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ABSTRACT

The approximate conservation of density along trajectories in the upper thermocline, indicated by the observed
distribution of water mass properties, suggests that isopycnal coordinates would provide a more economical
framework than conventional Eulerian coordinates, An approximate analytic solution for a wind-driven circulation
in a reduced gravity model is used as a prototype for testing a numerical model based on isopycnal coordinates.
The numerical solutions are successful in reproducing the outcropping pattern of the analytic solutions. The
application of the flux-corrected transport algorithm significantly reduces implied diffusivity relative to a first-

order donor cell scheme.

1. Introduction

Much of our present understanding of ocean cir-
culation is based on the historical file of subsurface
temperature and salinity measurements collected with
great effort over a period of many years. The idea of
air masses was originally introduced to describe at-
mospheric circulation, but the concept turned out to
have limited usefulness due to the rapidity with which
nonadiabatic processes change temperature and mois-
ture content along air-trajectories. In the oceans, on
the other hand, measurements indicate that tempera-
ture and salinity tend to be conserved for thousands
of kilometers downstream of a water mass source region
(e.g., a review by Reid, 1981). Thus oceanographers
have found the parallel concept of water masses ex-
tremely useful. Geochemical tracers add to the speci-
fication of water masses and in some cases provide a
clock, indicating elapsed time since formation. Ap-
proximate conservation does not imply that mixing
across isopycnals is not an important process, and may
even be dominant locally. Examples of regions where
mixing across the time-averaged isopycnals is impor-
tant are the surface mixed layer, near the ocean bottom,
and at the equator.

A useful model of the ocean circulation must be
able to simulate a large scale flow that is nearly iso-
pycnal in the main thermocline and handle the local
regions where mixing takes place. In a numerical model
based on fixed Eulerian coordinates, this requirement
is difficult to achieve without using extremely high res-
olution. It would appear that a semi-Lagrangian co-
ordinate system based on isopycnal surfaces is a more

* Present affiliation: Honeywell Marine Systems, Seattle, WA
98103.

natural and economical way to model quasi-isopycnal
flows. Of course, any semi-Lagrangian scheme will in-
volve much more complicated boundary conditions
than a conventional scheme. The question is whether
the advantages outweigh the added complexity that an
isopycnal scheme entails. This important question re-
mains open.

Important pioneering work on isopycnal coordinates
has been carried out by Bleck (1978), Bleck and Boudra
(1981) and Schopf and Cane (1983) who have over-
come many of the technical difficulties involved. The
present calculation uses their work as a starting point.
The particular example that Bleck and Boudra use to
illustrate their method is a rather complex wind-driven
circulation’ with unstable mesoscale eddies, a regime
previously explored only with quasi-geostrophic mod-
els. Our study attempts to verify the model on a much
simpler case for which an approximate analytic solution
is available. Our test is less ambitious than that of Bleck
and Boudra, but we hope it will be useful in terms of
the simpler framework it provides.

Mesinger and Arakawa (1976) have provided a very
basic analysis of different finite difference formulations
of the linearized shallow water equations. Since the
linearized version of even complex multi-layered
models can be reduced to shallow water equations for
each vertical mode, their analysis is much more general
than it first appears. The Bleck and Boudra (1981)
model is based on what Mesinger and Arakawa refer
to as the “C” grid. In this case, the pressure is defined
in the center of each square of a chess board and the
normal velocity components are specified at the mid-
point of each side of the square. Another formulation
is the “B” grid, in which the pressure is also specified
at the center of each square but both of the horizontal
velocity components are specified at each of the four
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corner points. The difference between the two grids
may seem trivial, but there are important differences
in the group velocities of gravity waves simulated by
the “B” and “C” grids when the Rossby radius of de-
formation is only marginally resolved by the grid spac-
ing. Batteen and Han (1981) demonstrate the advan-
tages of the “B” grid in a large-scale ocean circulation
model. In an eddy resolving model, the grid size must
already be fine enough to simulate nearly isopycnat
flow, as shown in some recent calculations by Cox
(1985).

Thus we envision that an isopycnal coordinate sys-
tem will be most useful for models in which mesoscale
eddies do not appear explicitly. There is a rapidly ex-
panding data base for transient tracers in the ocean.
Measurements suggest that a primary pathway of these
transient tracers from the surface to the main ther-
mocline is along isopycnal surfaces. A model formu-
lated in terms of isopycnal coordinates would seem
ideally suited for simulating the transient tracer events
in which a tracer is introduced at the surface and moves
slowly downward over several decades. For isopycnal
models to be useful, their basic behavior must be un-
derstood, and this idea motivates the rather simple cal-
culations of this study.

