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Abstract:  Annual mortality limits for the Yellowstone grizzly bear population are calculated as a 

function of the number of females with cubs-of-the-year (FCOY), which has previously been 

estimated as the number of such animals actually observed ).ˆ( 0N   Lewontin and Prout’s (1956) 

maximum likelihood estimator )ˆ( 2MLEN  has been proposed by Boyce et al. (1998) as a more 

realistic alternative to .ˆ
0N   2MLEN̂  assumes all animals are equally sightable, and is positively 

biased at small sample sizes and negatively biased as heterogeneity of individual sighting 

probabilities increases.  Examining counts of FCOY for 1986-1998, we compared a suite of 

estimators to determine whether 2MLEN̂  is likely to yield conservative estimates of the number of 
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FCOY in the Yellowstone population. 

Comparisons of uncorrected and bias-corrected versions of a closely related maximum 

likelihood estimator showed no evidence of small sample bias when applied to these data.  

Ratios of sample size to estimated population size similarly indicated little potential for small 

sample bias.  Comparisons with six nonparametric estimators showed nonparametric estimates 

were consistently larger than ,ˆ
2MLEN  whereas Monte Carlo results showed most estimates 

should have been comparable if samples had been drawn from a population that was, in fact, 

comprised of 2MLEN̂  individuals with equal sighting probabilities.  Observed “best”-order 

jackknife, lower bound, and sample coverage estimators exceeded expected values under the null 

(homogeneous) model for 3 (P = 0.10), 4 (P = 0.03), and 6 (P < 0.001) of the 13 years examined, 

respectively.  These patterns are consistent with the hypothesis of heterogeneous sighting 

probabilities.  We concluded that 2MLEN̂  was negatively biased by variations in individual 

sighting probabilities and is, therefore, likely to yield conservative estimates of the number of 

FCOY in the Yellowstone grizzly bear population for 1986-1998.  Two caveats are discussed:  

(1) 2MLEN̂ should not be used to assess population trend, due to likely changes in the degree of 

variation among individual sighting probabilities over time, and (2) use of a biased estimator to 

ensure conservatism is fraught with non-trivial practical and philosophical issues.  Overall, we 

believe an unbiased estimator with valid confidence limits should be preferred over ,ˆ
2MLEN and 

recommend that such an estimator be sought. 
 

Criteria for recovering the grizzly bear (Ursus arctos) in the lower United States include 

annual limits on mortalities (U.S. Fish and Wildlife Service 1993).  These limits are calculated as 
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a function of the number of females with cubs-of-the-year (FCOY) present in the population 

over a three-year period.  Previously, the number of FCOY has been estimated as the number of 

unique FCOY actually observed during a given year.  To the extent that criteria for 

distinguishing different FCOY are conservative (cf Knight et al. 1995), and because it is highly 

unlikely that all such animals will be seen in a given year, this approach clearly underestimates 

the true number of FCOY in the population.  Indeed, using this approach, estimates of the 

number of FCOY for a given year may be determined primarily by sample size, suggesting that 

annual mortality limits may be driven largely by factors such as agency budgets or annual 

differences in habitat-use patterns, rather than changes in the underlying population.  More 

scientific estimates are clearly desirable. 

Many statistical methods are potentially applicable to this problem and have been 

compared elsewhere (e.g., Otis et al. 1978, Pollock et al. 1990, Wilson and Collins 1992, Lee 

and Chao 1994).  Studies of these methods typically emphasize unbiased estimation of 

population size.  In this case, however, it is important not to overestimate the number of FCOY, 

as this could lead to setting unsustainably high mortality limits.  Two approaches might be used 

to achieve conservative estimates of the number of FCOY:  (1) calculate some lower confidence 

bound to an unbiased estimate, or (2) use an estimator that is negatively biased.  Our charge was 

to determine whether the maximum likelihood estimator (MLE) proposed by Boyce et al. (1998) 

is negatively biased and, therefore, likely to yield conservative estimates of the number of FCOY 

in the Yellowstone grizzly bear population.  Three general concerns should be noted at the 

outset.  First, the approach of using a negatively biased statistical method to ensure conservative 

estimates is encumbered with non-trivial philosophical and practical baggage.  We address this 
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more fully in our discussion.  Second, although we compare population estimates obtained using 

different statistical methods, our study was designed only to determine whether the estimator in 

question is likely to be conservative.  No “best” estimator should be inferred from our results.  

Finally, we assume that the criteria for distinguishing among different FCOY are either accurate 

or conservative, so that the number of animals identified is less than or equal to the number truly 

observed.  Although we believe this assumption is reasonable, it has been challenged by Mattson 

(1997) and merits additional scrutiny that is beyond the scope of this study. 

 Boyce et al. (1998) suggested that a MLE, based on the assumption that all family 

groups have an equal probability of being sighted, may yield useful estimates of the number of 

FCOY in a given year.  The sampling model assumed by this estimator is equivalent to model 

M0 of Otis et al. (1978).  As shown below, the MLE of Boyce et al. is mathematically identical 

to Lewontin and Prout’s (1956) MLE, and functionally equivalent to Darroch’s (1958) MLE.  

Consequently, many of the properties of this estimator are well known.  For example, this 

method tends to underestimate population size when sighting probabilities vary among 

individuals (Lewontin and Prout 1956), although it is robust to modest deviations from this 

assumption (Chao and Lee 1992).  In the Yellowstone area, it is improbable that all family 

groups are equally sightable.  For example, about 60% of sightings of FCOY are reported by 

ground-based observers (whose observations should favor bears that inhabit areas near to or 

visible from roads or trails), while both ground and aerial observations are biased toward animals 

in open habitats.  It is, therefore, reasonable to suggest that this MLE may yield improved, yet 

conservative, estimates of the number of FCOY in the Yellowstone population.  However, two 

important caveats exist concerning this estimator: (1) it tends to overestimate population size 
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when sample size is small (Darroch and Ratcliff 1980), and (2) it becomes conservative only as 

sighting probabilities become more heterogeneous (Lewontin and Prout 1956, Otis et al. 1978).  

