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An impediment to progress in the theory of ocean circu-
lation has been the mathematical difficulties of solving theA model is presented for studying ocean circulation problems

taking into account the complicated outline and bottom topography equations of even very simplified ocean circulation models.
of the World Ocean. To obtain an efficient scheme for the study of This is caused by the complicated geometry of ocean ba-
low-frequency, large-scale current systems, surface gravity-inertial sins, and more importantly by the nonlinear nature of thewaves are filtered out by the ‘‘rigid-lid’’ approximation. To resolve

equations. The availability of large-scale computers in re-special features of the ocean circulation, such as the Equatorial
cent years has now made it possible to carry out ‘‘numericalUndercurrent, the numerical model allows for a variable spacing in

either the zonal or meridional direction. The model is designed to experiments’’ using a direct computational approach in
be as consistent as possible with the continuous equations with obtaining solutions to problems too complex to handle by
respect to energy. It is demonstrated that no fictitious energy gener-

any analytical method. The first ocean circulation researchation or decay is associated with the nonlinear terms in the finite
carried out along these lines was done in a series of studiesdifference form of the momentum equations. The energy generation

by buoyancy forces for the numerical model is also designed in by Sarkisyan [18, 19] in the Soviet Union.
such a way that no energy ‘‘leak’’ occurs in the transformation from The present paper describes in detail a computational
potential to kinetic energy. Q 1969 Academic Press procedure to be used in ocean circulation studies. While

it has certain features in common to that used in two earlier
studies of a baroclinic ocean [3, 4], the present method

I. INTRODUCTION
introduces many simplifications and is also generalized to
handle an ocean basin with irregular coastlines and bottomStarting with the pioneering work of Ekman and gaining
topography. The principal difference in the present compu-increasing momentum in the last two decades, considerable
tational procedure and the method recently proposed byprogress has been made in explaining some of the major
Crowley [5] involve the treatment of nonlinear terms, andfeatures of the ocean circulation. An important gap has
the boundary condition of the vertical velocity at the oceanexisted, however, between operational and theoretical
surface. The nonlinear terms in the present model arestudies. The fundamental problems in the dynamics of
formulated on the basis of centered differencing using theocean currents which engaged the attention of theoretical
same general method given by Fromm [7] and Arakawaoceanographers has often seemed quite remote from the
[1]. Crowley uses a forward difference with respect to timetask of interpreting the data on temperature, salinity, and
and a ‘‘time splitting’’ procedure for evaluating the nonlin-other water mass properties brought back from oceano-
ear advection similar to that proposed by Marchuk [13].graphic expeditions. Recent progress holds out some hope
The present procedure has the advantage compared to thethat this situation is changing. On the one hand, new tech-
Marchuk method of exactly conserving certain energeticniques for making direct current measurements are pro-
properties of the flow in the inviscid case. It has the draw-ducing a much more complete description of ocean cur-
back, however, of requiring the retention of two time-rents, and of ocean turbulence on a smaller scale. On the
levels of the variables in the machine memory. A demon-other hand, more attention is being focused on those
stration of the energetic properties of the method is givenbranches of hydrodynamics most closely related to ocean
in the Appendix.circulation studies. Renewed interest in carrying out labo-

Crowley [5] allows vertical displacements of the oceanratory experiments with rotating fluids has brought an ap-
surface, while these displacements are not allowed in thepreciation of the importance of the basic work carried out
present scheme. This constraint is called the ‘‘rigid-lid’’by earlier investigators.
approximation. The effect is to include pressure variations
at the upper surface, but to exclude the kinematic effects
of surface variations. External inertial-gravitational wavesReprinted from Volume 4, Number 3, October 1969, pages 347–376.
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are filtered out with no distortion of the steady-state ocean The hydrostatic relation is
circulation and very little distortion of low-frequency mo-
tions. Since external gravity waves move rapidly compared rg 5 2pz (2.5)
to other types of disturbances in the ocean, removing these
high speed waves allows an order of magnitude increase and the continuity equation is
in the time step. This enormous economy in calculation
justifies the increased complexity in the numerical scheme

wz 1
m
a

[ul 1 (v/m)w] 5 0. (2.6)required by the ‘‘rigid-lid’’ approximation.

