functions of the variable 7, where

- (&)

4)
gh

It follows that & determines the latitudinal scale of
the modes. As pointed out earlier / also determines
the vertical scale of the oscillations. For large values
of h the waves are of considerable latitudinal and
vertical extent; for small values of 4 the waves are
strongly trapped about the equator and have short
vertical wavelengths.

Next, we include a mean flow in the upper layer.
It will cause the dispersion relation in that layer to
differ from (3). For given values of o and &, A; will
have values different from those implied by (3).
The structure of the associated modes will also be
different. Consider one of these latitudinal modes
propagating downward toward the interface between
the two layers. Because the interface has a latitu-
dinal slope, the boundary conditions there are
complicated. However, we do know that the values
for o and k must be the same in the two layers. The
pressure must also be continuous across the inter-
face. The structures of the eigenfunctions that de-
scribe the pressure in the two layers are different.
Hence a single mode in the upper layer will map
onto a number of modes, each associated with a
different value of # and /, in the lower layer. It fol-
lows that a single mode that propagates vertically
toward the interface will excite a large number of
latitudinal modes (each with a different vertical
wavelength and a different speed of vertical propa-
gation) in the other layer. A measure of these
effects can be obtained by determining the extent
to which the dispersion relation and the structure
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FiG. 1. The dispersion curves for Kelvin waves in the absence
of mean currents (dashed lines) and in the presence of an
Equatorial Undercurrent with maximum speed 75 c¢m s (solid
lines) for different values of A (cm). The curve marked (ii)
shows the effect of an Undercurrent with a maximum speed of
125 cm s7'; the curve marked (i) shows the effect of a current
without shear and with a speed of 75 cm s,

of the latitudinal modes are modified by the mean
current in the upper layer.

In this paper we describe how an Equatorial
Undercurrent of the form

U = U, sech?(y/120 km), S)

(where y measures distance from the equator)
modifies the dispersion relation and modal struc-
ture of the gravest equatorially trapped waves.
Solutions to Egs. (1) are found numerically by using
a method described in. a paper by Philander (1976).
{The equatorial 8 plane is bounded by walls along
circles of latitude four units of n [see Eq. (4)] from the
equator. For numerical purposes this canal is divided
into 300 equal intervals.} The solutions that corre-
spond to an equivalent depth /# of about 25 cm will
give reasonably accurate information about the
modifications to the second baroclinic mode. This
is so because this mode has a large amplitude in
the upper 150 m only; its vertical structure approxi-
mately coincides with that of the Undercurrent.
We shall also describe solutions for values of i # 25
cm. These solutions will be used to make qualita-
tive inferences about the effect of the vertical
shear of the mean flow on the waves; we shall not
attempt to solve Eq. (2) and to match solutions
across the interface.

o~
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In this study we only consider mean currents
described by Eq. (5). For a discussion of the effect
of different mean currents on equatorial waves the
reader is referred to the valuable studies by Hallock
(1977) and McPhaden and Knox (1979).

2. Kelvin waves

In the absence of mean currents Kelvin waves
are eastward propagating and nondispersive

o = k(gh)'™. (6

There are no meridional velocity fluctuations asso-
ciated with this wave and the latitudinal structure
of the pressure and zonal velocity component are
Gaussians, i.e.,

u = exp[—pBy*2(gh)'"]. Q)

The dashed lines in Fig. 1 correspond to Eq. (6) for
the indicated values of £ (cm). The solid lines show
how the dispersion relation is altered by the presence
of an Equatorial Undercurrent with a maximum ve-
locity of 75 cm s™! [= U, in Eq. (5)]. It is evident
that for large equivalent depths the effect of the
Undercurrent is negligible. There are two reasons
for this: for large values of # the Undercurrent speed
is small compared to that of Kelvin waves which
propagate with speed (gh)'?; the latitudinal scale
of the Undercurrent-is negligible compared to that
of the Kelvin waves when £ is large as is evident
from (7). For equivalent depths =<5.6, the Kelvin
waves have phase speeds less than the maximum
speed of the Undercurrent. The latitudinal mode
associated with a Kelvin wave will therefore not be
established because a critical layer exists. Hence,
in the presence of an Undercurrent with a maximum
speed of 75 cm s™!, no Kelvin waves exist in the
shaded part of Fig. 1.