2. Thé analytic model

The original models of a wind-driven ocean circu-
lation in a closed basin (see Veronis, 1981, for a review)
were based on linearized, steady state, shallow water
equations with simple closure schemes to represent
friction. These models could be interpreted as repre-
senting an active surface layer of the ocean, underlaid
by a deep abyssal layer at rest. Welander (1966) gen-
eralized this model by allowing the upper layer to have
a variable depth, but retained the linearized form of
the momentum equations. Parsons (1969).extended
Welander’s model by allowing depth variations large
enough for outcropping to occur. Although there are
many difficulties in extending Parsons’s results to a
continuously stratified model, the outcropping mech-
anism in his solution provides one of the simplest ex-
planations of separation of the western boundary cur-
rent in subtropical gyres. The simulation of separation
in numerical solutions by Bryan (1963) or Holland
and Lin (1975) is fundamentally different, depending
on inertial effects in the equation of motion.

Parsons’s model is in Cartesian coordinates on the
beta-plane. The domainis given by 0 <x < 1,0 <y
< 1. Friction is specified as a simple drag, transferring
momentum from the active layer to the deep, motion-
less layer below. The interface is displaced to exactly
compensate for the pressure variations in the active
layer. Motion is forced by a zonally symmetric wind
stress. The nondimensional equations of the model are

Jk X Du=—-DVD + A — eu 2.1)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 16

V- (Du) = 0. (2.2)

In (2.1) and (2.2), u is the horizontal velocity, D is the
depth of the active layer, fand  are the nondimensional
forms of the Coriolis parameter and wind stress, re-
spectively, and k is the unit vector in the vertical di-
rection. The component of u normal to the boundary
is zero.

The value-of A is a measure of wind forcing, while
e is a measure of the frictional drag. In addition, there
is another parameter, R, which may be thought of as
a Rossby number. Finally, + is a measure of the vari-
ation of rotation over the domain. In terms of the di-
mensional parameters given in Table 1,

X = LW/g'pod®

e = K/LBd (2.3)
R, =g'd/L*B?

Yy = fo/LB

A brief explanation of the outcropping mechanism
of the model is in order. Consider a subtropical gyre
driven by a simple sinesoidal wind that is independent
of x, thus the x-component of (2.1), '

—foD = —D3.D — X cosmy. 2.4)

Note that friction is neglected in (2.4). This approxi-
mation can be justified since friction is negligible in
the interior and only important in the boundary current
for the downstream component. Integrating from some
point x to the eastern boundary,

1
—2ff Dvdx = —(hg? — D,®) — 2M(1 — X)coswy
(2.5)

where sz and A, are the depths at the eastern boundary
and western boundary, respectively. At the western
boundary, continuity requires that the left-hand side
of (2.5) vanishes.

hg? — D2 = —2X\ coswy. (2.6)

For 0 < y < ', the displacement at the western bound-
ary will be larger than d, but in the upper northern
part, Y2 < y < 1, there will be a critical point for large
lambda where D,, will vanish.

hg* = —2\ coswy, 2.7

TABLE . Dimensional parameters of the model.

Scale of the basin

Amplitude of the wind stress

Reduced gravity

Reference density

At rest thickness of the upper layer

Drag coefficient

Coriolis parameter

Rate of change of Coriolis parameter with latitude

TS XA g
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At this critical point separation takes place. For y

> Yes
he? = —2\(1 — X) cosmy (2.8)

where X is the longitude of separation. The value of
hg can be calculated from the interior solution based
on the global constraint that

ff hdxdy = 1.

The neglect of boundary layers in calculating /4, from
(2.9) limits the calculation of the point of separation
to an accuracy of O(e).

Several investigators have generalized Parsons’
work. Kamenkovich and Reznik (1972) discussed the
case where motion is allowed in the lower layer. Veronis
(1973) extended the model to the world ocean. More
recently, Huang (1984) has discussed similar models
in a two-gyre setting over a large range of forcing con-
ditions.