II. EQUATIONS OF THE MODEL There are two conservation equations,

General Forms of the Equations Tt 1 L T 5 Q (2.7)
In formulating the equations of the model the Navier– St 1 L S 5 s. (2.8)

Stokes equations have been modified in three important
respects. First, density differences are neglected except The effect of compression on the temperature is not in-
in the buoyancy term, i.e. the Boussinesq approximation. cluded. This effect is relatively small and does not signifi-
Second, the local acceleration and other terms of the same cantly alter the computation of density gradients in the
order have been neglected in the equation of motion for horizontal plane, which determine the velocity field. The
the w-component, reducing it to the hydrostatic approxi- equation of state is based on an equation of the form
mation. The hydrostatic approximation may be shown to
be highly accurate as long as the aspect ratio of bottom

r 5 F(T, S, p). (2.9)
topography is much less than unity. Third, only the large-
scale motion is treated explicitly, and the stresses exerted

A convenient algebraic expression for (2.9) is given byby smaller-scale motions are taken into account by a
Eckart [6]. The effect of pressure in (2.9) may be taken‘‘turbulent viscosity’’ hypothesis. Ordinary viscosity and
into account with a high degree of accuracy by substitutingconductivity are very much smaller effects and are conse-
2r0 gz for p. The terms F l, F w, Q, and s present the effectsquently neglected.
of turbulent viscosity and diffusion. LetLet

De 5 m2ell 1 m(ew/m)w . (2.10)
m 5 sec w

n 5 sin w
(2.1)

Then

u 5 al̇/m
F l 5 Avuzz 1

AM

a2 hDu 1 (1 2 m2n2)u 2 2nm2vlj (2.11)v 5 aẇ,

where a is the radius of the earth, w is latitude, and l is F w 5 Avvzz 1
AM

a2 hDv 1 (1 2 m2n2)v 1 2nm2ulj (2.12)
longitude. It will be convenient to define an advection
operator, such that

Q 5
Av

d
Tzz 1

AH

a2 DT (2.13)

L e 5
m
a

[(ue)l 1 (ve/m)w] 1 (we)z (2.2)
s 5

Av

d
Szz 1

AH

a2 DS. (2.14)

where e is some scalar quantity. The equations of motion
The formulation of the F w and F l in the nonisotropic case,may then be written as
where mixing in the vertical differs from that in the hori-
zontal, has been worked out by Saint-Guilly [17]. The for-
mulation of mixing of momentum given by Bryan and Coxut 1 L u 2 2Vnv 2 mnuv/a 5 2

m
a

(p/r0 )l 1 F l (2.3)
[3] is incorrect, although the error is only significant in
polar latitudes.

and In nature vertical mixing has a complex dependence on
the density stratification, which is still very poorly under-
stood. In the present model the effects of stratification arevt 1 L v 1 2Vnu 1 mnuu/a 5 2

1
a

(p/r0 )w 1 F w. (2.4)
taken into account in a very simple manner which avoids
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specification of extra parameters. In the model vertical Elimination of Pressure
mixing is uniform for all stable cases, and infinite in the

The formulation of the finite difference equations re-
unstable case. Let r0 be the density which a parcel of water

quires the elimination of pressure. Integrating the continu-
would have if the in situ pressure is reduced to surface

ity equation with respect to z,
pressure. The delta in (2.13) and (2.14) is then given by

w(0) 2 w(2H) 5 2
m
a FSE0

2H
u dzD

l
1 SE0

2H

v
m

dzD
w
G

d 5 H1, (r0)z , 0,

0, (r0)z . 0.
(2.15)

1
u
a

(2H)mHl 1
v
a

(2H) Hw. (2.21)
Boundary conditions on velocity, temperature, and salinity
at the lateral walls are

At the surface the rigid lid requires that

u, v, Tn, Sn 5 0, (2.16)
w(0) 5 0. (2.22)

where ( )n indicates a local derivative with respect to the
Combining (2.19), (2.21), and (2.22) it is possible to definecoordinate normal to the wall. At the upper boundary,
a stream function such that

mcl 5 a E0

2H
r0v dz

(2.23)

w 5 0

r0Av (uz , vz ) 5 t l, t w
J z 5 0, (2.17)

cw 5 2a E0

2H
r0u dz.

where t l and t w are the zonal and meridional components
of the surface stress, respectively. r0 is the density of sea

Making use of the hydrostatic relationwater at surface pressure and standard temperature and sa-
linity.

