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I. INTRODUCTION 
 
As charismatic megafauna, marine mammals are beloved and revered by people around 
the world. Consequently, mortality events and scientific research involving marine 
mammals are often of a high public profile. Widely publicized reports of high levels of 
anthropogenic contaminants in some whale species have incited concern that the 
carcasses of the whales themselves may constitute a toxicological hazard. This literature 
review was initiated with a view to gathering the collective data pertaining to levels of 
persistent contaminants in that subset of marine mammal species in US waters that tends 
to strand most frequently, so that the potential toxicological hazard generated by 
carcasses of these animals might be assessed. 
 
II. ENVIRONMENTAL CONTAMINANTS IN SELECTED MARINE MAMMAL 
SPECIES IN US WATERS 
 
A.  Contaminant classes—background information 
 
II.A.1. Persistent organic pollutants (POPs) 
 
II.A.1.1. Polychlorinated biphenyls (PCBs) are complex mixtures of synthetic chlorinated 
compounds  produced in the US until 1977 for use as insulators, coolants and lubricants, 
particularly in transformers and other electrical equipment (ATSDR, 2000). The basic 
structure of PCBs consists of a biphenyl backbone with 1 to 10 chlorine atoms, yielding 
209 possible PCB congeners. Position and degree of chlorination are important 
determinants of congener toxicity, with more highly chlorinated and coplanar (dioxin-
like) PCBs exhibiting greater toxicity than less chlorinated and non-planar congeners. A 
greater degree of chlorination also confers longer environmental persistence, which can 
range from months to years (ATSDR, 2000). The highly lipophilic nature of PCBs allows 
them to accumulate in fatty tissues of organisms or to associate with organic components 
of sediments in environmental samples. In animals and humans, PCBs are toxic to 
integumentary, immune, endocrine, reproductive, and nervous systems. At high doses, 
PCBs have been associated with liver and kidney damage in laboratory animals. PCBs 
are a known animal carcinogen and considered a probable human carcinogen by the US 
Environmental Protection Agency (USEPA) and other agencies (ATSDR, 2000), 
although no increased risk of cancer has been detected in studies of individuals 
occupationally exposed to PCBs (Ross, 2004). PCBs also have been implicated as 
environmental endocrine disruptors in wildlife species (Chiu et al., 2000), although this 
link is controversial (Ross, 2004). While PCBs can persist in the environment for many 
years, they are susceptible to both anaerobic and aerobic microbial degradation via 
metabolism of congeners with higher or lower degrees of chlorination, respectively 
(Abraham et al., 2002). 
 
II.A.1.2. Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-p-
furans (PCDFs) are chlorinated hydrocarbon compounds produced by combustion of 
waste and organic materials, or as contaminants in chemical manufacturing processes. 
Both compound classes consist of two benzene rings joined by either one (PCDFs) or two 
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(PCDDs) oxygen atoms. Like PCBs, PCDDs/PCDFs are environmentally persistent 
compounds that associate with particulate matter and that are highly lipophilic and prone 
to biomagnify in the food chain. The most toxic PCDD, 2,3,7,8 tetrachlorodibenzo-p-
dioxin (TCDD) serves as a standard for comparison of other dioxins and dioxin-like 
PCBs, the toxicity of which is sometimes expressed in “toxic equivalency factors” 
(TEQs) of TCDD (ATSDR, 1998). TCDD can cause dermal and hepatic toxicity, and is 
classified as a human carcinogen. Other PCDDs/PCDFs may cause similar effects, 
depending upon their structure (ATSDR, 1998). 
 
II.A.1.3. DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is an organochlorine 
pesticide banned in the US in 1972, but still used in many parts of the world for control 
of malaria-transmitting mosquitoes. Technical grade DDT is a mixture of p,p'-, o,p'-D, 
and o,o'-DDT isomers and may also contain DDE (1,1-dichloro-2,2-bis(p-
chlorophenyl)ethylene) and DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) as 
contaminants. The latter two compounds may also be produced via metabolism by some 
organisms, including microbes in the environment. In temperate regions, soil half-life of 
DDT is approximately 5 years, but may be up to 4 to 6 times as long, depending on the 
environmental conditions (ATSDR, 2002a). Like other organochlorines, DDT, DDE and 
DDD are extremely lipid soluble, tending to biomagnify and to associate with organic 
matter (soils and sediments) in the environment. At extremely high doses, DDT may be 
neurotoxic (ATSDR, 2002a). DDT and its metabolites are carcinogens and may also act 
as endocrine disruptors, although studies on estrogenic effects of DDT have been 
equivocal (Turusov et al., 2002). 
 
II.A.1.4. Chlordane is an organochlorine pesticide used in the US until 1988 (ATSDR, 
1994). It is a complex mixture of various chlordane isomers and other compounds, the 
fractions of which vary depending upon the purity of the preparation. The predominant 
components identified in technical chlordane were cis-chlordane, trans-chlordane, trans-
nonachlor, octachlordane, heptachlor, and cis-nonachlor (Dearth and Hites, 1991). 
Chlordane may persist for decades in the environment and is highly lipid soluble, with 
oxychlordane comprising the major metabolite that bioaccumulates in fatty tissues 
(USEPA, 1997). A component of chlordane, heptachlor was also produced and used as a 
pesticide in its own right. Heptachlor epoxide may be produced by degradation or 
metabolism of heptachlor (ATSDR, 1993). Chlordane and the related compounds 
heptachlor and heptachlor epoxide are lipophilic and environmentally persistent 
(ATSDR, 1994 and 1993). At high doses, chlordane may cause toxic effects in the liver, 
digestive tract and nervous system (ATSDR, 1994). While data are limited, heptachlor 
and heptachlor epoxide also have been associated with toxic effects to the nervous and 
reproductive systems, as well as to liver and kidney in humans or animals, with the 
epoxide metabolite being more toxic than its parent compound (ATSDR, 1993). Evidence 
as to carcinogenicity of chlordane is inconclusive (ATSDR, 1994; USEPA, 1997). 
Heptachlor and heptachlor epoxide are considered possible human carcinogens by the 
USEPA, while the International Agency for Research on Cancer (IARC) determined that 
the two compounds are not classifiable with respect to human carcinogenicity (ATSDR, 
1993). 
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II.A.1.5. Hexachlorobenzene (HCB) was produced in the US until 1970s, although it 
continued to be used as a fungicide until 1984. Also, some HCB is formed as a by-
product in the manufacture of other chlorinated compounds as well as during incineration 
of garbage (McGovern, 2004). HCB is ubiquitous and persistent in the environment, with 
a half-life of up to approximately 6 years in soil, air and surface water, while in 
groundwater the half-life may be almost twice as long. Like other organochlorines, HCB 
is insoluble in water, but highly soluble in organic solvents and lipid allowing it to 
bioaccumulate readily in fatty tissues. HCB is toxic to virtually all organ systems, with 
the central nervous system, ovary and liver comprising the most vulnerable target organs. 
The USEPA classifies HCB as a probable human carcinogen based on data from animal 
studies (ATSDR, 2002b). 
 
II.A.1.6. Technical grade hexachlorocyclohexane (HCH), which contains α, β, γ, δ, and ε 
isomers, was produced in the US until 1983 for use as an insecticide. While other forms 
of HCH are now banned, γ-HCH (also known as lindane) is still imported for use as an 
insecticide and topical treatment for lice (Research Triangle Institute, 1999). At high 
doses, HCHs can result in neural, musculoskeletal and reproductive toxicity. 
Abnormalities in developmental, endocrine, hepatic, renal, immunologic and 
hematopoieitic indices associated with HCH exposure also have been documented in 
humans or animals. Some animal studies have found increased incidence of liver cancer 
in rodents following chronic oral exposure to HCHs, leading the Department of Health 
and Human Services to extrapolate that HCHs may be a possible human carcinogen 
(Research Triangle Institute, 1999). 
 
II.A.2. Toxic metals 

1. Cadmium 
2. Lead 
3. Mercury 
4. Organotins 

Toxic metals are a unique class of environmental contaminants in that they occur 
naturally, although human activities have allowed them to become more pervasive and 
accessible to biotic cycles. However, because they are innate to the environment, it is 
difficult to distinguish “pollutant” from “natural” sources. Moreover, metals are not 
degraded via microbial or physical action, but may merely metamorphose by alterations 
in oxidation state and/or in the other elements to which they are bound in compounds. 
 
II.A.2.1. Cadmium is a heavy metal often released as a by-product during refining of 
zinc, copper and lead, and has some industrial uses, such as in batteries and electrical 
components. There also are natural releases of cadmium to the environment through 
events such as volcanic eruptions and forest fires. Compared to other metals, cadmium is 
somewhat unique in that it is taken up and may accumulate to appreciable levels in some 
plants. In animals, cadmium is sequestered in the kidney and liver. The target organ of 
cadmium is the kidney; in addition, it is toxic to a number of other organs, including 
liver, bone and blood vessels. While data are scant, cadmium may be carcinogenic as 
well (ATSDR, 1999a). Various marine mammals are exposed to or bioaccumulate high 
levels of cadmium compared to terrestrial species (Woshner et al., 2001a; 2001b). 
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Although no physiologic requirement can be demonstrated for cadmium in the majority 
of organisms, some researchers recently have characterized a cadmium-containing 
enzyme in a marine diatom, refuting the long-held belief that cadmium was not only 
universally toxic but also functionless in living creatures (Lane et al., 2005). 
 