It is, therefore, prudent to ask whether sample sizes are large enough, and sighting probabilities 

heterogeneous enough, so that the proposed estimator yields conservative estimates in this 

instance. 

To gauge the effects of sample size and heterogeneity of sighting probabilities on 

estimates of the number of FCOY in the Yellowstone grizzly bear population, we made two 

qualitative comparisons.  These were limited to the period 1986-1998 due to concerns that earlier 

data may not be comparable.  First, we compared uncorrected and bias-corrected versions of 

Darroch’s (1958) MLE.  If estimates for the 1986-1998 period were inflated due to small sample 

sizes, then uncorrected estimates should be substantially greater than bias-corrected estimates 

(Darroch and Ratcliff 1980).  Second, we compared estimates obtained using the MLE under 

model M0 with those obtained using nonparametric methods.  We show that, if sighting 

probabilities were homogeneous, the MLE and nonparametric estimates should be generally 

comparable, whereas the nonparametric estimates should tend to be larger if sighting 

probabilities were heterogeneous.  A confounding factor in the second comparison is that many 

nonparametric estimates may be positively biased at moderate sample sizes; thus, differences of 

the kind predicted under heterogeneous sighting probabilities might be attributable, instead, to 

sample-size effects.  We distinguished among these possibilities using Monte Carlo methods to 

evaluate whether observed differences might reasonably be expected, given actual sample sizes 

and the population structures implied by the MLE estimates under model M0. 

METHODS 
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General Problem and Notation 

The sampling model we used approximates the true sampling scheme, in which reports of 

FCOY come from observers employing various methods (ground-based observation, trapping, 

systematic fixed-wing observations, or fixed-wing observations made incidental to other work).  

Because the sampling period associated with each of these methods varies considerably (or is 

undefined), we used the sighting of an individual FCOY as the sample unit.  The problem of 

estimating population size from repeated sightings of unique individuals may then be generalized 

as a special case of the more commonly used model in which multiple individuals may be 

sighted during a given sampling period (e.g., Otis et al. 1978). 

Suppose that after randomly drawing n individuals from a population of size N (where N 

is unknown), we observe sn unique individuals.  The probability of sighting and recording the ith 

individual during any particular sampling event is πi and probabilities for all N individuals are 

given by π = ),,...,,( 21 Nπππ  .11 =π∑ = i
N
i   In our sample, individuals were observed with 

frequency n = ),...,,( 21 Nnnn  (but we do not know the identity of the N - sn animals for which ni 

= 0).  The number of different individuals observed exactly j times was fj and ).,...,,( 21 nfff=f  

Also, we may record the index variable I, such that Ii,k = 1 if the ith individual was first observed 

in the kth sample (1 # k # n) and ,0, =kiI otherwise; except that 11, =+niI  if the ith individual was 

not observed in any of the n samples (but, again, we do not know the identity of the N - sn 

animals for which 11, =+niI ).  The number of previously unobserved individuals detected during 

the kth sampling event is given by ,1 ik
N
ik Ix ∑ ==  and the complete sequence of numbers of new 

individuals recorded during the n sampling events is given by ).,...,,( 21 nxxx=x   Because a 
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sample consists of a single individual, each xk value must be either zero or one.  Important 

relationships among variables include ,11 ∑∑ == == j
n
ji

S
i jfnn  and .11 ∑∑ == == k

N
kj

n
jn xfs  The 

problem is to estimate N using only the information in f or I, where I is the matrix of Ii,k values. 

In this idealized sampling model, all information about population size is obtained from 

the n randomly selected individuals.  For the Yellowstone grizzly bear population, observations 

of radio-marked FCOY made during radio-relocation flights provide additional information from 

non-randomly selected individuals.  In particular, observations of otherwise unobserved FCOY 

may be added to sn to improve the estimate of minimum population size.  We refer to this 

estimate as ,ˆ
0N  and note that .ˆ

0 nsN ≥  0N̂  provides a natural lower bound for estimating N and 

is the estimator that has been used previously to set annual mortality limits.  The goal is to 

improve upon 0N̂  while minimizing the risk of overestimating N.  To state our objective more 

formally, we asked whether the method proposed by Boyce et al. (1998) is likely to yield an 

estimate of the number of FCOY )ˆ(N , such that ,)ˆ(ˆ
0 NNEN ≤<  where )ˆ(NE is the statistical 

expectation for .N̂  

The Estimators 

Our evaluation used comparisons among eight estimators of two basic types:  (1) MLE’s 

of N that assume homogeneous sighting probabilities (i.e., π1 = π2 = ... = πN = 1/N), and (2) 

nonparametric estimators of N, which make no assumption about the distribution of πi values.  

Within the latter group we included methods for estimating a lower bound for N.  Such 

estimators have received relatively little attention, but should provide inherently conservative 

estimates of N in situations where one wishes to minimize the possibility of overestimating N.  
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Details of the estimators follow. 