For equivalent depths between about 200 and 6
cm the presence of the Undercurrent causes higher
(Doppler-shifted) values for the frequency if the
values of k and & are fixed. (Alternately, for fixed
o and k the equivalent depth is decreased by the
Undercurrent.) The effect is largest for high fre-
quencies and short zonal wavelengths. An increase
in the maximum speed of the Undercurrent increases
the shaded area of Fig. 1 but is shown to have little
effect on the 7 = 70 cm line. [The line marked (ii)
in Fig. 1 corresponds to U, = 125 cm s7']. An increase
in the width of the Undercurrent has a much larger
effect on Kelvin waves. [The dotted line marked (i)
corresponds to a mean flow of 75 cm s™ with no
latitudinal shear and hence infinite width.]

Fig. 2 shows two examples of the eigenfunctions
and, superimposed, the structure of the pressure
field, in the absence of a mean flow. It is evident
that for an Undercurrent with a maximum speed of
75 cm s7!, waves with a wavelength of 2700 km
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Fic. 2. Eigenfunctions corresponding to modified Kelvin waves for the cases: (a)
a = 27/(11 days)™!, k = 2#/(2700 km)~!, A = 70 cm; (b) o = 2#/(3.3 days)™, k = 2n/
(800 km)~' & = 70 cm. The dashed lines show the pressure fields for the same frequencies
and wavenumbers, in the absence of mean currents. The corresponding values for &
are 85.3 and 83.2 cm, respectively. One unit of 5 corresponds to 360 km [see eq. (4)].

and a period of 11 days—the equivalent depth is
70 cm—are only slightly affected by the mean flow.
Shorter waves are strongly modified, as is shown in
Fig. 2 for the case of a 800 km wave. Note the signifi-
cant meridional velocity component induced by the
Undercurrent in the case of the short 800 km wave
with a period of 3.3 days.

We now consider a Kelvin wave excited in the
upper layers of the ocean by an eastward moving
atmospheric disturbance. For given values o7 the fre-
quency o and wavenumber &, the equivalent depth
can be determined from a dispersion diagram such as
Fig. 1. In the deep ocean, a downward propagating
Kelvin wave with the same value of o and £ but a
larger value of / (and hence a longer vertical wave-
length) will be excited. Since the structure of the
Kelvin wave in the surface layers does not map
exactly onto that of the Kelvin wave in the deep
ocean, additional latitudinal modes are irvolved.
At high frequencies these additional modes, which
play an important role because of the large differ-
ence in the structures of the Kelvin waves, are
primarily inertia-gravity modes. They all kave the
same values for o and & but they have increasingly
smaller values of h (see Philander 1978b}. Small
values of & imply large vertical and latitudinal
shears and hence vulnerability to dissipation. It
follows that a single, high-frequency Kelvin wave
in the surface layers of the ocean will give rise to a
Kelvin wave plus a set of inertia-gravity modes in
the deep ocean. A considerable energy loss may be
associated with dissipation of the higher order
inertia-gravity waves.

At low frequencies the structures of the Kelvin
. waves in the two layers do not differ much. What
little difference there is will not map onto inertia-
gravity waves because the latitudinal scale of the low-
frequency inertia-gravity waves is much smaller than

that of the Kelvin waves. (The inertial waves de-
cay exponentially poleward of their inertial latitude.)
The difference between the structures of the Kelvin
waves must therefore map onto modes for which 4 is
negative (Philander, 1978b). In the vertical such
modes decay exponentially. Hence the residual
energy, which does not go into the excitation of a
Kelvin wave in the deep ocean, remains trapped in
the surface layers. This could result in a varicose
mode of oscillation for the Undercurrent.

In the studies mentioned in the Introduction,
the Kelvin wave is a nondispersive event that
propagates along the equator in the first baroclinic
mode. Since a vertically standing mode is a super-
position of upward and downward propagating
waves, the discussion above gives some indication
as to how this mode is affected by the Equatorial
Undercurrent. The equivalent depth for the first
baroclinic mode is ~70 cm. The high-frequency
part of a Kelvin-wavelike disturbance (with periods
less than a week) will be seriously modified by
the Undercurrent, and could be dissipated rapidly
when energy is scattered into short inertia-gravity
waves. For periods equal to or longer than a week
the Undercurrent has little effect on Kelvin waves
in the first baroclinic mode. (This is true for the first
baroclinic mode only, not for higher baroclinic
modes with smaller equivalent depths.) There are
two principal reasons why the Undercurrent has
little effect on long-period Kelvin waves: the waves
have a high speed relative to the Undercurrent and
the width of the region over which the Undercurrent
has high speeds is small compared to the width of
the Kelvin waves.