II.A.2.2. Lead is ubiquitous in the environment, both as a result of natural geologic 
distribution and because of wide industrial applications, including former usage as a 
gasoline and paint additive. It is also released by combustion of fossil fuels and waste 
incineration.  Lead is believed to be universally toxic, even at very low levels, with no 
organisms known to date demonstrating a physiologic requirement for lead. Generally, 
ingested lead is not well absorbed; however, because it is chemically similar to calcium, 
it may be assimilated and accumulated in tissues in lieu of calcium, particularly in 
growing organisms that are calcium limited. Although the nervous system (particularly 
the developing brain) is considered the “target organ” of lead, this metal is toxic to 
virtually all body systems, including the hematopoietic, cardiovascular, reproductive, 
immune, gastrointestinal, and musculoskeletal systems. Lead is carcinogenic in 
laboratory species, but has not been established as a human carcinogen (ATSDR, 1999b). 
 
II.A.2.3. Mercury (Hg) is another metal that is apparently toxic to all organisms, even at 
low levels. Relative toxicity of mercury depends largely on the form of the metal (organic 
versus inorganic), and as is the case for all toxicants, the route by which exposure occurs. 
Ingested elemental mercury is not well-absorbed and hence of low toxicity, while 
exposure to methylmercury by this route is highly toxic, as it is almost completely 
absorbed. Like other toxic metals, mercury enters the environment from natural sources, 
such as volcanoes and degassing of the earth’s crust. However, anthropogenic activity has 
dramatically increased mercury emissions, primarily through burning of fossil fuels, as 
well as through mining and other industrial applications. While mercury is toxic to 
virtually all body systems, the nervous system and kidney are the primary target organs 
for organic and inorganic mercury, respectively (ATSDR, 1999c). 
 
II.A.2.4. In its inorganic form, tin (Sn) is non-toxic. However, organic forms of tin may 
be highly toxic. Organotins have a variety of industrial applications, including use of 
mono- and di-substituted organotins as catalysts and stabilizers in PVC plastics (Appel, 
2004). Tributyl tin (TBT) compounds have been widely used as pesticides, particularly in 
antifouling paints on ships. As such, TBTs are ubiquitous in the aquatic environment, 
even as their use is being phased out due to concerns with respect to their ecotoxicity 
(Rüdel, 2003). As with many other toxicants, organotins adsorb onto organic particulates, 
such that an increase in dissolved organic matter decreases bioavailability of organotins. 
Also, speciation of organotins is pH-dependent; hence, increasing pH is associated with 
formation of organotin hydroxides, which are lipophilic and therefore predisposed to 
bioaccumulate (Fent, 2003). Organotins, especially TBT and triphenyltin (TPT) have 
been associated with tumorigenicity of the adenohypophysis, developmental toxicity, 
reproductive toxicity, neurotoxicity and most especially immunotoxicity, with 
thyrotoxicity apparently consitituting the most sensitive toxic endpoint in mammals 
(Rüdel, 2003). Gastropods are exceptionally vulnerable to toxic effects of TBT, which 
disrupts steroid metabolism leading to development of imposex at even minute 
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concentrations. In the environment, organotins undergo aerobic degradation, but can 
persist for years in anoxic sediments (Fent, 2004). 
 
II.A.3. Miscellaneous contaminants 

1. Polybrominated diphenyl ethers (PBDEs) 
2. Polyfluoroalkyls (PFAs) 
 

II.A.3.1. Polybrominated diphenyl ethers (PBDEs) are one group of brominated flame 
retardants that are currently in wide usage. These compounds are added to plastics, 
particularly those comprising plastic components of computers and televisions as well as 
to plastic foams and textiles (ATSDR, 2002c; Darnerud et al., 2001). While over 200 
PBDE congeners are possible, forms with fewer than four bromine atoms generally are 
not employed in commercial applications. Release of PBDEs into the environment is 
believed to occur primarily through incineration and volatilization; leaching from 
landfills may also serve as a source of PBDE contamination, although studies are lacking 
to verify this (Darnerud et al., 2001). Like other persistent organic pollutants, PBDEs are 
resistant to environmental and biotic degradation. Although research is limited, uptake 
from the environment appears to occur mainly through oral exposure, with absorption 
efficiency inversely related to degree of bromination (ATSDR, 2002c). PBDEs are 
lipophilic, and appear to have potential for both bioaccumulation and biomagnification 
(ATSDR, 2002c). The extent to which PBDEs are metabolized and excreted appears to 
vary with species and degree of congener bromination (Darnerud et al., 2001). In 
laboratory studies, effects of PBDEs range from immunotoxicity and thyrotoxicity, to 
hormone disruption, neurobehavioral abnormalities and developmental toxicity. The 
limited evidence available to date suggests that PBDEs do not have teratogenic or 
genotoxic potential. (ATSDR, 2002c). 
 
II.A.3.2. Polyfluoroalkyls (PFAs) are a group of compounds comprised chiefly by 
fluorotelomer alcohols and perfluoroalkyl sulfonamide alcohols (as well as their 
breakdown products), that were used in a variety of commodities, including surface 
protectants, paper, insecticides, surfactants, and fire-retardants (Olsen et al., 2003; Seacat 
et al., 2002). Because of their toxicity and environmental persistence, some PFAs have 
been banned (Olsen e al., 2003; Seacat et al., 2002). Through metabolism or 
environmental degradation, fluorotelomer alcohols appear to form carboxylic acids, 
fluorotelomer carboxylic acids (FTCA), and fluorotelomer unsaturated carboxylic acids 
(FTUCA) (Houde et al., 2005). Degradation of perfluoroalkyl sulfonamide alcohols 
yields sulfonic acids (PFSAs) such as perfluorooctane sulfonate (PFOS)—a stable, 
bioaccumulative, toxic end product that has been found among diverse species from 
widely different environments (Giesy and Kannan, 2001). Toxicity of PFOS is related 
primarily to effects on the liver, including hepatocellular hypertrophy and altered lipid 
metabolism, including decreased cholesterol (Olsen et al., 2003). Some PFAs have been 
found to act as hepatic peroxisome proliferators or to provoke developmental and 
neuroendocrine toxicity (Houde et al., 2005). 
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II.B. Concentrations of environmental contaminants in selected species of marine 
mammals in US waters 
 
II.B.1. Species addressed 
 
Twelve species of marine mammals are included in this review, based upon the frequency 
and patterns with which they strand (T. Rowles and J. Whaley, pers. comm.). Species that 
tend to strand as individuals include: pygmy and dwarf sperm whales (Kogia breviceps 
and K. simus, respectively); common bottlenose dolphin (Tursiops truncatus); California 
sea lion (Zalophus californianus); harbor seal (Phoca vitulina); and elephant seal 
(Mirounga angustirostris). Species that tend to strand en masse are represented by: long 
and short-finned pilot whales (Globicephala melas and G. macrorhynchus, respectively); 
rough-toothed dolphin (Steno bredanensis); and white-sided dolphin (Lagenorhynchus 
acutus). Large whale species considered are the gray and humpback whales (Eschrichtius 
robustus and Megaptera novaeangliae, respectively). 
 
II.B.2. Databases reviewed, including time period examined and search terms used 
 
The online databases Biological Abstracts, PubMed, and Toxline were searched, using an 
exhaustive list of key words, including (but not limited to): Kogia, Tursiops, Zalophus, 
Phoca, Mirounga, Globicephala, Steno, Lagenorhynchus, Eschrichtius robustus, 
Megaptera, elephant seal, dolphin, marine mammal, pinniped, whale, cetacean, 
polychlorinated biphenyls, PCB, DDT, persistent organic pollutants, pollutant, 
contaminant, heavy metal, mercury, hexachlorocyclohexane, HCB, chlordane, 
heptachlor, dieldrin, aldrin, and organochlorine(s). Reports on marine mammals 
considered for inclusion in this review were confined to those published in peer-reviewed 
journals from 1995 through 2005 that addressed any of the twelve species designated 
above in US waters. A few ancillary studies that were either published prior to 1995, or 
that dealt with marine mammals in non-US waters, were included when those waters 
were contiguous with US waters, and when other US-based studies for those particular 
species were lacking. For example, Varanasi et al., 1994, was published outside of the 
timeframe used as a criterion for inclusion in this review. Nevertheless, I incorporated 
this study, as well as a few other studies (Tilbury et al., 2002; De Luna and Rosales-Hoz, 
2004; Ruelas-Inzunza et al., 2002; Mendez et al., 2002) that addressed contaminants in E. 
robustus from Russian (Bering Sea) and Mexican waters, because contaminant studies for 
gray whales were limited. Also, because gray whales migrate long distances, whales 
studied in Mexican or Russian waters likely navigate US waters as well, where they may 
strand or die and present a carcass disposal problem. 
 