Parametric estimators.⎯As the most mathematically tractable case of the general 

problem posed above, estimation of N under the assumption of homogeneous πi values has 

received considerable attention, yielding a host of similar estimators.  Lewontin and Prout 

(1956), Darroch (1958), and McNeil (1973) found that, under the hypothesis of homogeneous 

sighting probabilities, the statistical expectation for sn is approximately 

)1(           ].1[)( )(e -  N  sE -n/N
n ≈  

Darroch (1958), Arnold and Beaver (1988), and Boyce et al. (1998) derived the exact form, 

)2(     11)( .  
N
- N -   N = sE

n

n
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛  

Using sn as an estimate of E(sn), solutions to Eqs. (1) or (2) have been taken as the MLE of N by 

various authors.  We refer to this estimate as MLE1N̂  and calculated it as the solution to Eq. (2).  

Darroch and Ratcliff (1980) calculated the bias of MLE1N̂  as 

 

where λ  = n/N.  They recommended using Eq. (3) to iteratively correct for bias until MLE1N̂  

converges to within a specified tolerance.  We used tolerance = 0.001 and reference the resulting 

bias-corrected estimate as .ˆ
MLE(B)N  

Lewontin and Prout (1956) derived the MLE of N as the solution to 

 

)3()1(
2
1)ˆ( 22

MLE1 ,   e = N  -  NE −λ λ−−λ
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This same result was obtained independently by McNeil (1973).  Boyce et al. (1998) obtained 

the MLE of N as the solution to 

 

where 1−is  is the number of unique animals observed after examining i – 1 randomly selected 

individuals.  Because each xi must equal either one (the sighting of a new animal) or zero (the 

animal was sighted previously), it may be shown that Eqs. (4) and (5) are equivalent by 

observing that 

 

This reaffirms the conclusion (Lewinton and Prout 1956, Otis et al. 1978) that, given 

homogeneous πi values, all information relating to N in the sample is contained in sn.  We refer to 

solutions to Eqs. (4) or (5) as MLE2N̂ .  Boyce et al. devised a bias correction for MLE2N̂ , but we did 

not consider it in this analysis because it is graphic-based. 

Nonparametric estimators.⎯Among nonparametric methods, we first examined Chao’s 

(1984) estimate of a lower bound for N, given by 

 

)4(1
ˆ

ˆ

ˆ
.
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 = 

N
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Under Eq. (6), NNE ≤)ˆ(  (Chao 1984), which does not ensure NN ≤ˆ  in all cases, but should 

provide an inherently conservative approach to estimating N.  We also considered a similar bias-

corrected form developed by Chao (1989).  Where the sample unit is the individual animal, 

Chao’s (1989) estimator is given by (Wilson and Collins 1992) 

 Burnham and Overton (1978, 1979) devised a jackknife estimator ),ˆ( JkN  of the general  

form 

 

where αik is a coefficient in terms of n, and αik = 0 when i > k.  Theoretically, estimates of order k 

= 1 to n may be calculated from Eq. (7), but variance increases rapidly with k so that, in practice, 

k is small (Burnham and Overton 1979).  We considered the first-order jackknife estimator 

( 1
ˆ

JN ), as well as a “best” kth-order jackknife estimator.  Burnham and Overton (1979) suggested 

two methods for choosing a “best” value for k for a particular study.  Because Keating and Quinn 

(1998) found little difference between them, we considered only their first method, which 

evaluates estimates of order k = 1 to 5 (Table 1), as follows.  Beginning with k = 1 and 

proceeding to subsequently higher values of k, test the null hypothesis that ,0)ˆˆ( 1 =−+ JkJk NNE  

versus the alternative hypothesis that .0)ˆˆ( 1 ≠−+ JkJk NNE   When no significant difference is 

observed, further testing ends and JkN̂  is taken as the “best” jackknife estimate.  We reference 

the resulting kth-order estimate as 1
ˆ

JkN .  The test is based on the statistic 
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where 

 

and ikikib α−α= +1 .  Tk is evaluated using P values determined from a table of the standard 

normal distribution. 

Chao and Lee (1992) proposed an estimator based on sample coverage (C), where C is 

the sum of the πi values for the sn individuals actually observed in the sample.  Most recently 

(Lee and Chao 1994), they estimated C as either 

 

or 

 

They then estimated N as 

 

where i = 1 or 2, and γ is a measure of the coefficient of variation of the πi’ s, with 2γ̂  
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calculated as 

 
Calculation of 2γ̂ requires an initial estimate of N.  Following Chao and Lee (1992), we used 

Darroch and Ratcliff’s (1980) estimator, ,ˆˆ
DR in CsN =  which assumes homogenous πi values.  

We did not consider the bias correction proposed by Chao et al. (1993; see also Colwell 1997) 

because sightings were not unduly dominated by particular family groups. 

Data Collection and Analysis 

Sightings of grizzly bear family groups in the Yellowstone ecosystem were examined for 

1986-1998.  For each year, unique family groups were distinguished per Knight et al. (1995). 

Observations of radio-collared animals made during radio-location flights were used to calculate 

the minimum number of FCOY known to exist in the population each year ),ˆ( 0N but were 

excluded from statistical estimates of N because such sightings were non-random.  Sightings 

were summarized by year as the number of unique family groups seen once, twice, etc.  Total 

numbers of FCOY for each year were then estimated using each of the methods described above. 

Estimates of total population size in year t (NT,t) were calculated as 

 

where iN̂  is the estimated number of FCOY in year i, and  mi is the number of known human-
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caused mortalities of adult females in year i.  Implied limits for known human-caused mortalities 

for year t were then calculated as ,ˆ04.0 ,T tN  and limits for known human-caused mortalities of 

females were calculated as ).ˆ04.0*3.0(ˆ012.0 ,T,T tt NN =

To evaluate whether MLE2N̂  was positively biased due to small sample sizes, we 

examined differences between uncorrected and bias-corrected forms of ,ˆ
MLE1N which is derived 

from the same underlying model and yields similar results.  If biologically significant small-

sample biases existed, then substantial differences between the uncorrected and bias-corrected 

estimates should be evident.  As a further check, we examined the ratio λ  = n/N.  Darroch and 

Ratcliff (1980) found that the expected positive bias of MLE1N̂  becomes quite small as λ  

approaches or exceeds one; thus, a λ -value much less than 1 may indicate a potentially 

significant positive bias in .ˆ
MLE1N   We estimated λ  as ,ˆˆ

MLE1Nn=λ  which should foster 

conservative conclusions about the adequacy of sample sizes, since λ̂  will underestimate λ  if 

MLE1N̂ > N. 