3. Rossby-gravity waves

The gravest antisymmetric equatorially trapped
mode is the Rossby-gravity wave. We discuss
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separately those disturbances which have westward
phase propagation (and which are similar to Rossby
waves) and those disturbances which have east-
ward phase propagation (and which are similar to
inertia-gravity waves).

a. Westward propagating waves

In the absence of mean currents these waves
satisfy the dispersion relation

20lk = —(gh)'” — [gh + 4B(gh)"*/k*]'?

which is the curve marked (iv) in Fig. 3 (whenh = 70
cm). A mean flow without horizontal shear changes
curve (iv) into (i) which, at large values of o and &
asymtotes to the line o = Uk (U, = 75 cm s for
the case shown). Sufficiently short waves are seen
to have eastward phase propagation, and standing
waves with a wavelength of ~1500 km are also
possible. Since the waves are antisymmetrical
about the equator their superposition on the mean
flow will result in a meandering current. If these
meanders have an eastward phase speed and a low
frequency, then they could transport energy east-
ward very efficiently. The reason for this is that in
the deep ocean there are no low-frequency, east-
ward propagating waves that are antisymmetric
about the equator (except inertia-gravity waves
which are unimportant at low frequencies). Hence
the meandering current in the surface layers cannot

50— S/

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 9

lose energy by radiating waves into the deep ocean.
Consider a disturbance that causes the Under-
current to meander in the neighbourhood of its
origin in the western equatorial Pacific Ocean say.
Could the Undercurrent be an efficient wave-guide
for transferring energy associated with this disturb-
ance to the eastern side of the ocean basin?

The remarks concerning meanders thus far per-
tain to a mean flow without latitudinal shear. The
possible eastward traveling meanders described
above have phase speeds less than the speed of the
mean flow. Hence, if the mean flow has shear, so
that its speed varies from zero to a maximum value,
then the eastward traveling waves will encounter
critical layers where ¢ = U. (The phase speed is
c.) The presence of shear therefore appears to
eliminate eastward traveling meanders. Curve (iii)
in Fig. 3, which shows the manner in which (i) is
modified when the shear of the Undercurrent is
taken into account, demonstrates that this is indeed
the case. [The Undercurrent is again described by
the expression in (5) with U, = 75 cm s~'.] Neither
eastward traveling waves nor standing waves are
now possible. The principal reason for this is the
narrowness of the Undercurrent. If we consider
waves with an extremely small equivalent depth
then they will be so strongly equatorially trapped
that, to them, the Undercurrent will appear to have
no shear. For this to happen the value of # must
be much less than 1 mm. The vertical and latitu-
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F1G. 3. Dispersion curves for the Rossby branch of Rossby-gravity waves. Negative
periods designate westward phase propagation. See the text for further explanations.
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dinal shear of waves with such a small value of 4 is
so large that the waves are almost certainly un-
stable. For waves with reasonable values of 4 (a
few centimeters or more) the Undercurrent appears
narrow; the waves are ‘‘aware’’ that the Under-
current speed varies from 0 to 75 cm s~!. Hence east-
ward propagating meanders are eliminated (because
of critical layers) and only meanders with westward
phase propagation are possible. Such meanders
can excite Rossby waves in the deep ocean so that
the energy of the meanders does not remain ‘rapped
in the surface layers. The Equatorial Undercurrent
is not an efficient waveguide for transferring energy
zonally.