II.B.3. Overview of tissue contaminant concentrations: Literature review summary 
 
II.B.3.0. General comments upon format of tables and appendices 
 
This review covers studies done by multiple scientists who were in various geographic 
locations, attempting to answer different research questions, and using diverse techniques 
and laboratories. Consequently the data are quite disparate and difficult to harmonize. For 
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this reason, and to make this report as pertinent as possible for future applications, I have 
compiled as much data as feasible directly from the source papers. However, whenever 
possible, I attempted to give contaminant concentrations on a wet weight basis (since that 
is the state of the carcass presented for disposal) and to standardize the units in which 
data were given, presenting the persistent organic pollutants, PCDD/Fs, PBDEs, and 
PFAs in ng/g and metals in ug/g. I converted values from ng/g lipid weight to ng/g wet 
weight for Shaw et al, 2005, Struntz et al., 2004, She et al., 2002 and Gautier et al., 1997. 
All tables and appendices (in the accompanying Excel file) contain extensive footnotes to 
accurately characterize the data. In addition, species designations are color-coded in a 
consistent manner throughout the tables and appendices, to allow for easy location and 
comparison of text with respect to a given species. 
 
II.B.3.1. Persistent organic pollutants (POPs), including PCBs, PCDD/Fs, DDTs, 
Chlordanes, HCB, and HCHs 
 
Because organochlorines, as a class, are lipophilic compounds that might be expected to 
reach highest concentrations in fat (Norstrom, 2002), blubber represents the tissue where 
maximum organochlorine concentrations are likely. Blubber is also the tissue for which 
the most data have been generated pertaining to organochlorine contaminants in marine 
mammals. Reported levels of major persistent organic pollutants (i.e., PCBs, DDTs, 
chlordanes, mirex, dieldrin, aldrin, endrin, HCHs, HCB, and endosulfans) in the selected 
cetacean and pinniped species from US waters are provided in Appendices I and II, 
respectively, and summarized in Table 1, while metadata for studies addressing major 
persistent organic contaminants in the chosen marine mammals is presented in Table 2. 
Twenty-one papers focused on organochlorine contaminants in the cetacean species 
under consideration, while 16 studies examined organochlorines in pinniped species. For 
all contaminant classes combined, the number of studies and the collective number of 
individuals sampled for each cetacean species were as follows: T. truncatus, 9 studies 
(two of which, by Reddy et al. dealt with the same animals), 218 sampled; K. breviceps, 1 
study, 2 sampled; L. acutus, 3 studies (two of which, by Tuerk et al., dealt with the same 
animals), 53 sampled; G. melas, 4 studies, 60 sampled (with some overlap between 
studies and animals, so this number is likely somewhat inflated); S. bredanensis, 2 studies 
(both of which dealt with the same animals), 15 sampled; E. robustus, 3 studies, 101 
sampled (again, there appears to be some overlap between studies and animals, so this 
number likely overstates the true number of animals represented); M. novaeangliae, 2 
studies, 32 sampled. For pinniped species, the number of studies and maximum total 
number of animals sampled were: Z. californianus, 6 studies (Le Boeuf et al., 2002 and 
Kannan et al., 2004 consider the same animals), 148 sampled; P. vitulina, 10 studies, 201 
sampled; M. angustirostris, 4 studies, 13 sampled (Table 2). I found no studies 
addressing organochlorine contaminants in K. simus or G. macrorhynchus in my review 
of the literature. 
 
Among the species addressed, mean total PCB levels were highest in blubber of T. 
truncatus (240,000 ng/g lipid weight; n=6), which also had the highest single observed 
concentration of total PCBs, at 1,120,000 ng/g lipid weight. P. vitulina had the lowest 
mean concentration of total PCBs (1.7 ng/g wet weight, n=10). Compared to other 
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species targeted in this review, California seal lions had by far the highest mean blubber 
concentrations of sum DDTs (143,000 ng/g lipid wgt.; n=36) and sum HCHs (780 ng/g 
lipid wgt.; n=36), as well as the highest single observed concentration of these 
contaminants in blubber (1,400,000 and 2,240 ng/g lipid wgt. for sum DDTs and sum 
HCHs, respectively, with the latter value obtained by adding the standard deviation to the 
corresponding mean). Compared to other species, E. robustus (n=38) and K. breviceps 
(n=2) had low blubber concentrations of sum DDTs (means of 130 and 540 ng/g wet 
weight, respectively). K. breviceps also had the lowest documented levels of HCHs (1.1 
ng/g wet weight), although little significance can be imparted to a sample consisting of 
two individuals. L. acutus displayed both highest mean and overall blubber 
concentrations of sum chlordanes (8,800 ng/g wet weight; n=23, and 23,900 ng/g wet 
weight, respectively) and dieldrin (1,810 ng/g wet weight; n=23, and 3,940 ng/g wet 
weight, respectively). Tursiops had the lowest mean and overall blubber concentration of 
dieldrin (non-detectable) observed, while the lowest mean blubber concentration of sum 
chlordanes occurred in K. breviceps, followed by E. robustus (50 and 140 ng/g wet 
weight, respectively). The highest mean blubber concentrations of mirex (32,000 ng/g 
wet weight; n=8) and HCB (4,700 ng/g wet weight; n=8) were found in P. vitulina, which 
also had the highest overall blubber concentrations of these two contaminants (60,000 
ng/g wet weight and 8,500 ng/g wet weight for mirex and HCB, respectively). Overall, 
among the species and data represented in this review of the literature, the bottlenose 
dolphin appears to be the cetacean species most contaminated by persistent organic 
pollutants, followed by L. acutus, while among pinnipeds the California sea lion 
represents the most contaminated species, followed by harbor seals. A cursory 
examination of Table 1 reveals that, among the selected cetacean species, E. robustus, K. 
breviceps (represented by only two individuals) and M. novaeangliae appear the least 
contaminated with persistent organic pollutants. Such a perfunctorily apparent inference 
cannot be made with respect to the three pinniped species, however; while blubber 
concentrations of none of the persistent organic pollutants in M. angustirostris exceeds 
the levels in the other two species, neither are they consistently lower than concentrations 
observed in P. vitulina or Z. californianus. 
 
Collectively, four studies have measured PCDD/Fs in blubber from three of the species 
included in this review (Table 3). For all studies combined, the total number of 
individuals for each species is: E. robustus (n=2), M. angustirostris (n=6), and P. vitulina 
(n=75). Two studies, Jarman et al., 1996 and Lake et al., 1995, found no detectable levels 
of PCDD/Fs in blubber of E. robustus (n=2) or P. vitulina (n=15), respectively. The 
highest reported mean concentrations of sum PCDDs and sum PCDFs were 0.279 ng/g 
lipid weight (n=38) and 0.026 ng/g lipid weight=5), respectively, both of which were in 
seals from British Columbia, Canada. 
 
II.B.3.2. Toxic metals, including Hg, Cd, Pb, and Sn 
 
Twelve studies examined one or more of the toxic metals, Hg, Cd, Pb and Sn, in the 
cetacean species addressed in this review, while only three studies evaluated one or more 
of the metals in question in the selected pinniped species. For all metal contaminants 
combined, the number of studies and the maximum collective number of individuals 
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sampled for each cetacean species were as follows: T. truncatus, 5 studies, 148 sampled; 
K. breviceps, 1 study, 3 sampled; L. acutus, 1 study, 4 sampled; G. melas, 1 study, 9 
sampled; S. bredanensis, 1 study, 15 sampled; and E. robustus, 5 studies, 35 sampled. 
Similarly for pinniped species, the number of studies and total number of animals 
sampled were: Z. californianus, 1 study, 10 sampled; P. vitulina, 2 studies, 13 sampled; 
M. angustirostris, 2 studies, 6 sampled. No studies were found that addressed levels of 
the specified metal contaminants in G. macrorhynchus, M. novaeangliae, or K. sima 
between 1995 and 2006 in US waters. Metadata describing studies pertaining to the 
potentially toxic metals Hg, Cd, Pb and Sn are summarized in Table 4, while reported 
levels of these metals in the given species over the publication timeframe under 
consideration are given in Appendix III. 
 
It is difficult to make any generalizations or to draw any meaningful comparisons about 
the four potentially toxic metals covered by this literature review, because reported data 
is quite limited and methodologies between studies vary. Overall, ten studies report 
values on a wet weight basis, while the remaining five present metal concentrations on a 
dry weight basis, and since raw data generally are not provided, the reader cannot convert 
data from one form to the other. 
 