If sighting probabilities (πi values) are heterogeneous rather than homogeneous, MLE2N̂  

will be negatively biased (Lewontin and Prout 1956, Otis et al. 1978) and, thus, yield 

conservative estimates of the number of FCOY.  We sought evidence of heterogeneity by 

comparing MLE2N̂ with nonparametric estimates of N.  The premise of this comparison is that the 

different methods should yield similar estimates of N if sighting probabilities were, in fact, 

homogeneous, whereas nonparametric estimates should tend to be larger if sighting probabilities 

were significantly heterogeneous.  We evaluated this premise using Monte Carlo methods, as 
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described below. 

A confounding factor in this comparison is that nonparametric estimates may be 

positively biased at moderate sample sizes; thus, they may be larger than MLE2N̂  due to sample-

size effects rather than heterogeneous sighting probabilities.  To distinguish effects of 

heterogeneity from those of sample size, we used Monte Carlo methods to evaluate whether 

observed nonparametric estimates exceeded expected values under the null model implied by 

MLE2N̂  and the observed sample size, n, for that year.  For each year, we drew 1000 Monte Carlo 

samples, each of size n, from a homogenous population equal in size to the value of MLE2N̂  

(rounded to the nearest integer) calculated for that year.  For each Monte Carlo sample, we 

estimated N using all nonparametric estimators.  For each estimator, we examined the resulting 

1000 Monte Carlo estimates to determine the probability of obtaining an estimate greater than or 

equal to the estimate calculated from the actual field data.  Under the null hypothesis of MLE2N̂  

animals with homogeneous sighting probabilities, and at the α = 0.10 level, estimates based on 

field data should exceed Monte Carlo expectations in no more than 2 of the 13 years.  Failure to 

fall within expected limits and frequencies was regarded as evidence that field samples were not 

drawn from an underlying population of size MLE2N̂  with homogeneous sighting probabilities.  In 

turn, this would imply that the underlying sighting probabilities were heterogeneous and that 

MLE2N̂  was negatively biased. 

RESULTS 

Maximum likelihood and nonparametric estimates of numbers of FCOY in the 

Yellowstone grizzly bear population were calculated for the 1986-1998 period, together with 
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population sizes and mortality limits implied by these estimates (Table 2).  Numbers of FCOY 

actually observed )ˆ( 0N  ranged from 13 to 35, while female mortality limits based on 0N̂  ranged 

from 2.0 to 4.0.  In contrast, MLE2N̂  yielded estimates of the number of FCOY that ranged from 

16.7 to 42.2, and implied female mortality limits of 2.2 to 4.7.  For all years except 1986, MLE2N̂  

was greater than 0N̂ , despite the additional (telemetry-based) information incorporated into 0N̂ .

Comparisons of uncorrected and bias-corrected forms of MLE1N̂  yielded little evidence of 

biologically significant small-sample biases.  Differences between uncorrected and bias-

corrected forms of MLE1N̂  were generally small (range = 0.0 to 0.8; mean = 0.4 ∀ 0.3 [sd]).  Also, 

the ratio MLE2
ˆˆ Nn=λ  was >1 for 12 of the 13 years examined; for the remaining year (1995), 

87.0ˆ =λ .  Comparisons with bias-corrected estimates were specific to MLE1N̂ , as we did not 

examine a bias-corrected form of .ˆ
MLE2N   However, MLE1N̂  and MLE2N̂  derive from the same 

underlying model and assumptions (cf Lewontin and Prout 1956), and differed by #0.6 in all 

years, suggesting that results for one can reasonably be applied to the other.  Overall, we 

concluded that there was little evidence of biologically significant small-sample biases in 

estimates calculated using MLE2N̂ . 

  Although Chao2N̂  yielded the lowest estimates of any method for numbers of FCOY in 

1990, 1993, 1994, 1996 and 1998, MLE’s tended to be smaller than nonparametric estimates 

(Table 2, Fig. 1).  They also yielded the lowest estimates of total population size and, hence, the 

lowest mortality limits for all years except 1994, when the estimate of total population size based 
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on Chao2N̂  was slightly smaller (Table 2).  This reflects the fact that estimates of total population 

size are based, essentially, on three-year running averages of estimated numbers of FCOY, and 

indicates that MLE’s were consistently less than nonparametric estimates even though particular 

nonparametric estimates might be smaller for some years. 

The fact that nonparametric estimators tended to be greater than MLE’s was not 

attributable to biases in the nonparametric estimators.  Monte Carlo tests showed that, under the 

sampling situation implied by MLE2N̂  and n, the nonparametric methods we examined should 

have yielded estimates of numbers of FCOY that were more comparable to the MLE’s than was 

actually observed (Table 3, Fig. 2).  Evidence of deviations from expected values based on 

Monte Carlo tests varied somewhat among estimators (Table 3), but overall, supported this 

conclusion.  At the ∀ = 0.10 level, observed values exceeded expected values under the null 

(homogeneous) model in 4 of 13 years for Chao1N̂  and Chao2N̂  (P = 0.03), 2 years for J1N̂  (P = 

0.24), 3 years for Jk1N̂  (P = 0.10), and 6 years for SC1N̂  and SC2N̂  (P < 0.001) (Table 3).  