In the case of temperature and salinity two boundary p(z) 5 ps 1 g E0

z
r dz, (2.24)

conditions are possible. Either the flux of heat and salinity
may be specified, or the temperature and salinity fields

where ps is the surface pressure.themselves may be specified at the surface.
To obtain a prediction equation for the transport streamSetting w 5 0 at the surface is called the ‘‘rigid-lid’’

function (2.3) and (2.4) are both integrated with respectapproximation. The kinematic effects of small displace-
to z and multiplied by ar0/mH and ar0/H, respectively,ments of the upper surface are not taken into account. As

outlined in the introduction this feature permits a much
more efficient calculation, since it filters out the very high- 2(cw/Hm)t 5 2(ps)l 1 2Vncl/H 1

FU
m

(2.25)
speed surface gravitational-inertial waves.

At the lower boundary the very small effects of geother- m(cl/H)t 5 2(ps)w 1 2Vncw/H 1 FV, (2.26)
mal heat flow are neglected,

where
(Tz, Sz) 5 0, z 5 2H (2.18)

w(2H) 5 2
u(2H)

a
mHl 2

v(2H)
a

Hw (2.19) FU 5
2ar0

H
E0

2H
FL u 2 mnuv/a 2 F l 1

gm
ar0

E0

z
rl dz9G dz

(2.27)and

andr0 Av(uz, vz) 5 t l
B, t w

B. (2.20)

The particular law used to calculate the bottom stress is FV 5
2ar0

H
E0

2H
FL v 1 mnu2/a 2 F w 1

g
ar0

E0

z
rw dz9G dz.

not specified here. Several possibilities present themselves,
of which Ekman theory is the simplest. Geostrophic drag
laws, which have been developed by Gill [8] and others The surface pressure may be eliminated by cross-differenti-

ating (2.25) and (2.26). The result ismight also have advantages.
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(mcl/H)lt 1 (cw/Hm)wt 5 (FV)l 2 (FU/m)w

2 cl(2Vn/H)w 1 cw(2Vn/H)l.

(2.28)

Let the vertical average over the whole water column
be indicated by an overbar,

( ) 5
1
H

E0

2H
( ) dz (2.29)

and the deviation from a vertical average by ( ˆ). Thus the FIG. 1. A closed ocean basin with two islands.
velocity components may be expressed as

(u, v) 5 (ū, v̄) 1 (û, v̂). (2.30) where r is the index of the islands. In general e is a function
of time. The method for computing er is based on that

The ū, v̄ components may be predicted from (2.23) and used by Kamenkovitch [9] in a study of the Antarctic cir-
(2.28). To predict û, v̂ we make use of (2.3) and (2.4) with cumpolar current.
the right-hand side of (2.24) substituted for the pressure Let v be the horizontal velocity vector and
term. The surface pressure, ps, is temporarily set to zero:

(v)t 5 2=(p/r0) 1 G. (3.3)

u9t 1 L u 2 2Vnv 2 mnuv/a 5
2mg
r0 a SE0

z
r dzD

l
1 F l (2.31) = is the horizontal grad operator and G is another hori-

zontal vector representing the remaining terms in the equa-
tions of motion. The integrated form of (3.3), correspond-

v9t 1 L v 1 2Vnu 1 mnuu/a 5
2g
r0 aSE0

z
r dzD

w
1 F w. (2.32)

ing to (2.25) and (2.26), is

u9 and v9 differ from u and v due to the neglect of that k 3 =ct 5 2E0

2H
(=p/r0 2 G) dz. (3.4)

part of the pressure gradient force which depends on the
surface pressure. To determine û and v̂ we set

k is a unit vector normal to the horizontal plane. Dividing
(3.4) by H and taking the curl of (3.4), we obtain