II.B.3.3. Miscellaneous contaminants: PBDEs and PFAs 
 
Within the geographic and temporal confines of this review, 6 studies have evaluated 
concentrations of PBDEs in the selected species of marine mammals (Table 5). Four 
studies examined PBDEs in blubber of Tursiops, L. acutus, S. bredanensis and P. 
vitulina, while the remaining two studies addressed PBDE levels in P. vitulina blood. 
Among the species in these studies, adult male Tursiops demonstrated the highest PBDE 
contamination, with a mean concentration of 3,110 ng/g wet weight in blubber (range: 
126–16300, n=9). 
 
As for PBDEs, PFAs have been assessed in a limited number of individuals and species 
(Table 6). Kannan et al., 2001 analyzed hepatic concentrations of PFOS in the following 
species: K. breviceps (n=2), S. bredananensis (n=2), T. truncatus (n=20), Z. califonianus 
(n=6), M. angustirostris (n=5), P. vitulina (n=3). Houde et al. (2005) conducted a more 
extensive study of various PFA compounds in Tursiops blubber and found concentrations 
of mean sum PFAs ranging from 778 (n=42) to 1738 (n=47) ng/g wet weight between 
geographic locations on the eastern US coast. 
 
II.C. Conclusions and comments regarding the nature and adequacy of the available 
literature database 
 
The studies encompassed by this literature review were conducted to determine 
concentrations of specific environmental contaminants in various given marine mammal 
species. Such monitoring investigations generally are undertaken to learn how 
environmental contaminants may be impacting individual or population health, as well as 
to indicate whether environmental contaminants might be implicated as a causative factor 
in stranding events. Tursiops is, by far, the species for which the most comprehensive 

 12



data exist pertaining to contaminants, and among those contaminants, PCBs have been 
the most widely analyzed in this species. Of nine studies that sampled a combined total of 
218 bottlenose dolphins for PCBs, seven studies evaluated PCBs in blubber, with a 
combined total sample size of 210 animals. Of these 210 dolphin blubber samples, 129 
appear to have been obtained via biopsy, while 81 were apparently from stranded 
animals. Eighty-one of the 210 blubber samples were taken from dolphins in the Gulf of 
Mexico, off the FL (including Sarasota Bay), TX, or AL coasts. Sixty-two blubber 
samples were from Atlantic dolphins, generally from three sites: Beaufort, NC, (n=40) 
Charleston Bay, SC, (n=11) and Indian River Lagoon, FL (n=17). The remaining 14 
blubber samples were from dolphins in San Diego Bay, CA. The blubber PCB data 
reported among the seven studies is in a variety of formats. Hansen et al., (2004) reported 
the geometric means of their data, while Wells et al., (2005) did not report means at all. 
Other studies reported arithmetic means. The number of PCB congeners which comprise 
“sum PCBs” among these seven studies also vary widely, from ten to eighty-seven 
congeners, while three studies did not report the identity or number of congeners 
analyzed. All seven studies report PCB concentrations on a lipid weight basis. However, 
if the concern is not the consequences of PCB contamination on the dolphin itself, but 
rather the dispersion of the PCBs contained within the blubber throughout the 
environment during carcass decomposition or scavenging, the entity of interest is the 
level of contamination expressed on a wet weight basis. Because individual animal data 
including blubber percent lipid are not specified in any of these seven studies, conversion 
of concentration data to a wet weight basis is not possible. 
 
Sampling techniques also influence the levels of organochlorines measured in blubber. Of 
the seven studies that quantified blubber PCBs, only two (Salata et al., 1995 and Finklea 
et al., 2000) stipulated that full-thickness blubber samples were obtained. Kuehl and 
Haebler (1995) and Johnson-Restrepo (2005) did not specify how blubber samples were 
taken. The remaining three research teams employed biopsy methods, including remote 
dart (Hansen et al., 2004), punch (Reddy et al., 2001) and wedge (Wells et al., 2005) 
biopsy. All of these biopsy techniques are inherently biased towards collection of the 
outermost portion of the blubber. However, Aguilar and Borrell (1991) and Severinsen et 
al., (2000) documented that organochlorines are not homogenously distributed 
throughout this tissue in species of two baleen whales and a phocid seal, respectively, but 
rather stratified such that contaminant levels in the outermost blubber are significantly 
greater than that of the innermost blubber layer. Moreover, this difference was not 
attributable merely to variation in lipid content (Severinsen et al., 2000). Struntz et al., 
2004 noted the heterogeneous morphological and histological structure of Tursiops 
blubber. Consequently, it would be imprudent to assume that PCBs or other 
organochlorine contaminants are homogenously dispersed throughout blubber of 
bottlenose dolphins. Rather, contaminants concentrations obtained from blubber biopsy 
specimens likely overestimate blubber contaminant burdens, and should be interpreted 
with caution. 
 
The above summary briefly illustrates the extremely limited nature of the database for the 
most thoroughly studied species and contaminant combination (Tursiops and PCBs) 
among those considered by this review. For other contaminants and species, the data are 
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even scantier. Certain generalizations might be made about the distribution of particular 
contaminants within tissues, and among individuals in a given population. For example, it 
is generally understood that species higher trophic species such as dolphins are more 
prone to bioaccumulating higher levels of some contaminants than species that feed at 
lower trophic levels, such as baleen whales. Also, lipophilic contaminants such as PCBs 
tend to be at highest levels in blubber of adult males, because contaminant levels increase 
with age, and because females can depurate some of their acquired contaminant load 
through transfer to offspring (Wells et al., 2005). This latter phenomenon accounts for the 
observation that immature animals may have higher blubber PCB concentrations than 
adults, when levels are evaluated on a lipid weight basis. Despite such documented 
patterns of PCB accumulation within Tursiops, overall the data are quite limited with 
respect to samples sizes, tissues analyzed and geographic locations represented.  
 
Contaminant monitoring studies tend to focus on tissues that represent target organs of a 
given toxicant or are sites of bioaccumulation. Because few tissues are assayed, there is 
generally insufficient information to infer the total body burden of a given contaminant 
for an individual in a given population. Moreover, patterns of contaminant accumulation 
will vary based upon exposures. Individuals from highly contaminated areas will not 
serve to represent animals from less contaminated regions, and vice versa. The 
heterogeneous nature of contaminants data published for the selected marine mammals in 
US waters encompassed by this review make it difficult to compare between studies, 
much less to unify this disparate research into an assemblage with utility for other 
applications such as the evaluation of the potential toxicological environmental hazards 
posed by decomposing carcass. At current, the database for the contaminants in the 
species encompassed by this review is inadequate to support such an assessment. 
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Table 1. Summary of Concentrations of Major Organochlorine Contaminant Classes in Blubber of Selected Marine Mammal Species from US Waters as Reported in Literature from 1994-2005

Table 1. Summary Data for Some Persistent Organic Pollutants, Including PCBs, DDTs, Chlordanes, Mirex, Dieldrin, HCHs and HCB in Blubber of Selected 
Marine Mammal Species from US Waters, Reported 1994 through 2005. 
For each species, the lowest and highest overall means among reported studies are given, followed by the corresponding sample size, as well as overall 
ranges for animals in all studies combined.
CETACEANS Analyte (ng/g) Lipid (%) ∑ PCBs ∑ DDTs ∑ chlordanes mirex dieldrin ∑ HCHs HCB
T. truncatusa Lowest mean (n) 19.9 (4) 5644 (6) 3988 (6) 548 (6) 20.3 (2) ND (2) 109 (33) ND (9b)

Highest mean (n) 39.4 (9) 240000 (6) 51906 (5) 7022 (5) 663 (4) 1550 (5) 234 (14) 3360 (5)
Overall range 1.2 - 82.8 420 - 1120000 428 - 87281 195 - 10553 ND - 6540 ND - 3120 9 - 354 ND - 5730

K. brevicepsc Mean (n) 3.4 (2) 560 (2) 540 (2) 50 (2) NA NA 1.1 (2) 5.5 (2)
Overall range 2.6 - 4.1 290 - 830 400 - 680 27 - 73 NA NA 1.1 - 1.1 1.4 - 9.7

L. acutusc Lowest mean (n) 43.8 (6) 9410 (9) 4090 (9) 2200 (9) 40.4 (9) 293 (9) 91 (9) 50.6 (9)
Highest mean (n) 43.8 (6) 29400 (23) 15900 (23) 8800 (23) 73.7 (15) 1810 (23) 301 (23) 237 (23)
Overall range 17.2f 490 - 62700 498 - 43300 285 - 23900 18.4 - 112 62.6 - 3940 50.4 - 821 11d - 606

G. melasc Lowest mean (n) 39 (16) 4172 (11) 6000 (16) 1221 (11) 27 (11) 262 (7) 57.5 (11) 200 (16)
Highest mean (n) 75 (16) 12000 (6) 18336a (16) 3000 (6) 56a (16) 441 (11) 104a (16) 370 (6)
Overall range 17.7d - 88 1087d - 25000 NDa,d - 42046a,e 55a,d - 5800 NDc,d - 90a,e 56.8 - 674e NDc,d - 157a,e NDa,d - 620