Overall, the observed pattern, in which nonparametric estimates tended to be greater than 

,ˆ
MLE2N  was inconsistent with the hypothesis of populations of size MLE2N̂  with homogeneous 

sighting probabilities.   

DISCUSSION 

Small sample size may cause MLE2N̂  to be positively biased, while variations in 

individual sighting probabilities result in negative biases.  The question we addressed was 

whether, on average, MLE2N̂  is likely to yield conservative estimates of the number of FCOY in 
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the Yellowstone grizzly bear population.  Two conclusions were important in this regard.  First, 

positive and biologically significant biases due to small sample sizes generally were not evident 

when applying MLE2N̂  to the 1986-1998 data.  This conclusion follows from the relatedness of 

MLE2N̂  and MLE1N̂ , and the observation that uncorrected and bias-corrected versions of MLE1N̂  

yielded comparable results in most years, whereas substantial differences would be expected if 

sample sizes had exerted a significant effect on estimator performances.  It is further supported 

(cf Darroch and Ratcliff 1980) by the observation that n/ MLE2N̂ > 1.0 for 12 of the 13 years 

examined.  Lack of small sample bias in most years does not imply that corrections for such 

biases should not be undertaken or that larger sample sizes would not be highly beneficial.  

Corrections are a prudent and conservative measure (Darroch and Ratcliff 1980).  For this 

reason, MLE(B)N̂  may be preferred over MLE2N̂ , although we note that the two methods yielded 

quite similar results for the 1986-1998 data.  Also, larger sample sizes are generally helpful for 

narrowing confidence limits (but see comments below) and improving our understanding of the 

degree to which sighting probabilities vary among individuals. 

Second, we concluded that MLE2N̂  was negatively biased by heterogeneous sighting 

probabilities among individuals.  This conclusion follows from the observation that 

nonparametric population estimates were consistently larger than MLE2N̂ , whereas Monte Carlo 

results demonstrated that estimates should have been more comparable (given observed sample 

sizes) if samples had been drawn from populations that were, in fact, comprised of MLE2N̂  

individuals with equal sighting probabilities (Fig. 2).  This conclusion was further supported by 
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the fact that 5 of the 6 nonparametric estimators we examined exceeded expected values under 

the null (homogenous) model more often than expected (P # 0.10). 

Overall, we concluded that MLE2N̂  is likely to yield conservative estimates of the numbers 

of FCOY in the Yellowstone grizzly bear population during 1986-1998, primarily due to 

negative biases resulting from heterogeneous sighting probabilities.  Assuming that the estimated 

proportion of adult females in the population (0.274, see Eq. 8) is correct, it follows that 

calculations of mortality limits based on MLE2N̂  should be similarly conservative.  Comparisons 

of observed mortalities versus mortality limits calculated using MLE2N̂  indicate that human-

caused mortalities during 1988-1998 were within acceptable limits, except for 1990 and 1995 

(Fig. 3). 

Population trend among Yellowstone grizzly bears has been a contentious issue 

(Eberhardt et al. 1994, Boyce 1995, Pease and Mattson 1999) and it is tempting to 

examine MLE2N̂  values for evidence of trends.  We believe, however, that such an evaluation is 

inappropriate.  Given observed sample sizes, the magnitude of the bias in MLE2N̂  is determined 

largely by the degree of heterogeneity in individual sighting probabilities.  In turn, the degree of 

heterogeneity may have changed with the distribution of sampling effort over time; e.g., 

increased attention to moth sites in recent years may have reduced heterogeneity in sighting 

probabilities, thereby reducing the bias in MLE2N̂ .  To support trend evaluations, an estimator that 

is relatively robust to such changes should be used. 

Finally, we offer the following cautionary notes regarding use of MLE2N̂ :  (1) we do not 
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know the degree to which population estimates and mortality limits based on MLE2N̂  are 

conservative, and (2) to the extent that MLE2N̂  is conservative, calculated confidence limits are 

invalid.  These concerns are not trivial, as the magnitudes of the biases and uncertainties inherent 

in MLE2N̂  may be biologically and managerially significant.  For this reason, we believe that an 

unbiased estimator with valid confidence limits should be sought.  Conservatism may then be 

built into the decision-making process by using some lower confidence bound to estimate total 

population size and calculate mortality limits.  Such an approach appropriately makes 

conservatism (and the degree of conservatism) an explicit and informed managerial choice, and 

allows for a more detailed evaluation of risks associated with different management alternatives. 

 Unfortunately, this study was devised only to evaluate the performance of MLE2N̂ .  

Performances of the nonparametric estimators we considered cannot be inferred beyond the 

narrow conditions of our Monte Carlo test.  More extensive Monte Carlo work is needed to 

identify those estimators that are most accurate, precise, and robust to variations in the 

distribution of sighting probabilities.  The design and funding of such work is now being actively 

pursued as a follow-up to this study. 
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Table 1.  Jackknife estimators of population size, ,ˆ

JkN  for order k = 1 to 5, where sn is the 

number of unique individuals observed after n samples, and fi is the number of individuals 

observed exactly i times (after Burnham and Overton, 1979). 
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Table 2.  Estimates of numbers of females with cubs-of-the-year ( N̂ ♀) and total population size ( N̂ ), together with calculated total (M) and female (M♀) 

mortality limits implied by the estimates.  Estimates are based on n replicated sightings of unique family groups and were calculated using each of eight different 

methods.  The number of FCOY actually observed ( 0N̂ ) is shown for comparison and may be based on >n sightings because 0N̂  uses additional data from non-

random sightings of radio-collared animals.  Estimates of total population size and mortality limits are not given for 1986 and 1987 because calculations of these 

values require data for the current and previous two years, whereas these analyses considered only data for 1986-1998. 