(2.9

3. The numerical model

The numerical model used in this study solves a
diagnostic form of (2.1) and the time-dependent form
of (2.2), where time is scaled by (L8)™'. All features of
the model (i.e., basin size, boundary conditions, forc-
ing) are the same as in the analytic case. No explicit
lateral viscosity or diffusivity terms are included. Fol-
lowing Bleck (1982), the flux-corrected transport (FCT)
algorithm of Boris and Book (1973) as generalized by
Zalesak (1979) is used to treat the advection of layer
thickness. The FCT algorithm seeks to preserve large
gradients without introducing under- and overshoots
that arise from second and higher order schemes. This
is accomplished by computing the layer thickness at
each point using a linear combination of mass fluxes
computed by first and second order schemes in the
particular version of the algorithm we have used in this
study. An implicit lateral diffusion is introduced when-
ever the first order fluxes are employed. To facilitate
the description of the numerical scheme we define the
following operators:

o ) =1[ )i+1/2 - )i—l/Z]/A 3.1

C Y =1 Ysip+( diipl/2. (3.2)

The subscript i denotes the position of grid points in
the x-direction, and A is the distance between grid
points. The U and V are transports, hu and Av, in the
active layer, and « is a weighting coefficient between
zero and unity. The superscript # + 1 denotes the pre-
dicted time step. The superscript » is understood except
when another superscript is specified. Using this no-
tation the Mesinger and Arakawa (1976) “B” form of
the model given in (2.1) and (2.2) is

™! = _Daxljy + ™ + flaV"(1 — a)V] (3.3)
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™! = —D5,b* — flaU™'(1 — )U] (3.4)
D™ = D + At FCT(y, v, D). (3.5)

The FCT algorithm is indicated symbolically rather
than written out in detail. The FCT algorithm insures
that (3.5) will be of second order accuracy in areas free
of strong gradients, but where gradients do exist they
will be preserved over as few as two grid points. Any
initially positive definite quantity will remain positive,
and « is chosen to be %.

The grid is a checkerboard pattern with the depth
defined in the center of squares and the two velocity
components defined at the corners. The boundary co-
incides with the position of velocity points so that the
condition of no normal flow is specified exactly. At the
boundary the gradient of depth, which is needed to
calculate the presure force, is extrapolated from adja-
cent interior points. The maximum time-step permitted
by the Courant-Lewy-Friedrichs condition was used in
the thickness prediction (3.5).

4. Experiments

A series of experiments was performed to test the
numerical model’s ability to reproduce the solutions
given by Parsons (1969). In particular, we are interested
in qualitative comparisons in the region where the layer
interface intersects the sea surface and quantitative
comparisons in the basin interior. The model has a 80
X 80 grid mesh with a grid spacing equal to 40 km and
the central latitude at 35°N. The nondimensional pa-
rameters for different cases shown in Figs. 1 and 2 are
specified in Table 2. :

a. The first supercritical state

When lambda is larger than a critical value, the lower
layer outcrops (Parsons, 1969). Figure 1 shows the
nondimensional upper-layer depth. The at-rest depth
of the upper layer is 1.0. The case shown in Fig. 1a
was numerically integrated to an equilibrium state.
Thin solid lines indicate the depth of the upper layer
in the numerical solution, the heavy solid line is the
outcropping line for the analytical solution, and the
dashed lines are the analytic solution. The two solutions
are constrained to have the same lambda. One source
of discrepancy is the lack of a western boundary region
in the analytic solution. Actually, the analytical solu-

TABLE 2. Nondimensional parameters of the different
case shown in Figs. | and 2.

Figure A € R fo/BL
1(a) 0.36 0.01 1.64 X 107* 1.4
1(b) 0.60 0.06 1.64 X 1074 1.4
1(c) 0.60 0.02 1.64 X 107* 1.4
1(d) 0.60 0.02 1.64 X 1074 1.4
2 9.60 0.06 0.46 X 107* 1.4
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FiG. 1. Nondimensional upper-layer thickness. Numerical results are shown in thin solid lines, analytical results in dashed lines, outcropping
lines for analytical solutions are in heavy solid lines. (@) A = 0.36, ¢ = 0.01, FCT code; (b) A = 0.60, € = 0 06, FCT code; (c) A = 0.60, €

= 0.02, Donner-cell code only; (d) A = 0.60, ¢ = 0.02, FCT code.

tion drawn in Fig. 1 corresponds to the case with e
being infinitely small, thus 4ll boundary currents are
infinitely narrow. The numerical solution is shallower
than the analytic solution at the western wall and ex-
tends beyond the outcropping line after separation.
Another discrepancy arises at the eastern boundary. In
the analytic solution, the depth is assumed to be uni-
form along the entire boundary. The numerical results
maintain a meridional gradient in the upper to main-
tain the following balance:

eV = D3,D. 4.1)
In practice the difference is slight. Overall, the analytical
solution is deeper in the interior to compensate for the
volume missing adjacent to the outcropping line. Since
the parameters for Fig. 1a make the outcropping region
relatively narrow, the discrepancy in depth is also small.