S. bredanensisc Mean (n) 53 (15) 18392 (15) 9285.5 (15) 3825 (15) 269.3 (15) 233.8 (15) 26.0 (15) 28.8 (15)
Overall range 38 - 73.3 643 - 43301 146 - 23139 74.1 - 2093 16.4 - 664 9.03 - 1220 2.6 - 177 0.4 - 67.4

E. robustusc Lowest mean (n) 8.5 (22) 220 (38) 130 (38) 140 (17) NA NA NA 100 (38)
Highest mean (n) 48 (17) 1600 (22) 444 (22) 340 (22) NA 160 (22) NA 510 (24)
Overall range 0.6 - 73 120 - 10000 11 - 2940 13 - 2200 ND - 100 4 - 1600 NA 17 - 2900

M. novaeangliaec Lowest mean (n) NA 897a (12) NA NA 1.8 (6) 308 (6) 104 (6) 73.4 (6)
Highest mean (n) 44.9 (7) 1153 (7) NA 385.6 (6) 7.2a (12) 363.4a (13) 108.1a (12) 172.2a (13)
Overall range 27 - 63 301a,d - 2958 NA 125.6 - 728.3 ND - 11.1a,e 52.7 - 777 33.8 - 242 15.8 - 293.1a,e

PINNIPEDS
Z. californianusc Lowest mean (n) 4.2 (9) 1300 (5) 13947 (9) 457 (9) NA NA 57 (9) NDg

Highest mean (n) 50 (36) 48158 (12) 143000a,h (36) 3420a (36) NA 190a (36) 780a (36) NDg

Overall range 1 - 88 ND - 410000a 456 - 1400000a 17 - 9450 NA 220f 6.5 - 2240a,e NDg

M. angustirostrisc Lowest mean (n) 74 (4) 550 (6) 11000a (2) 1095a (2) NA NA 122a (2) 30 (4)
Highest mean (n) 85 (2) 6979 (4) 12418 (4) 1118 (4) NA 28a (2) 184 (4) 32.5a (2)
Overall range 18 - 93 460d - 10440 3000a - 19800 290a - 1900a NA 19a - 37a 44a - 279 14.8 - 43a

P. vitulinac Lowest mean (n) 40 (3) 1.7 (10) 314 (5) 205 (5) 4.9 (3) 5 (5) 33a  (2) 5.3 (9)
Highest mean (n) 89 (2) 40376 (3) 8790 (3) 4015 (3) 32000 (8) 364a (4) 220a (4) 4700 (8)
Overall range 16 - 95 ND - 78474 130 - 13612 80 - 8938 1.2 - 60000 3 - 1060a 22.4a  - 425a 2.79d - 8500

Abbreviations: ND, the analyte was not detected above the limit of detection; NA, not available
ang/g lipid weight
bLargest sample with this mean
cng/g wet weight
dValue obtained by subtracting the SD from the corresponding mean
eValue obtained by adding the SD to the corresponding mean
fStandard deviation of mean above
gND in either of two studies that address this analyte
h∑DDTs refers to p,p' forms of DDE, DDD and DDT only



Table 2. Metadata for Persistent Organic Pollutants, Including PCBs, DDTs, Chlordanes, HCHs and HDB in Selected Marine Mammal Species from US 
Waters, Reported 1994 through 2005.
An "X" in a given contaminant column denotes that contaminant was analyzed. 

Source Species Contaminant Classes Analyzed
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(#
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hl

or
da

ne
s*
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H
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B Tissue (n) Date Sampled Event Location Source data 
characterization
Arith.(A) or Geo. (G) 
Mean; lw or ww;  % lipid 
given?; individual animal 
data provided?

CETACEANS
Hansen et al., 2004 T. truncatus X (15) X X X blubber (62) 1995-2000 B NC, SC, FL G;  lw; yes; no
Reddy et al., 2001; 1998 T. truncatus X (10) X X X X blubber (14)

blood (16)
1994 B CA NR;  lw; no; yes

Salata et al., 1995 T. truncatus X (NR) X X X X blubber (33) NR S TX, FL A; lw; no; no
Kuehl & Haebler, 1995 T. truncatus X (NR) Xa X X blubber (24) 1990 S TX, FL A; lw; no; no
Finklea et al., 2000 T. truncatus X (87) blubber (10) 1990 S  TX A; lw; no; yes
Johnson-Restrepo et al., 2005 T. truncatus X (NR) blubber (20) 1991-2004 S & Bd FL A; lw; yes; no
Wells et al., 2005 T. truncatus X (22) blubber (47)

blood (NR)
milk (NR)

2000-2001 B FL NRf; lw; no; no

Watanabe et al., 2000 T. truncatus X (35) Xa X X X liver (6) 1989-94 S FL A; ww; yes; yes
K. breviceps X (35) Xa X X X liver (2) 1991-92 S FL A; ww; yes; yes

Tuerk et al., 2005a,b L. acutus X(55) X X X X blubber (47) 1993-2000 S MA A;ww; no; no
Weisbrod et al., 2001 L. acutus X (27) X X X X blubber (6)

skin (6)
liver (6)
lung (2)
kidney (2)

1994-96 S MA, NY A; ww; yes; no

G. melas X (27) X X X X blubber (11)
skin (3)
liver (8)
heart (4)
muscle (6)
kidney (3)
testis (1)

1990-96 S MA, NY A; ww; yes; no

Weisbrod et al., 2000 G. melas X (27) X X X X blubber (16)
liver (17)

1990-96 S MA A; lw; yes; no

Becker et al., 1997 G. melas X (33) X X X blubber (7) NRb NRb MA A; ww; no; no
Tilbury et al., 1999 G. melasb X (17) X X X blubber (22)

liver (25)
kidney (9)
brain (8)
ovary (2)

1986-90 S MA A; ww; yes; no

Struntz et al., 2004; Tuerk et 
al., 2005a

S. bredanensis X (33) X X X X blubber (15) 1997 S FL A; lw; yes; yes

Varanasi et  al., 1994 E. robustus X (NR) X X X blubber (22)
liver (10)
brain (1)

1988-91 S CA, WA & AK Ac; ww; yes; no 

Tilbury et al., 2002 E. robustus X (17) X X X blubber (17)
liver (14)
kidney (6)
brain (6)
muscle (3)

1994 H Russia 
(Western Bering 
Sea)

A; ww; yes; no

Krahn et  al., 2001 E. robustusb X (17) X X X blubber (62) 1996 & '99 B & S WA A; ww; yes; no
Metcalfe et al., 2004 M. novaeangliae X (25) Xa X X X blubber (25) 1993-99 B Canada A; lw; no; no
Gauthier et al., 1997 M. novaeangliae X (19) Xa X X X blubber (7) 1991 B Canada A; lw; yes; yes
PINNIPEDS
Lieberg-Clark et al., 1995 Z. californianus --- Xa blubber (7) 1988-92 S CA G; ww; no; no

Hayteas & Duffield, 1997 Z. californianus X (NR) Xa blubber (5) 1991-95 S OR G; ww; no; yes

P. vitulina X (NR) blubber (10) 1991-95 S OR G; ww; no; yes
M. angustirostris X (NR) blubber (1) 1991-95 S OR G; ww; no; yes

Kajiwara et al., 2001 Z. californianus X (NR) Xa X X X blubber (12)
liver (9)

1991-97 S CA A; ww; yes; yes

P. vitulina X (NR) Xa X X X liver (10) 1991-97 S CA A; ww; yes; yes
M. angustirostris X (NR) Xa X X X blubber (4) 1991-94 S CA A; ww; yes; yes

Kannan et al., 2004; 
Le Boeuf et al., 2002

Z. californianus X (NR) Xa X X blubber (36) 2000 S CA A; lw; yes; no

M. angustirostris X (NR) Xa X X X blubber (2) 2000 S CA A; lw; yes; no
Lake et  al., 1995 P. vitulina X (18) Xa X X blubber (9)

liver (9)
1990-92 S NY, MA A; ww; no; no

Young et  al., 1998 P. vitulina X (20) blood (16) 1990 S CA A; ww; no; no
Hong et al., 1996 P. vitulina X (73)

X (54)
Xa X blubber (8)

liver (8)
1990 S WA A; ww; no; no

Krahn et al., 1997 P. vitulina X (17) X X X blubber (15) 1992-93 S & H WA, OR, AK Af; ww; yes; nof

Ross et al., 2004 P. vitulina X (109) blubber (60) 1996-97 B Canada; WA A; lw; no; no
Neale et al., 2005a P. vitulina X (10) Xe blood (17) 2001-02 B CA A; ww & lw, no, no
Neale et al., 2005b P. vitulina X (11) Xe blood (35) 2001-02 B CA NR; ww & lw; no; no
Shaw et al., 2005 P. vitulina X (20) X X X X blubber (30) 2001-02 S MA, ME, NH, NYA; lw; yes; yes
Debier et al., 2005a M. angustirostris X (141) blubber (6) 2002 B CA A; lw & ww; yes; no
Debier et al., 2005b Z. californianus X (NR) X serum (12) 2002 B CA A; ww & lw; yes; no

Ylitalo et al., 2005 Z. californianus X (17) X blubber (76) 1993-2003 S CA A; ww & lw; yes; no

Abbreviations: NR, not reported; S, stranded; B, biopsied; H, subsistence harvest; A, arithmetic mean; G. geometric mean; lw, reported on a lipid weight basis; 
ww, reported on a wet weight basis
*Number of chlordane isomers analyzed varied between studies
aOnly p'p'  isomers of DDT, DDE and DDD were analyzed; in some studies, not all three p',p'  isomers were analyzed.
bIn Appendix I, see footnotes "g," "h" and "j" for Becker et al.(1997),Tilbury et al.(1999) and Krahn et al. (2001), respectively, regarding study overlap
cMeans exclude values below limit of detection
dFrom archived samples; from source text it appears that 14 are from stranded dolphins and the remaining 6 were biopsies 
e4,4' DDE only
fRanges only were given for data (except for some data subsets in Wells); data provided in graphic format only
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Table 3. Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) Contaminants in Tissues of Selected Marine Mammal Species from US Waters, Reported 1995 through 2005.