 
Method 

 
1986 (n = 82) 

 
1987 (n = 20) 

 
1988 (n = 36) 

 
1989 (n = 28) 

 
 

 
N̂ ♀ 

 
N̂  

 
M 

 
M♀ N̂ ♀ N̂  M M♀ N̂ ♀ 

 
N̂  M M♀ N̂ ♀ N̂  M M♀ 

 
0N̂  

 
25.0 

 
C 

 
C 

 
C 13.0 C C C 19.0 

 
193.4   7.7 2.3 16.0 167.9  6.7 2.0 

 
MLE1N̂  

 
24.9 

 
C 

 
C 

 
C 17.2 C C C 20.3 

 
212.8   8.5 2.6 17.2 192.3  7.7 2.3 

 
MLE1(B)N̂  

 
24.8 

 
C 

 
C 

 
C 16.6 C C C 20.1 

 
210.2   8.4 2.5 17.0 188.9  7.6 2.3 

 
MLE2N̂  

 
24.3 

 
C 

 
C 

 
C 16.7 C C C 19.8 

 
207.0   8.3 2.5 16.7 186.6  7.5 2.2 

 
Chao1N̂  

 
28.9 

 
C 

 
C 

 
C 20.2 C C C 23.1 

 
248.9 10.0   3.0 18.9 219.7 8.8 2.6 

 
Chao2N̂  

 
27.5 

 
C 

 
C 

 
C 17.3 C C C 21.2 

 
226.1 9.0 2.7 17.5 196.9  7.9 2.4 

 
1JN̂  

 
30.9 

 
C 

 
C 

 
C 18.6 C C C 23.8 

 
253.2 10.1   3.0 20.8 223.4 8.9 2.7 

 
1J

ˆ
kN  

 
30.9 

 
C 

 
C 

 
C 18.6 C C C 23.8 

 
253.2 10.1   3.0 20.8 223.4 8.9 2.7 

 
SC1N̂  

 
32.0 

 
C 

 
C 

 
C 20.2 C C C 21.7 

 
255.2 10.2   3.1 24.1 233.8 9.4 2.8 

 
SC2N̂  

 
31.9 

 
C 

 
C 

 
C 19.5 C C C 21.5 

 
251.2 10.0   3.0 23.4 227.7 9.1 2.7 



 
Table 2.  (continued) 

 
Method 

 
1990 (n = 49) 

 
1991 (n = 62) 

 
1992 (n = 37) 

 
1993 (n = 30) 

 
 

 
N̂ ♀ 

 
N̂  

 
M 

 
M♀ N̂ ♀ N̂  M M♀ N̂ ♀ 

 
N̂  M M♀ N̂ ♀ N̂  M M♀ 

 
0N̂  

 
25.0 

 
204.4 

 
 8.2 

 
2.5 24.0 222.6  8.9 2.7 25.0 

 
255.5 10.2 3.1 20.0 244.5  9.8 2.9 

 
MLE1N̂  

 
25.7 

 
216.0 

 
8.6 

 
2.6 26.4 238.3 9.5 2.9 34.9 

 
302.9 12.1 3.6 26.1 311.6 12.5 3.7 

 
MLE1(B)N̂  

 
25.5 

 
214.2 

 
8.6 

 
2.6 26.4 236.9 9.5 2.8 34.1 

 
299.4 12.0 3.6 25.4 306.4 12.3 3.7 

 
MLE2N̂  

 
25.1 

 
210.3 

 
 8.4 

 
2.5 25.9 232.6 9.3 2.8 34.4 

 
297.2 11.9 3.6 25.5 306.0 12.2 3.7 

 
Chao1N̂  

 
26.1 

 
234.0 

 
9.4 

 
2.8 44.2 310.8 12.4   3.7 45.5 

 
407.8 16.3 4.9 22.0 400.2 16.0 4.8 

 
Chao2N̂  

 
25.0 

 
217.9 

 
8.7 

 
2.6 37.8 278.3 11.1   3.3 40.5 

 
362.2 14.5 4.3 21.1 355.3 14.2 4.3 

 
1JN̂  

 
28.9 

 
253.3 

 
10.1   

 
3.0 34.8 293.5 11.7   3.5 37.6 

 
355.0 14.2 4.3 25.7 350.9 14.0 4.2 

 
1J

ˆ
kN  

 
28.9 

 
253.3 

 
10.1   

 
3.0 42.6 322.0 12.9   3.9 47.2 

 
418.4 16.7 5.0 25.7 414.3 16.6 5.0 

 
SC1N̂  

 
25.7 

 
246.3 

 
9.9 

 
3.0 34.6 293.2 11.7   3.5 48.6 

 
382.7 15.3 4.6 24.5 385.9 15.4 4.6 

 
SC2N̂  

 
25.5 

 
242.4 

 
9.7 

 
2.9 34.5 289.8 11.6   3.5 47.6 

 
378.0 15.1 4.5 23.9 379.6 15.2 4.6 



 
Table 2.  (continued) 

 
Method 

 
1994 (n = 29) 

 
1995 (n = 25) 

 
1996 (n = 45) 

 
1997 (n = 65) 

 
 