(û, v̂) 5 (u9 2 ū9, v9 2 v̄9). (2.33)

= 3 (k/H 3 =ct) 5 2= 3
1
H

E0

2H
(=p/r0 2 G) dz. (3.5)In the determination of û and v̂ the error due to the neglect

of surface pressure in u9 and v9 is of no consequence, since
that error is independent of z and is therefore eliminated Consider the closed basin with islands shown in Fig. 1. Let
by subtracting out ū9 and v̄9. the transport stream function be represented by

III. BOUNDARY CONDITIONS ON THE TRANSPORT
c 5 c0 1 OR

r51
er cr . (3.6)STREAM FUNCTION

In the simple case of a closed basin with no islands the
In (3.6) only c0 and er are functions of time. The cr fieldsboundary condition on (2.28) is simply that;
satisfy the quation

c 5 0 (side boundaries). (3.1)
= 3 (k/H 3 =cr) 5 0 (3.7)

The World Ocean with its many islands is a multiply con-
with the boundary condition thatnected region. At the shores of each island the boundary

condition is
cr 5 1 (perimeter of island r)

(3.8)
cr 5 0 (all other islands).c 5 er , r 5 1, 2, 3, ..., R, (3.2)
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Making use of the expression (3.6), the centered difference IV. GENERAL METHOD OF FINITE DIFFERENCING
form of the local time derivative of the transport stream

In constructing the finite differencing scheme we wishfunction is
to ensure that certain integral constraints will be main-
tained. In particular, it is desirable to construct the finite
difference equations so that momentum, energy, and thect 5 Fc l11

0 1 OR
r51

el11
r cr 2 c l21G@2 Dt, (3.9)

variance of temperature and salinity will be conserved in
the absence of dissipative effects. The advantage of this

where the superscript l denotes the time level. approach was first pointed out by Arakawa [1]. Arakawa
To calculate c0 at each time level we make use of (3.5), showed that, if integral constraints on energy are main-

(3.7), and (3.9), tained, the computation will be free of the troublesome
‘‘nonlinear’’ instability originally pointed out by Phillips

= 3 (k/H 3 =c l11
0 ) 5 = 3 (k/H 3 =c l21) [15]. A consistent formulation of the energetic properties

is also extremely important in carrying out long-term nu-
merical integrations for an oceanographic model. Such a2 2 Dt F= 3

1
H

E0

2H
(=p/r0 2 G) dzG

formulation will avoid systematic errors which will accumu-
late with time.

(3.10) To give an example, let us consider the following equa-
tions for a scalar field q,

with the boundary condition that

qt 1 = ? vq 5 0 (4.1)
c 5 0 (all boundaries). (3.11)

= ? v 5 0, (4.2)

To determine er (r 5 1, 2, 3, ..., R) we make use of a line
where v is a velocity vector. Let n be the normal vectorintegral of (3.4) along a path around each island. Let s
to the outer boundary of the total volume. The conditionrepresent a unit vector in the direction of the path of the
that the normal component of velocity vanish along theline integral:
entire exterior boundary is given as

n ? v 5 0. (4.3)R s Fk/H 3 = OR
r51

el11
r crG dS

Let the total volume under consideration be divided into
h subvolumes or cells. The volume of each cell will be5 2R s Hk/H 3 =(c l11

0 2 c l21) (3.12)
denoted as ah. The average of q over each cell will be
denoted as Qh. Integrating (4.1) over each cell,

2
2 Dt
H

E0

2H
[=(p/r0) 2 G] dzJ dS.

ah
d
dt

Qn 5 2R qv ? n dS. (4.4)
R equations of the form of (3.12) for the paths around
each island form a series of linear equations to determine In this case n is a unit vector normal to the cell boundary.
el11

r , r 5 1, 2, 3, ..., R. Note that the surface pressure can Our finite difference formulation will be based on (4.4)
be eliminated from the right-hand side of (3.12). For a rather than the original differential equation (4.1).
closed path Let each cell be bounded by B neighboring cells desig-

nated by the index b. In a regular rectangular array the
total number of surrounding cells would be six, but it couldR s F 1