Source: Jarman et al., 1996 Source: Ross et al., 2004 Source: Lake et al., 1995 Source: Debier et al., 2005a
Event: Stranding Event: Biopsy Event: Stranding Event: Biopsy
Location: British Columbia, 
Canada (Vancouver Is. & 
Denman Is.)

Location: BC, Canada 
(Queen Charlotte 
Strait)

Location BC, Canada 
(Strait of Georgia)

Location: WA (Puget 
Sound)

Location: NY & MA Location: CA (Ano Nuevo Is.)

Date Sampled: 1987-88 Date Sampled: 1996-9 Date Sampled: 1996-97 Date Sampled: 1996-97 Date Sampled: 1990-92 Date Sampled: 2002
Species: Eschrichtius robustus Species: Phoca vitulina Species: Phoca vitulina Species: Phoca vitulina Species: Phoca vitulina Species: Mirounga angustirostris
Tissue: Blubber Tissue: Blubber Tissue: Blubber Tissue: Blubber Tissue: Blubber Tissue: Blubber

Analyte (ng/g wet weight) n Mean LODb n Meana,c SE n Meanc SE n Meanc SE n n Meanc SD
2,3,7,8-TCDD 2 ND <2 15d

1,2,3,7,8-PnCDD 2 ND <5 15d

1,2,3,4,7,8-HxCDD 15d

1,2,3,6,7,8-HxCDD 2 <8 15d 6 0.007 NR
1,2,3,7,8,9-HxCDD 2 ND <8 15d

1,2,3,4,6,7,9-HpCDD 2 ND <10
1,2,3,4,6,7,8-HpCDD 2 ND <10 15d 6 0.008 NR
OCDD 2 ND <20 15d 6 0.017 NR
∑ 2,3,7,8-PCDDs 5 0.072 0.006 38 0.256 0.031 17 0.119 0.011
∑ PCDDs 5 0.096 0.01 38 0.279 0.032 17 0.119 0.016 6 0.032e 0.023
2,3,7,8-TCDF 2 ND 3 15d

1,2,4,7,8-PnCDF 2 ND <5
1,2,3,7,8-PnCDF 15d

2,3,4,7,8-PnCDF 2 ND <5 15d 6 0.007 NR
1,2,4,8,9-PnCDF 2 ND <5
1,2,4,6,8,9-HxCDF 2 ND <8
1,2,3,4,7,8-HxCDF 15d

1,2,3,6,7,8-HxCDF 15d

1,2,3,7,8,9-HxCDF 15d

2,3,4,6,7,8-HxCDF 15d

1,2,3,4,6,9-/1,2,3,6,8,9-HxC 2 ND <8
1,2,3,4,6,8,9-HpCDF 2 ND <10
1,2,3,4,6,7,8-HpCDF 15d

1,2,3,4,7,8,9-HpCDF 15d

OCDF 15d 6 0.01 NR
∑ 2,3,7,8-PCDFs 5 0.022 0.002 38 0.016 0.002 17 0.01 0.001
∑ PCDFs 5 0.026 0.004 38 0.025 0.013 17 0.01 0.001 6 0.017e 0.005
Abbreviations: ND, the analyte was not detected above the limit of detection; SE, standard error of the mean; SD, standard deviation; NR, not reported
aArithmetic
bLOD-limits of detection for individual PCDD/F congeners
cng/g lipid weight
dAll samples were near or below limits of detection (3-5 pg/g).
eOn a wet weight basis means (SD) were: 0.025(0.017) and 0.014(0.004) for ∑ PCDDs and ∑ PCDFs, respectively.



Table 4. Metadata for Toxic Metal Pollutants, Including Mercury (Hg), Cadmium (Cd), Lead (Pb) and Tin (Sn) in Selected Marine Mammal Species from US Waters, 
Reported 1994 through 2005.
An "X" in a given metal contaminant column denotes that metal was analyzed.

Metal Contaminant Analyzed
Source Species Mercury Cadmium Lead Tin Tissue (n) Date Sampled Event Location Comments

CETACEANS
Ruelas-Inzunza et al., 2002 E. robustus X (THg & MeHg) X X Kidney (4)

Liver (4)
Muscle (4)

1999 S Mexico (Gulf of 
California)

DW

Tilbury et al., 2002 E. robustus X (THg) X X Brain (6)
Kidney (6)
Liver (5)

1994 H Russia (NW 
Bering Sea)

WW

Varanasi et al., 1994 E. robustus X (THg) X X Xa Brain (1)
Kidney (10)
Liver (10)

1988-1991 S CA, WA & AK WW

De Luna & Rosales-Hoz, 2004 E. robustus X Bone (8)
Epidermis (8)
Kidney (2)
Muscle (8)

1999 S Mexico (Ojo de 
Liebre Lagoon)

DW

Mendez et al., 2002 E. robustus X X Blubber (5)
Heart (7)
Kidney (5)
Liver (5)
Lung (7)
Muscle (5)

1999 S Mexico 
(Sinaloa & Baja 
California Sur)

DW

Mackey et al., 1995 G. melas X (THg) X Liver (9) 1990-1990 S MA WW
L. acutus X (THg) X Liver (4) 1993 S MA WW

Beck et al., 1997 T. truncatus X (THg) X X Liver (34) NR S SC WW
Kuehl & Haebler, 1995 T. truncatus X (THg) X X Liver (24) 1990 S TX & AL (Gulf 

of Mexico)
WW

Meador et al., 1999 T. truncatus X (THg & MeHg) Xc Xc Blubber (4)
Kidney (30b)
Liver (30b)

1990-1991 S TX DWf

T. truncatus X (THg & MeHg) Xc Xc Kidney (13b)
Liver (14b)

1990-1991 S FL DW

Wood & Van Vleet, 1996 T. truncatus X Kidney (21)
Liver (29)
Muscle (21)

1990-1994 S FL DW

Kannan et al., 1997 T. truncatus Xd Blubber (1)
Brain (1)
Heart (1)
Liver (16)
Kidney (17)
Melon (1)
Muscle (11)

1989-1994 S FL WW

K. breviceps Xd Kidney (2)
Liver (3)
Muscle (2)

1989-1994 S FL WW

Mackey et al., 2003
S. bredanensis

X (THg) X Xe Kidney (15)
Liver (15)

1997 S FL (Gulf of 
Mexico)

WW

PINNIPEDS
Lake et al., 1995 P. vitulina X (THg) Liver (7) 1990-1992 S NY & MA WW
Owen & Flegal, 1998 M. angustirostris X Blood (4) 1994-1995 B CA WW
Kajiwara et al., 2001 M. angustirostris Xd Liver (2) 1991-1994 S CA WW

P. vitulina Xd Liver (6) 1991-1997 S CA WW
Z. californianus Xd Liver (10) 1991-1997 S CA WW

Abbreviations: THg, Total mercury; MeHg, organic (methyl) mercury; NR, not reported; S, stranded; B, biopsied; H, subsistence harvest; WW, reported on a wet weight basis; 
DW, reported on a dry weight basis
aTotal tin was analyzed in kidney and liver of seven animals
bMaximum analyzed for this tissue at this location
cAnalyzed in kidney and liver only
dSum of butyltins, including mono-, di- and tri-butyltin
eTotal tin
fExcept for blubber, which was reported as WW



Appendix III. Mercury, Cadmium, Lead and Tin in Tissues of Selected Marine Mammal Species from US Waters, Reported 1994 through 
2005.  All concentrations are reported on a wet weight basis, except where noted otherwise by an asterisk*. 