 
N̂ ♀ 

 
N̂  

 
M 

 
M♀ N̂ ♀ N̂  M M♀ N̂ ♀ 

 
N̂  M M♀ N̂ ♀ N̂  M M♀ 

 
0N̂  

 
20.0 

 
215.3 

 
 8.6 

 
2.6 17.0 175.2  7.0 2.1 33.0 

 
219.0  8.8 2.6 31.0 262.8 10.5 3.2 

 
MLE1N̂  

 
27.1 

 
299.6 

 
12.0 

 
3.6 29.3 268.1 10.7 3.2 42.7 

 
325.2 13.0 3.9 33.8 353.2 14.1 4.2 

 
MLE1(B)N̂  

 
26.4 

 
291.9 

 
11.7 

 
3.5 28.0 258.4 10.3 3.1 41.9 

 
314.8 12.6 3.8 33.7 345.1 13.8 4.1 

 
MLE2N̂  

 
26.6 

 
294.0 

 
11.8 

 
3.5 28.8 262.6 10.5 3.2 42.2 

 
319.7 12.8 3.8 33.3 347.7 13.9 4.2 

 
Chao1N̂  

 
23.8 

 
311.3 

 
12.5 

 
3.7 59.3 350.5 14.0 4.2 39.3 

 
409.8 16.4 4.9 41.1 476.5 19.1 5.7 

 
Chao2N̂  

 
22.5 

 
285.1 

 
11.4 

 
3.4 43.0 283.3 11.3 3.4 37.5 

 
339.6 13.6 4.1 38.8 402.5 16.1 4.8 

 
1JN̂  

 
26.7 

 
306.6 

 
12.3 

 
3.7 29.5 266.1 10.6 3.2 42.7 

 
324.2 13.0 3.9 41.8 383.0 15.3 4.6 

 
1J

ˆ
kN  

 
26.7 

 
341.6 

 
13.7 

 
4.1 48.6 335.8 13.4 4.0 42.7 

 
394.0 15.8 4.7 41.8 452.8 18.1 5.4 

 
SC1N̂  

 
26.1 

 
340.4 

 
13.6 

 
4.1 56.3 357.4 14.3 4.3 42.0 

 
417.5 16.7 5.0 41.5 477.4 19.1 5.7 

 
SC2N̂  

 
25.5 

 
332.1 

 
13.3 

 
4.0 54.9 347.7 13.9 4.2 41.4 

 
407.7 16.3 4.9 41.3 469.0 18.8 5.6 

 



 
Table 2.  (continued) 

 
Method 

 
1998 (n = 75)    

 
 

 
N̂ ♀ 

 
N̂  

 
M 

 
M♀             

 
0N̂  

 
35.0 

 
335.8 

 
 13.4 

 
4.0             

 
MLE1N̂  

 
38.2 

 
393.2 

 
15.7 

 
4.7             

 
MLE1(B)N̂  

 
38.1 

 
389.5 

 
15.6 

 
4.7             

 
MLE2N̂  

 
37.7 

 
387.6 

 
15.5 

 
4.7             

 
Chao1N̂  

 
37.7 

 
405.0 

 
16.2 

 
4.9             

 
Chao2N̂  

 
36.9 

 
387.7 

 
15.5 

 
4.7             

 
1JN̂  

 
43.9 

 
442.8 

 
17.7 

 
5.3             

 
1J

ˆ
kN  

 
43.9 

 
442.8 

 
17.7 

 
5.3             

 
SC1N̂  

 
41.2 

 
429.8 

 
17.2 

 
5.2             

 
SC2N̂  

 
40.9 

 
425.4 

 
17.0 

 
5.1             



 
Table 3.  Monte Carlo evaluation of five nonparametric estimators given a population of size N, sample size n, and homogeneous sighting probabilities.  Values 

for N were determined as the estimate 2MLEN̂  for that year (rounded to the nearest integer value), while n-values are equal to observed sample sizes for each year. 

 Values calculated for each estimator include the mean estimate )ˆ(N  given the model population and sample size, root mean square error (RMSE) of the 

estimate, observed estimate )ˆ(N  of the number of FCOY for that year and estimator, and the 1-tailed probability [ )ˆ(NP ] of obtaining an estimate ,N̂≥ given the 

model population and n. N̂ , RMSE, and )ˆ(NP  were determined from 1000 Monte Carlo simulations for each year. 

 
Year 

 
N 

 
n 

 
Chao1N̂  Chao2N̂  1

ˆ
JN  

 
 

 
 

 
 