H
E0

2H
=ps dzG dS 5 0, (3.13)

be more or less, depending on the geometry. Let Ab be
the area of each interface and Vb the normal velocity. Then
(4.4) may be approximated bywhere ps is the surface pressure. Therefore, making use

of (2.24),

ah
d
dt

Qn 5 2OB
b51

qbVb Ab, (4.5)

R s F 1
H

E0

2H
=p dzG dS 5 R s

g
H FE0

2H
S= E0

z
r dz9D dzG dS.

where qb is the value of q on the interface b. The corre-
sponding continuity equation for the cell is(3.14)
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OB
b51

Vb Ab 5 0. (4.6)

This approach in formulating finite difference equations is
similar to that discussed by Noh [14].

The integral properties of a finite difference are particu-
larly important in making a numerical integration with
respect to time over a long period. Let

I1 5 ON
h51

Qhah (4.7)

I2 5 ON
h51

Q2
hah, (4.8)

where N is the total number of cells in the entire volume,
I1 is the finite difference expression for the volume integral
of q, and I2 the volume integral of q2. Summing (4.5) over

FIG. 2. The arrangement of variables in the horizontal plane for aall cells, we obtain
grid with equal spacing in both directions.

dI1

dt
5 2ON

h51
OB
b51

qbVb Ab (4.9)

to be chosen in any manner that is convenient for the
problem at hand.dI2

dt
5 22 ON

h51
OB
b51

qbQhVb Ab. (4.10)

V. ARRANGEMENT OF VARIABLES
It can be seen that dI1/dt 5 0, since the various terms

Cells with the index i9, j9, and k9 are placed so that theyon the right-hand side occur as pairs along all interior
are centered on points given by the coordinatesinterfaces. The contribution on adjacent interfaces are
li9, wj9, zk9, whereequal and of opposite sign, cancelling each other when a

sum is taken over the entire volume. Repeating the argu-
ments given in [2], we see that in general the left-hand li9 5 Oi9

i51
Di (5.1)

side of (4.10) does not vanish. It can be made to vanish,
however, if we use an appropriate interpolation formula
for the interface value of qb, w0 2 wj9 5 Oj9

j51
Dj (5.2)

qb 5 (Qh 1 Qb)/2. (4.11)
zk9 5 2Ok9

k51
Dk . (5.3)

Here Qb is the average value of q in the cell adjacent to
the interface. Substituting (4.11) in (4.10),

The two horizontal components of velocity are averaged
over cells centered on grid points given by integer indices,
while temperature, salinity, and the stream function aredI2

dt
5 2ON

h51
FQ2

h OB
b51

Vb Ab 1 OB
b51

QhQbVbAbG. (4.12)
centered on grid points, specified by i9 1 As, j9 1 As, and k9.
In this case

Applying the continuity relation (4.6) we see that the first
term on the right is zero. The second term on the right is li911/2 5 li9 1 AsDi911 (5.4)
made up of pairs of equal and opposite terms on interfaces.

wj911/2 5 wj9 2 AsDj911 . (5.5)It vanishes due to the same cancelling effect that was dis-
cussed in connection with (4.9).

This simple example will indicate the motivation for the The arrangement of the variables in the horizontal plane
is shown in Fig. 2. The pattern is similar to that used byapproach in designing the finite difference equations in the

next section. The present method is a generalization of the Leith [10]. The motivation for choosing this arrangement
is to obtain as close meshing of the variables as possible,ideas of Arakawa [1] which allows the arrangement of cells
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TABLE I

The Pattern of Variablesa

i j k

u, v 1 1 1
T, S As As 1
wu,v 1 1 As

wT,S As As As

a An entry of 1 or 1/2 indicates whether a variable is located at an
integer of half value of the index.

yet still to define both velocity components at the same
time level and at the same point. The advantage of defining
u and v at the same point will be discussed in the next
section.