The presence of the Undercurrent modifies the
Rossby-gravity waves considerably. It is evident
from Fig. 4 that for a frequency and wavenumber
for which 2 = 200 cm in the surface layers, 4 could
be as small as 10 cm in the deep ocean. Since his a
measure of the latitudinal scale of the eigenfunc-
tions [see Eq. (4)], there is a considerable m smatch
between the eigenfunctions in the surface layers
and those in the deep ocean. This implies that a
downward propagating Rossby-gravity wave will
give rise to a Rossby-gravity wave plus several
Rossby modes in the deep ocean. As an example
consider a Rossby-gravity wave with a wavelength
of 1000 km and a period of 30 days. Satellite photo-
graphs of the sea surface temperature in the eastern
equatorial Pacific show such disturbances (Legeckis,
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1977) which Philander (1978a) has attributed to an
instability of the surface currents. Below the sur-
face currents, in the region of the Undercurrent,
these disturbances will excite a downward propagat-
ing modified Rossby-gravity wave with an equivalent
depth of ~200 c¢m (see Fig. 4). (Other modes will
also be excited but this is probably the most impor-
tant one.) Below the Undercurrent, where we
assume that there is no mean flow, this modified
Rossby-gravity wave will excite a Rossby-gravity
wave (for which h is ~3 cm) plus the gravest
equatorially trapped Rossby modes that are anti-
symmetrical about the equator. The equivalent
depth for the gravest of these Rossby modes can be
calculated from eq. (3) and is greater than 1000 cm.
(The higher order modes have even larger values
of h.) This value is so large and the implied turning
latitude is so high, that the latitudinal mode is un-
likely to be established. Hence the only equatorially
trapped wave to be excited in the deep ocean is
the Rossby-gravity mode. Such a wave probably
accounts for the greater part of the 30 day, 1000 km
signal observed near the ocean floor just west of the
Galapagos Islands by Harvey and Patzert (1976).
There appears to be a similar phenomenon in the
Atlantic Ocean: in the surface layers there is a
westward propagating undulation with a wavelength
of ~1000 km and a period of a month (Brown, 1978);
in the deep ocean Weisberg et al. (1978) observed a
Rossby-gravity wave with the same scales.

{km)

I .
1 I
3000 2000 1000

PERIOD (days)

200

F1G. 4. Dispersion curves for the Rossby branch of Rossby-gravity waves in the absence
of mean currents (dashed lines) and in the presence of an Undercurrent with a maxi-
mum speed of 75 cm s~ (solid lines) for indicated values of 4 (cm).
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b. Eastward propagating waves

The eastward propagating Rossby-gravity waves
are basically inertia-gravity waves. Fig. 5 shows
that these waves, particularly those with large
values of # and long wavelengths, are affected rela-
tively little by the presence of the Undercurrent.
(If & 1s too small, the waves of course have critical
layers. This happens to waves in the shaded area of
Fig. 5.) The reason why inertia-gravity waves are
not much affected by the mean current is their high
phase speed relative to the maximum speed of the
Undercurrent.

4. The gravest Rossby mode

Fig. 6 shows the dispersion curve for the gravest
Rossby mode in the absence of mean currents [curve
(iv)], in the presence of a mean current without
shear [curve (i)], and in the presence of an Undercur-
rent with a maximum speed of 75 cm s~ [curve (jii)]
and 125 cm s~ [curve (ii)]. For all these curves the
value of # is 70 cm which is approximately the
value for the first baroclinic mode. As in the case
of the Rossby branch of the Rossby-gravity family,
only perturbations with westward phase speeds are
possible if the shear of the Undercurrent is taken
into account. The modification of the Rossby waves
by the Undercurrent is considerable. Fig. 7 shows
examples of eigenfunctions. In the case of the long
non-dispersive wave with a period of 83 days and
wavelength of 4300 km (point A), the equivalent

ag
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depth in the presence of the Undercurrent is 70 cm
but in the absence of this current it is only 39 cm.
This difference is reflected in the difference between
the pressure functions in Fig. 7. In the case of the
relatively short wave with a period of 41 days and a
wavelength of 1022 km (point B) the differences
between the eigenfunctions with and without an
Undercurrent present, and the difference between
the values for the equivalent depths, are again
substantial. The reason for this large modification
by the Undercurrent is the comparable speeds of the
Rossby waves and the Undercurrent. (The first
baroclinic mode Rossby waves have a speed of at
most 80 c¢m s~!. The corresponding speed is at
least 250 cm s™! for the Kelvin and inertia-gravity
waves which were found not to be strongly influenced
by the Undercurrent.)