 
N̂ RMSE N̂  )ˆ(NP  N̂ RMSE 

 
N̂  P( N̂ ) N̂ RMSE N̂  )ˆ(NP  

 
1986 

 
24 

 
82 

 
24.6 2.636 28.9 0.046 24.0 1.352 

 
27.5 0.019 25.8 2.467 30.9 0.001 

 
1987 

 
17 

 
20 

 
20.1 9.851 20.2 0.376 17.1 6.017 

 
17.3 0.397 18.1 3.321 18.6 0.482 

 
1988 

 
20 

 
36 

 
21.5 5.752 23.1 0.270 20.0 3.730 

 
21.2 0.301 22.7 3.952 23.8 0.423 

 
1989 

 
17 

 
28 

 
18.7 6.559 18.9 0.314 16.9 3.881 

 
17.5 0.337 19.1 3.405 20.8 0.327 

 
1990 

 
25 

 
49 

 
26.1 4.879 26.1 0.414 24.9 3.590 

 
25.0 0.435 28.3 4.619 28.9 0.456 

 
1991 

 
26 

 
62 

 
27.1 4.486 44.2 0.009 26.1 3.065 

 
37.8 0.007 29.3 4.268 34.8 0.025 

 
1992 

 
34 

 
37 

 
37.4 15.336 45.5 0.188 33.9 9.561 

 
40.5 0.189 35.0 4.585 37.6 0.308 

 
1993 

 
26 

 
30 

 
29.1 12.070 22.0 0.774 26.0 7.762 

 
21.1 0.742 27.3 4.185 25.7 0.641 

 
1994 

 
27 

 
29 

 
30.1 12.460 23.8 0.726 26.7 7.773 

 
22.5 0.702 27.7 4.057 26.7 0.603 

 
1995 

 
29 

 
25 

 
34.2 17.607 59.3 0.065 29.0 10.259 

 
43.0 0.078 27.2 4.303 29.5 0.330 

 
1996 

 
42 

 
45 

 
44.9 14.541 39.3 0.640 41.7 10.255 

 
37.5 0.610 43.0 5.231 42.7 0.518 

 
1997 

 
33 

 
65 

 
34.1 5.576 41.1 0.074 32.9 4.290 

 
38.8 0.074 37.3 5.557 41.8 0.116 

 
1998 

 
38 

 
75 

 
39.1 5.484 37.7 0.554 37.9 4.506 

 
36.9 0.555 43.1 6.393 43.9 0.454 



 
 

Table 3.   (continued) 

 
Year 

 
N 

 
N 

 
Jk1N̂  SC2N̂  SC2N̂  

 
 

 
 

 
 

 
N̂ RMSE N̂  )ˆ(NP  N̂ RMSE 

 
N̂  P( N̂ ) N̂ RMSE N̂  )ˆ(NP  

 
1986 

 
24 

 
82 

 
25.9 3.033 30.9 0.006 24.2 1.131 

 
32.0 <0.001 24.1 1.122 31.9 <0.001 

 
1987 

 
17 

 
20 

 
19.8 7.335 18.6 0.502 19.7 7.320 

 
20.2 0.360 19.0 6.831 19.5 0.362 

 
1988 

 
20 

 
36 

 
23.3 6.671 23.8 0.428 21.0 3.517 

 
21.7 0.361 20.8 3.395 21.5 0.358 

 
1989 

 
17 

 
28 

 
20.1 6.783 20.8 0.338 18.0 3.684 

 
24.1 0.057 17.7 3.535 23.4 0.061 

 
1990 

 
25 

 
49 

 
28.9 7.624 28.9 0.461 25.8 3.388 

 
25.7 0.489 25.6 3.301 25.5 0.456 

 
1991 

 
26 

 
62 

 
30.0 8.941 42.6 0.015 26.6 2.393 

 
34.6 0.004 26.4 2.350 34.5 0.004 

 
1992 

 
34 

 
37 

 
39.2 12.516 47.2 0.222 37.1 9.662 

 
48.6 0.085 36.4 9.255 47.6 0.085 

 
1993 

 
26 

 
30 

 
30.2 10.585 25.7 0.647 28.5 8.056 

 
24.5 0.695 27.9 7.647 23.9 0.694 

 
1994 

 
27 

 
29 

 
30.7 9.841 26.7 0.630 29.8 8.848 

 
26.1 0.651 29.1 8.359 25.5 0.643 

 
1995 

 
29 

 
25 

 
32.7 11.466 48.6 0.078 33.6 13.084 

 
56.3 0.068 32.5 12.318 54.9 0.068 

 
1996 

 
42 

 
45 

 
48.1 14.473 42.7 0.583 45.2 10.470 

 
42.0 0.585 44.5 10.030 41.4 0.576 

 
1997 

 
33 

 
65 

 
38.3 10.139 41.8 0.130 33.8 3.605 

 
41.5 0.031 33.6 3.532 41.3 0.030 

 
1998 

 
38 

 
75 

 
44.0 11.212 43.9 0.455 38.8 3.862 

 
41.2 0.247 38.6 3.791 40.9 0.253 



 
Fig. 1.  Estimated numbers of female grizzly bears with cubs-of-the-year (FCOY) in the Greater 

Yellowstone population, 1986-1998, calculated using eight different parametric and 

nonparametric estimators.  Numbers of FCOY actually observed are shown for comparison.  

Curves were fitted using a LOWESS smoothing function with tension = 0.6.  Methods used to 

calculate estimates in (A) assumed all family groups were equally likely to be seen, while those 

in (B) through (D) made no assumption about relative probabilities of seeing different family 

groups. 
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Fig. 2.  Monte Carlo estimates of expected values of (A) maximum likelihood, (B) lower bound, 

(C) first- and kth-order jackknife, and (D) sample coverage estimators of population size.  

Estimates in (A) assume all individuals have an equal probability of being sighted, while those in 

(B) through (D) are nonparametric and allow sighting probabilities to vary among individuals.  

Estimates were based on 1000 simulations for each year.  Simulations assumed that (1) true 

population size was equal to the estimate obtained using 2MLEN̂  (see text, Table 2), (2) all 

individuals had an equal probability of being seen, and (3) sample size was equal to the observed 

sample size for that year.  Results show that, given observed sample sizes and a population of 

2MLEN̂  equally sightable individuals, the parametric and nonparametric (especially 1ChaoN̂ , 

2ChaoN̂ , 1SCN̂ , and 2SCN̂ ) estimators should have yielded quite similar population estimates.  As 

in Fig. 1, curves were fitted using a LOWESS smoothing function with tension = 0.6. 
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Fig. 3.  Numbers of known human-caused mortalities versus calculated mortality limits for 1988-

1998, including (A) total mortalities, and (B) female mortalities.  All data and limits are for 

mortalities occurring within the grizzly bear recovery and 10-mile buffer zones.  Total mortality 

limits were calculated as 4.0% of the estimated total population size in year t ( tNT,
ˆ ), female 

mortality limits were calculated as 1.2% of tNT,
ˆ , and tNT,

ˆ  was estimated per Eq. (8), using 

2MLEN̂ to estimate the number of females with cubs-of-the-year in the population.  All calculated 

mortality limits were rounded to the nearest whole number. 
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