The vertical velocity must be calculated separately for
the velocity points and for the salinity and temperature
points. The vertical velocity points are located at the top
and bottom interface of the cells and have the index k9 1
As, where

zk911/2 5 zk9 2 AsDk911/2 .

The arrangement of the variables is summarized in Table I.

VI. FINITE DIFFERENCE EQUATIONS

Using the ‘‘box method’’ we first write down the finite
difference formulation of the momentum equation for the
u9 component given by (2.31). The dimensions of the cell FIG. 3. (a) The finite difference cell-centered on the points at which

the horizontal velocity is calculated. (b) The finite difference cell-centeredare shown in Fig. 3a. The volume of the cell is given as
on the temperature and salinity points.

a1 5 a2Di11/2Dj11/2Dk11/2/mj , (6.1)

where

where q is a dummy index for k. In (6.2) all indices are
Di11/2 5 (Di 1 Di11)/2 understood to be i, j, k, l, except as otherwise specified.

Certain undefined variables occur in (6.2). For example,Dj11/2 5 (Dj 1 Dj11)/2
the density points are not defined on integer j-points. These

Dk 5 (Dk21/2 1 Dk11/2)/2. points are understood to be simple averages of adjacent
points where they are defined:

The finite difference equation is

rj11/2 1 rj21/2 5 2rja1[(u9l11 2 ul21)/2 Dt 2 Vn(v9l11 1 vl21)]

rk 1 rk11 5 2rk11/2.
5 Ck 2

ag
r0

Dk11/2Dj11/2[Dk (ri11/2 2 ri21/2)uk51 (6.2)

The advection of momentum and the viscous terms are1 Ok
q52

(ri11/2 2 ri21/2)q21/2Dq,
contained in Ck ,
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V4A4u4 5 2Dk11/2Di11/2uj11/2Ck 5 2O6
b51

Vb Ab ub 1 a1 uvmn/a

1 m21a2Av(Dj11/2Di11/2)[(uk21 2 uk)/Dk 3FaS v̂
mDj11/2

1 (ci11/2, j11/2 2 ci21/2, j11/2)/(H4Di11/2)G
2 (uk 2 uk11)/Dk11]l21

(6.7)
1 AM hmDj11/2Dk11/2[(ui11 2 ui)/Di11 2 (ui 2 ui21)/Di]

V5A5u5 5 a1uk21/2wk21/2/Dk11/2 (6.8)
1 Di11/2Dk11/2[(uj21 2 uj)/mDj 2 (uj 2 uj11)/mDj11]

V6A6u6 5 2a1uk11/2wk11/2/Dk11/2. (6.9)
1 a1(1 2 n2m2)u/a2 2 2nmDj11/2Dk11/2(vi11/2 2 vi21/2)jl21.

(6.3) In (6.4)–(6.7) the terms û and v̂ are defined as

Note that the viscous terms are lagged one time step behind
the remaining terms on the right-hand side of (6.2). This (û, v̂)k 5 (u, v)k 2

1
H OKM

q51
(uq, vq)Dq11/2

means that the difference scheme is centered with respect
to time for the pressure term and nonlinear terms, but
forward time steps with an interval of 2 Dt are taken with

and the depth values H1, H2, H3, and H4 are defined asrespect to the viscous term. This arrangement is based
on a discussion of the numerical stability of similar time-
dependent problems given by Richtmyer [16]. H1 5 maximum of (Hi, j or Hi11, j) (6.10)

The layout of variables in the horizontal plane of the
H2 5 maximum of (Hi, j or Hi21, j) (6.11)numerical grid allows the Coriolis terms in (6.2) to be

approximated by an average between the l 1 1 and l 2 1
H3 5 maximum of (Hi, j or Hi, j21) (6.12)time step. This arrangement is widely used in numerical

models of the atmosphere in the Soviet Union [13]. It H4 5 maximum of (Hi, j or Hi, j11). (6.13)
amounts to an implicit treatment of the Coriolis terms and
allows a time step longer than the inertial period, if all