An unanticipated feature of the numerical solution
is the overshoot of the western boundary current be-
yond the separation point predicted by the Parsons



May 1986

theory. The equations are of very low order and do not
contain inertial effects which play a crucial role in the
models of Bryan (1963) and Veronis (1966). Thus the
overshooting feature is quite different from what has
been obtained in previous studies. An analysis of the
overshoot and a simple analytic theory are given in a
separate paper (Huang, 1986).

A second case with A = 0.60 and ¢ = 0.06 is shown
in Fig. 1b. It is clear that as A increases, the outcropping
zone is enlarged; as e increases, the width of the bound-
ary currents increase t0o. As a result, the discrepancy
between the numerical and analytical solutions be-
comes larger.

The difference in patterns when only a first order,
donor cell scheme is used to compute depths rather
than the full flux corrected algorithm is dramatic. This
is illustrated in Fig. 1c and 1d. In Fig. 1c, the use of
the donor cell method gives a wide boundary current
region outside the analytic outcropping region. The
boundary current region is significantly narrower when
the FCT scheme is applied for the same parameters as
shown in Fig. 1d. The effect of reducing ¢ is clear by
comparing Fig. 1b with 1d. Note that the narrower
outcropping current gives significantly better agreement
with the analytic solution in the interior, because of
the global volume constraint pointed out in the pre-
vious section. Note that overshoot occurs in the western
boundary current in this case, but with a smaller am-
plitude than in the case shown in Fig. 1a.

b. Case 2: The second supercritical state

The case in Fig. 2 corresponds to a large value of
lambda, i.e., very strong wind driving or very small

FI1G. 2. Nondimensional upper-layer thickness for the second
supercritical state (A = 9.6, ¢ = 0.06).

NOTES AND CORRESPONDENCE

989

amounts of upper-layer water. The upper, active layer
is confined to a very small pool. This is an extreme
case beyond the parameter range considered by Par-
sons, but such cases have been discussed by Huang
(1984) using a similar analytical model. In Huang’s
(1984) solution, the active fluid is confined to a roughly
rectangular region in the lower, left-hand part of the
basin. Figure 2 confirms this prediction to a certain
extent. The numerical solution, however, contains a
tail extending out from the outcropping line toward
the eastern boundary. This phenomenon is now being
investigated in connection with two-gyre circulation
studies using the same model.

5. Discussion

The interesting mechanism for separation of the
western boundary current in Parsons’ (1969) model
makes it an ideal analytical solution for verifying a
numerical model based on isopycnal coordinates. Al-
though this study is only concerned with a very simple
reduced gravity system, it can be thought of as a pro-
totype for much more complex multilayer models
with closure schemes allowing for cross-isopycnal mix-
ing. Cox (1985) has shown that high resolution three-
dimensional models based on conventional Eulerian
coordinates can simulate nearly isopycnal flow in the
main thermocline. It would appear that isopycnal
models would be most useful in ocean circulation
models which are not able to resolve mesoscale eddies
explicitly. There is a wide range of applications in air-
sea interaction and transient tracer studies where mod-
els of this type are needed. With this application in
mind we have replaced the “C” grid as defined by Mes-
inger and Arakawa (1976) in Bleck and Boudra’s (1981)
model with the “B” grid, a slightly different arrange-
ment of variables in the horizontal plane. The result
is a model which has better wave propagation properties
in the range for which the Rossby radius of the first
baroclinic mode is just barely resolved by the horizontal
grid.
Our tests show.agreement with Parsons’s solution to
within the accuracy of the approximations of the the-
ory. Although there is no explicit horizontal diffusion
in the first model, implicit diffusion can take place lo-
cally when first order differencing is used to correct
errors of over- or undershooting caused by second order
differencing in the transport equation. An impressive
Lagrangian scheme for a reduced gravity, shallow water
model has been demonstrated by Salmon (1983). La-
grangian schemes may ultimately turn out to be the
most efficient transport models, but much more de-
velopment is required for general applications. The
present isopycnal scheme may be thought of as an in-
termediate model which is at least Lagrangian in the
vertical, and it is possible, as Bleck and Boudra (1981)
have shown, to generalize the scheme to three dimen-
sions.
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