  

Mercury (Hg) 

Species Tissue 
Mean 
ug/g Min. Max. n Location 

Date 
Sampled Event Reference 

E. robustus kidneya 277* 140j NR 4 
Mexico (Gulf of 
California) 1999 Stranding 

Ruelas-Inzunza et al., 
2002 

E. robustus kidneyb 51* 22j NR 4 
Mexico (Gulf of 
California) 1999 Stranding 

Ruelas-Inzunza et al., 
2002 

E. robustus livera 185* 82j NR 4 
Mexico (Gulf of 
California) 1999 Stranding 

Ruelas-Inzunza et al., 
2002 

E. robustus liverb 42* 34j NR 4 
Mexico (Gulf of 
California) 1999 Stranding 

Ruelas-Inzunza et al., 
2002 

E. robustus musclea 145* 82j NR 4 
Mexico (Gulf of 
California) 1999 Stranding 

Ruelas-Inzunza et al., 
2002 

E. robustus muscleb 109* 40j NR 4 
Mexico (Gulf of 
California) 1999 Stranding 

Ruelas-Inzunza et al., 
2002 

E. robustus braina 0.022 0.002h NR 6g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002i 

E. robustus kidneya 0.034 0.001h NR 6g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002i 

E. robustus livera 0.16 0.061h NR 5g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002i 

E. robustus braina ND ND ND 1 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
E. robustus kidneya 0.034 ND 0.06 10 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
E. robustus livera 0.056 0.009 0.12 10 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 

G. melas livera 40.3 1.00 112.0 9 MA 1990-91 Stranding Mackey et al., 1995 
L. acutus livera 10.36 1.00 22.70 4 MA 1993 Stranding Mackey et al., 1995 

S. bredanensis kidneya 5.8 0.9 15 15 FL (Gulf of Mexico) 1997 Stranding Mackey et al., 2003 
S. bredanensis livera 70 3.4 235 15 FL (Gulf of Mexico) 1997 Stranding Mackey et al., 2003 

T. truncatus livera 17.8 <0.5 146.5 34 SC NR Stranding Beck et al., 1997 

T. truncatus livera 0.96 0.15 2.23 5o TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 
T. truncatus livera 4.39 1.72 8.36 5g TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 
T. truncatus livera 45.5 5.1 87.8 9p TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 
T. truncatus livera 25.9 6.1 48.7 5q TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 

T. truncatus blubberb 0.6 0.4 0.7 4 FL 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus kidneya 33* 1.0 89 29 TX 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus kidneya 68* 11.2 110 12 FL 1991-92 Stranding Meador et al., 1999c,d 



Mercury (Hg) (continued) 

Species Tissue 
Mean 
ug/g Min. Max. n Location 

Date 
Sampled Event Reference 

T. truncatus kidneyb 4.5* 1.3 10.4 23 TX 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus kidneyb 9.9* 1.4 19 13 FL 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus livera 212* 8.3 1404 30 TX 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus livera 304* 18 1312 13 FL 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus liverb 6* 0.9 23 24 TX 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus liverb 11* 2.5 24 14 FL 1991-92 Stranding Meador et al., 1999c,d 

P. vitulina livera 38.5 31.6 49.3 4 NY & MA 1990-92 Stranding Lake et al., 1995 
P. vitulina livera 69.9 16.0 138 3 NY & MA 1990-92 Stranding Lake et al., 1995 

 
Cadmium (Cd) 

Species Tissue 
Mean 
ug/g Min. Max. n Location 

Date 
Sampled Event Reference 

E. robustus blubber 0.16* ND 0.16 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus heart 0.68* 0.16 1.81 7g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus kidney 15.4* 1.93 35.1 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus liver 1.77* 0.81 3.62 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus lung 1.16* 0.1 5.26 7g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus muscle 0.86* 0.05 2.34 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus kidney 5.7* 1.4j 8.0 4 Mexico (Gulf of California) 1999 Stranding 
Ruelas-Inzunza & Paez-
Osuna, 2002 

E. robustus liver 1.1* 1.0j NR 4 Mexico (Gulf of California) 1999 Stranding 
Ruelas-Inzunza & Paez-
Osuna, 2002 

E. robustus muscle 0.4* 0.2j NR 4 Mexico (Gulf of California) 1999 Stranding 
Ruelas-Inzunza & Paez-
Osuna, 2002 

E. robustus brain 0.1 0.01h NR 6g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002i 

 



Cadmium (Cd) (continued) 

Species Tissue 
Mean 
ug/g Min. Max. n Location 

Date 
Sampled Event Reference 

E. robustus kidney 0.59 0.11h NR 6g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002i 

E. robustus liver 0.21 0.04h NR 5g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002i 

E. robustus brain 0.02 0.02 0.02 1 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
E. robustus kidney 4.1 0.14 6.1 10 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
E. robustus liver 4.3 0.06 6.2 10 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
G. melas liver 7.88 2.8 14.3 9 MA 1990-91 Stranding Mackey et al., 1995 
L. acutus liver 0.42 0.24 0.86 4 MA 1993 Stranding Mackey et al., 1995 
S. 
bredanensis kidney 1.73 0.05 3.94 15 FL (Gulf of Mexico) 1997 Stranding Mackey et al., 2003 
S. 
bredanensis liver 0.54 0.01 1.02 15 FL (Gulf of Mexico) 1997 Stranding Mackey et al., 2003 
T. truncatus liver 0.051 0.009 0.27 34 SC NR Stranding Beck et al., 1997 
T. truncatus liver 0.06 0.01 0.08 5o TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 
T. truncatus liver 0.11 0.08 0.16 5g TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 
T. truncatus liver 0.43 0.10 1.34 9p TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 
T. truncatus liver 0.31 0.11 0.64 5q TX & AL (Gulf of Mexico) 1990 Stranding Kuehl & Haebler, 1995 

T. truncatus kidney 1.9* ND 4.2 
30 (11 
ND) TX 1991-92 Stranding Meador et al., 1999c,d 

T. truncatus kidney 4.4* ND 5.2 13 (5 ND) FL 1991-92 Stranding Meador et al., 1999c,d 
T. truncatus liver 0.32* ND 0.7 14 (8 ND) TX 1991-92 Stranding Meador et al., 1999c,d 

T. truncatus liver 1.6* ND 1.6 
11 (10 
ND) FL 1991-92 Stranding Meador et al., 1999c,d 

T. truncatus kidney 1.3* ND 6.4 21 FL 1990-94 Stranding Wood & Van Vleet, 1996 
T. truncatus liver 0.2* ND 1.7 29 FL 1990-94 Stranding Wood & Van Vleet, 1996 

T. truncatus muscle ND ND ND 21 FL 1990-94 Stranding Wood & Van Vleet, 1996 

 
 
 
 
 
 



Lead (Pb) 

Species Tissue 
Mean 
ug/g Min. Max. n Location 

Date 
Sampled Event Reference 

E. robustus bone 50*k NR NR 2l 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus bone 20*k NR NR 3g 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus bone 30*k NR NR 3m 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus epidermis 15*k NR NR 8 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus kidney 30*k NR NR 2l 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus muscle 15*k NR NR 2l 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus muscle 22*k NR NR 3g 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus muscle 18*k NR NR 3m 
Mexico (Ojo de Liebre 
Lagoon) 1999 Stranding 

De Luna & Rosales-
Hoz, 2004 

E. robustus blubber 1.06* 0.33 1.78 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus heart 2.31* 1.28 3.4 7g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus kidney 2.09* 0.34 6.12 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus liver 2.06* 0.78 3.62 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus lung 1.21* 0.36 4.40 7g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus muscle 1.11* 0.42 1.8 5g 
Mexico (Sinaloa & Baja 
California Sur) 1999 Stranding Mendez et al., 2002 

E. robustus kidney 0.6* 0.3j NR 4 Mexico (Gulf of California) 1999 Stranding 
Ruelas-Inzunza & 
Paez-Osuna, 2002 

E. robustus liver 0.9* 0.8j 0.9 4 Mexico (Gulf of California) 1999 Stranding 
Ruelas-Inzunza & 
Paez-Osuna, 2002 

E. robustus muscle 0.6* 0.4j NR 4 Mexico (Gulf of California) 1999 Stranding 
Ruelas-Inzunza & 
Paez-Osuna, 2002 



Lead (Pb) (continued) 

Species Tissue 
Mean 
ug/g Min. Max. n Location 

Date 
Sampled Event Reference 

E. robustus brain 0.014 0.003h NR 6g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002 

E. robustus kidney 0.028 0.005h NR 6g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002 

E. robustus liver 0.06 0.013h NR 5g Russia (NW Bering Sea) 1994 
Subsistence 
harvest Tilbury et al., 2002 

E. robustus brain 0.06 0.06 0.06 1 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
E. robustus kidney 0.053 ND 0.10 10 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 
E. robustus liver 0.12 0.02 0.27 10 CA, WA & AK 1988-91 Stranding Varanasi et al., 1994 