Separate diagnostic relations formed from the continuityother stability criteria are satisfied. This is particularly ad-
equations are required to calculate the vertical velocity atvantageous for a coarse grid with a mesh size of greater
u, v points and T, S points. For the calculation ofthan 48 of latitude and longitude. A coarse grid of this type

might be useful in ocean circulation calculations to save
computation during the first period of adjustment. More
detailed solutions are then obtained by interpolating the a1

Dk11/2
(wk21/2 2 wk11/2) 5 2O4

b51
Vb Ab (6.14)

initial solutions to a finer grid.
The details of the nonlinear terms in (6.3) are shown

below. Again all indices are understood to be i, j, k, l unless
the terms V1, V2, V3, and V4 are given in brackets in (6.4)–otherwise specified:
(6.7).

The predictive equations for T, S are considerably sim-
V1A1u1 5 Dk11/2Dj11/2ui11/2 pler than the momentum equations. The cell that forms

the basis of the ‘‘box’’ method is shown in Fig. 3b. The3 [aûi11/2 2 (ci11/2, j21/2 2 ci11/2, j11/2)/(H1Dj11/2)]
velocity points are in the same plane as the T, S points,

(6.4) but are located at the corners of the cell. The volume of
the cell is given byV2A2u2 5 2Dk11/2Dj11/2ui21/2

3 [aûi21/2 2 (ci21/2, j21/2 2 ci21/2, j11/2)/(H2Dj11/2)]
a2 5 a2Di11Dj11Dk11/2/mj11/2 . (6.15)

(6.5)

V3A3u3 5 Dk11/2Di11/2uj21/2 In what follows all indices will be understood to be i 1 As,
j 1 As, k, unless otherwise specified. The superscript l will

3FaS v̂
mDj21/2

1 (ci11/2, j21/2 2 ci21/2, j21/2)/(H3Di11/2)G also be understood. Only the predictive equation for T
will be set down. The equation for S is identical to the
prediction equation for T :(6.6)
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a2(T l11 2 T l21)/2 Dt where k ? ? ? k 1 N are the indices of the adjacent unstable
layers. The adjustment given by (6.24) corresponds to infi-
nite mixing in the unstable part of the water column. A5 2O6

b51
Vb Ab Tb 1 Av

a2

Dk11/2
[(Tk21 2 Tk)/Dk

similar adjustment is done for salinity. When this has been
carried out the entire column is scanned again to see if2 (Tk 2 Tk11)/Dk11]l21

(6.23) is still satisfied at any point. If any instability is
1 AH a hmDj11Dk11/2[(Ti13/2 2 Ti11/2)/Di13/2 indicated, the entire process is repeated as many times as

is necessary.
2 (Ti11/2 2 Ti21/2)/Di11/2] The relationship between the velocity components and

the transport stream function is given by1 Di11Dk11/2[(Tj21/2 2 Tj11/2)/mDj11/2

2 (Tj11/2 2 Tj13/2)/mDj13/2]jl21. (6.16)

a OK
k51

r0 uDk11/2 5 2(cj21/2 2 cj11/2)i/Dj11/2 (6.25)
The details of the advective term are given below,

a OK
k51

r0 S v
mD Dk11/2 5 (ci11/2 2 ci21/2)j11/2/Di11/2 . (6.26)

A1V1T1 5
a
2

Dk11/2Ti11(uj11Dj13/2 1 uj Dj11/2)i11 (6.17)

A2V2T2 5
2a
2

Dk11/2Ti (uj11Dj13/2 1 uj Dj11/2)i (6.18) The vertically averaged velocity components will be writ-
ten as ū and v̄. The components ū and v̄ may be obtained
from the transport stream function by multiplying the right-A3V3T3 5

a
2mj

Dk11/2Tj (vi11Di13/2 1 vi Di11/2)j (6.19)
hand side of (6.25) and (6.26) by (r0 aH)21 and
(r0 aH)21m, respectively.