Because the structures of the eigenfunctions in the
two layers are mismatched, a vertically propagating
mode in one layer will excite its counterpart in the
other layer, plus higher order Rossby modes. The
higher order modes, however, have increasingly
larger values for the equivalent depth #. Large
values of h imply turning latitudes that are distant
from the equator, and hence imply an unlikelihood
of the mode actually being established. In effect,
the excitation of high-order Rossby modes will
result in a loss of energy to non-equatorial latitudes.
The projection of the gravest Rossby wave in one
layer onto high-order modes in the other layer is
likely to be small, however, because their struc-

.

3000 2000 1000

/K

500
WAVELENGTH (km)

Fi1G. 5. Dispersion curves for the mema-gravnty branch of Rossby-gravity waves.
Solid lines apply when the Undercurrent is present, dashed lines apply when
there are no mean currents. Values for equivalent depths are in centimeters.
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tures do not match. Of greater importance will
be modes for which A < 0 so that interaction be-
tween the two layers will be limited. It is difficult to
assess how the Undercurrent will modify first-
baroclinic-mode equatorially trapped Rossby waves
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F1G. 6. Dispersion curves for the gravest Rossby mode [/ = 1 in Eq. (13)] which is
symmetric about the equator. Negative periods imply westward phase propagation.
See the text for further information.

that emanate from the eastern coast of the Pacific
(say). But it is evident that the waves will be slowed
down, that their latitudinal width will be increased
and that they will lose some energy to non-equatorial

)

latitudes.
A
1
P
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/ \,
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F1G6. 7. Eigenfunctions corresponding to points A and B in Fig. 6. The dashed lines show the structure of
the pressure functions for the same frequencies and wavenumbers but in the absence of the Undercurrent in
which case 2 = 39 cm (case A) and 2 = 42 cm (case B). One unit of ) is equal to 360 km [See Eq. (4)].
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5. Summary

The Equatorial Undercurrent has little effect on
long Kelvin and inertia-gravity waves with phase
speeds considerably in excess of the maximum speed
of the Undercurrent (or with equivalent depths
=30 cm). The inertia-gravity waves observed by
Wunsch and Gill (1975) satisfy these conditions.
Short Kelvin waves with periods less than a week
are significantly modified by the Undercurrent: for
given values of the frequency and zonal wave-
number the equivalent depth in the presence of the
Undercurrent is appreciably smaller than in the ab-
sence of this current. (The equivalent depth is a
measure of the vertical and latitudinal scale of the
waves.) This implies, as explained in Section 2,
that first-baroclinic-mode Kelvin wave events (such
as those said to play a role in El Nifio phenomena)
are likely to lose the energy associated with the
high-frequency part of their spectrum, but will
otherwise be unmodified.

The Rossby branch of the Rossby-gravity modes,
and the gravest equatorially trapped Rossby waves,
are more strongly influenced by the presence of the
Undercurrent because their phase speeds are
comparable to the maximum speed of the Under-
current. It can be inferred that one of these waves
propagating downward through the Undercurrent
could, in the region below the Undercurrent,
excite a number of Rossby modes (each with a
different latitudinal structure). The Undercurrent
will also decrease the speed, and alter the vertical
and latitudinal structure, of the first baroclinic
mode appreciably, in addition to causing it to lose a
small amount of energy to non-equatorial latitudes.

Meanders of the Undercurrent that can be viewed
as a superposition of propagating neutral (non-
amplifying) waves on the current, can have west-
ward phase propagation only. Because of the latitu-
dinal shear of the current, waves that could cause
eastward propagating meanders encounter critical

layers. The meanders described by White (1973)

and Monin (1972) are impossible; their analyses
disregard the shear of the Undercurrent.

This paper describes in detail the manner in which
the horizontal shear of the Equatorial Undercurrent
modifies the dispersion relation and latitudinal struc-
ture of the eigenfunctions associated with the
gravest equatorially trapped waves. Some inferences
are made concerning the effect of the vertical
shear on vertically propagating waves and vertically
standing modes but these results are very qualita-
tive. Quantitative results will require a much more
ambitious study since the equations are nonsepar-
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able. In the meantime, it is hoped that these re-
sults will facilitate the interpretation of data from
multilevel numerical models of the tropical oceanic
circulation.
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