T. truncatus liver <0.10 NR NR 34 SC NR Stranding Beck et al., 1997 

T. truncatus liver 0.45 0.08 1.47 5o TX & AL (Gulf of Mexico) 1990 Stranding 
Kuehl & Haebler, 
1995 

T. truncatus liver 0.26 0.04 0.88 5g TX & AL (Gulf of Mexico) 1990 Stranding 
Kuehl & Haebler, 
1995 

T. truncatus liver 0.68 0.2 2.12 9p TX & AL (Gulf of Mexico) 1990 Stranding 
Kuehl & Haebler, 
1995 

T. truncatus liver 0.48 0.09 1.20 5q TX & AL (Gulf of Mexico) 1990 Stranding 
Kuehl & Haebler, 
1995 

T. truncatus kidney 0.17* ND 1.6 
30 (11 
ND) TX 1991-92 Stranding Meador et al., 1999c,d 

T. truncatus kidney 0.08* ND 0.14 
13 (11 
ND) FL 1991-92 Stranding Meador et al., 1999c,d 

T. truncatus liver 0.3* ND 2.6 
30 (11 
ND) TX 1991-92 Stranding Meador et al., 1999c,d 

T. truncatus liver 0.09* ND 0.2 
13 (10 
ND) FL 1991-92 Stranding Meador et al., 1999c,d 

M. angustirostris blood 0.13n 0.071n 0.21n 4o CA 1994-95 
live animal 
collection Owen & Flegal, 1998 

 
 
 
 
 
 
 
 



Tin (Sn)                   

Species Tissue Mean ug/g Min. Max. n Location 
Date 

Sampled Event Reference 

E. robustus kidney 0.04r ND 0.05 7 CA, WA & AK 1988-91 Stranding 
Varanasi et al., 
1994 

E. robustus liver 0.04r ND 0.04 7 CA, WA & AK 1988-91 Stranding 
Varanasi et al., 
1994 

K. breviceps kidney 0.062e 0.059 0.065 2 FL 1989-94 Stranding Kannan et al., 1997 
K. breviceps liver 0.39e 0.35 0.41 3 FL 1989-94 Stranding Kannan et al., 1997 
K. breviceps muscle 0.021e 0.016 0.026 2 FL 1989-94 Stranding Kannan et al., 1997 

S. bredanensis kidney 0.053r 0.01 0.14 15 
FL (Gulf of 
Mexico) 1997 Stranding Mackey et al., 2003 

S. bredanensis liver 5.4r 3.8 7.3 15 
FL (Gulf of 
Mexico) 1997 Stranding Mackey et al., 2003 

T. truncatus blubber 0.63e 0.63 0.63 1 FL 1989-94 Stranding Kannan et al., 1997 
T. truncatus brain 0.11e 0.11 0.11 1 FL 1989-94 Stranding Kannan et al., 1997 
T. truncatus heart 0.05e 0.05 0.05 1 FL 1989-94 Stranding Kannan et al., 1997 
T. truncatus kidney 0.20e 0.025 0.67 16 FL 1989-94 Stranding Kannan et al., 1997 
T. truncatus liver 1.4e 0.11 11.34 17 FL 1989-94 Stranding Kannan et al., 1997 
T. truncatus melon 0.19e 0.19 0.19 1 FL 1989-94 Stranding Kannan et al., 1997 
T. truncatus muscle 0.041e 0.013 0.11 11 FL 1989-94 Stranding Kannan et al., 1997 

M. augustirostris liver 0.08e 0.06 0.099 2f CA 1991-94 Stranding 
Kajiwara et al., 
2001 

P. vitulina liver 0.034e 0.002 0.091 6f CA 1991-97 Stranding 
Kajiwara et al., 
2001 

Z. californianus liver 0.045e 0.024 0.087 10f CA 1991-97 Stranding 
Kajiwara et al., 
2001 

       
Abbreviations: ND, the analyte was not detected above the limit of detection; NR, not reported 
*dry weight      
aTotal Hg      
bOrganic (i.e., methyl) Hg      
cMean ratios of dry to wet weight were 0.26 and 0.22 for TX liver and kidney, respectively (n=31), and 0.29 (n=14) and  0.23 (n=13) for FL liver and kidney, respectively. 
dMeans for analytes with data below detection limits (ND) were determined with maximum likelihood method for censored data.   Means with no ND values were estimated following the 
procedure of Gilbert (1987) for lognormally-distributed data. 
eSum of butyltins, including mono-, di- and tri-butyltin 
fData for individual animals and organotins given in cited 
source. 
gJuveniles              



hStandard error of the mean     
iFor values below the limit of detection (LOD), one-half the LOD was used to calculate the 
mean 
jStandard deviation     
kValue extrapolated from graph    
lCalves     
mAdults (both sexes)     
nug/dl     
osucklings (live, for Owen & Flegal, 1998; stranded, for Kuehl & Haebler, 
1995)  
pAdult males     
qAdult females     
rTotal Sn     

 



Euthanasia Questionnaire Response Summary

Responder Species Stranding 
Type*

Frequency (or #) of 
Euthanasia
in past year

Euthanasia 
Agent & Route

Induction 
Agent & Route

Adverse 
Reactions? 

Disposal 
Methods

Comments

MarMamCenter, CA Zalophus californianus
Mirounga angustirostrus
Phoca vitulina

I 96/796 pentobarb IV, IC tiletamine/zolaz
epam IM

No Renderer no disposal problems

HBOI, FL Tursiops truncatus
Kogia breviceps
Kogia simus

I 4 pentobarb +- 
phenytoin IC, IP

--- No Beach burial
Landfill

no disposal problems

Nat'l Aquarium, MD Phoca vitulina
Pagophilus groenlandicus
Tursiops truncatus
Phocoena phocoena

I 1 in 2003
avg. 1.9/yr (11 yrs)

pentobarb.+ 
phenytoin

tiletamine/zolaz
epam 
diazepam

Yes - lack of 
sedation

not indicated generally not problematic

C. Harms, NCSU Tursiops truncatus
Kogia breviceps
Kogia simus
Grampus griseus

I done 3-4 pentobarb +- 
phenytoin IV, IC

xylazine, 
acepromazine

Yes - 
hyperexcitability in 
G. gri. with 
xylazine or 
metomidate

Beach burial (if 
drugs admin.)
disposal at sea 
(no drugs)

no disposal problems

W. McFee, NOS, SC Kogia breviceps
Kogia simus
Ziphius cavirostris

I, P ~60% 1 in past yr. pentobarb IV, IC --- Yes - excitability in 
K. bre.

Burial no disposal problems

Mote Mar Lab, FL Tursiops truncatus
Kogia breviceps
Kogia simus
Globicephala macrorhynchus
Lagenodelphis hosei

I, M (Kogia & 
Glob.)

1-3/yr. pentobarb. IV xylazine No not indicated Disposal problematic, did not 
elaborate

Cape Cod SN, MA Lagenorhynchus acutus
Phocoena phocoena
Delphinus delphis
Globicephala melas

I, M 179/403 over 5 yr 
period

pentobarb.+- 
phenytoin

--- Yes - 
hyperexcitability in 
cetaceans (T. tru., 
L. acu., D. del., G. 
mel.) 

truck off Cape to 
landfill
tow to sea & sink

Disposal very problematic, no 
rendering service avail., landfill 
won't accept, perception that 
whale remains contain 
contaminants, high cost

VA Marine Sc. 
Museum, VA

Phoca vitulina
Delphinus delphis
Kogia breviceps

I 7 in 2003 pentob. +- 
phenytoin

xylazine
diazepam

Yes, Observed 
violent death 
throes in D. delphis 
w/ or w/o induction 
agent, and 
appeared to have 
violent rx to 
acepromazine
also, slight 
excitability in 
Grampus w/ 
xylazine 

commercial 
carcass dispo. co. 
to transport to 
landfill
burial
landfill

Difficulty procuring heavy eqp't.



Euthanasia Questionnaire Response Summary

Responder Species Stranding 
Type*

Frequency (or #) of 
Euthanasia
in past year

Euthanasia 
Agent & Route

Induction 
Agent & Route

Adverse 
Reactions? 

Disposal 
Methods

Comments

Litz, NOAA Fisheries 
SER, Southeast US, 
PR & Virgin Is

Tursiops truncatus
Kogia spp.
Steno bredanensis
Globicephala spp.

I, P, M 68/474 from 1995-
2000 (may be more-
do not keep these 
stats.)

pentobarb. IV, IC --- --- landfill Disposal very problematic in 
mass strandings or with large 
cetaceans

George, GA DNR Feresa attenuata
Kogia breviceps

5 Kogia breviceps (3 
adults/2 calves)  1 
Feresa attenuata in 
2004

Euthasol 
(390mg/mL)
Gunshot

Xylazine 
(100mg/mL)

Yes- "Convulsions" 
prior to death seen 
with xylazine alone

left on beach
buried on site
landfill

Disposal in remote areas where 
removal of the carcass isn't 
possible precluding use of 
barbituates for euthanasia due to 
relay toxicosis concerns.

*I = individuals
P = pairs
M = mass
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