A4V4T4 5
2a

2mj11
Dk11/2Tj11(vi11Di13/2 1 vi Di11/2)j11 (6.20) A predictive equation for the transport stream function

completes the system. All variables have the subscript
i 1 As, j 1 As unless otherwise specified:A5V5T5 5

a2

Dk11/2
Tk21/2wk21/2 (6.21)

Di11Dj11 L(c l11 2 c l21)/2 DtA6V6T6 5
2a2

Dk11/2
Tk11/2wk11/2 . (6.22)

5 2
1
2 FDi11/2 SFUi, j

mj
2

FUi, j11

mj11
D

To compute W corresponding to the i 1 As, j 1 As points an
equation similar to (6.14) is used with Vb Ab (b 5 1, 2, 3,

1 Di13/2 SFUi11, j

mj
2

FUi11, j11

mj11
DG4) given in (6.17)–(6.20) above.

At each time step preliminary values of T l11 and S l11

are predicted on the basis of (6.16) and a corresponding
1

1
2

[Dj11/2(FVi11, j 2 FVi, j)equation for salinity. Then the Eckart formula given by
(2.9) in Section 2 is used to compute rl11. The entire water

1 Dj13/2 (FVi11, j11 2 FVi, j11)] (6.27)column is then tested for static stability. Let r0 be the
density referred to surface pressure, corresponding to the
in situ temperature and salinity. If 2 V HDi11/2 Fnj S v̄

mDi, j
2 nj11 S v̄

mDi, j11
G

(r0)l11
k . (r0)l11

k11 (6.23)
1 Di13/2 Fnj S v̄

mDi11, j
2 nj11 S v̄

mDi11, j11
G

for any value of k, the information is stored. After the 1 Dj11/2 [nj (ūi11, j 2 ūi, j)]
entire water column is examined, T l11 and S l11 are reset
so that the temperature and salinity are uniform over any

1 Dj13/2[nj11(ūi11, j11 2 ūi, j11)]J.
group of adjacent layers for which (6.23) is satisfied,

The operator L on the left-hand side of (6.27) is defined(T 9k, T 9k11, ..., T 9k1N) 5
ok1N

k95k Tk9 Dk911/2

ok1N
k95k Dk911/2

, (6.24)
by (6.28):
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cially change the prediction equations from first to second
Lc 5

m(ci13/2 2 ci11/2)Dj11

(Hi11, j Dj11/2 1 Hi11, j11 Dj13/2)Di13/2Di11 order with respect to time. Following a suggestion made
by Arakawa,1 this difficulty is circumvented by periodically
substituting a forward time step for the centered time step.2

m(ci11/2 2 ci21/2)Dj11

(Hi, j Dj11/2 1 Hi, j11 Dj13/2)Di11/2Di11
(6.28)

This procedure is equivalent to throwing away one of the
two solutions at regular intervals before the ‘‘split’’ be-
comes significant. A ratio of 23 leap-frog time steps to one1

(cj21/2 2 cj11/2)Di11

mj11/2(Hi, j Di11/2 1 Hi11, j Di13/2)Dj11/2Dj11 forward time step is a typical value used in one rather
extensive calculation.

2
(cj11/2 2 cj23/2)Di11

mj13/2(Hi, j11 Di11/2 1 Hi11, j11 Di13/2)Dj13/2Dj11
.

VII. BOUNDARY CONDITIONS OF THE FINITE
DIFFERENCE EQUATIONS

At each time step a second-order equation of the form
Lc l11 5 Mi11/2, j11/2 may be solved by relaxation, one of the The basic information on boundary conditions is the
few methods general enough to handle the complicated number of cells stacked downward from the surface at
geometry of existing ocean basins. In the relaxation process each T, S point given by the indices, i 1 As, j 1 As. Let the
the value of the transport stream function for the previous number of cells be given as Ki11/2, j11/2, then
time step may be used as a first guess. This procedure
greatly speeds up the convergence process.

The quantity FU in (6.27) is yet to be defined: Hi11/2, j11/2 5 OKi11/2, j11/2

k51
Dk. (7.1)

FUij 5
ar0

Hij
OKij

k51
(Dk11/2Ck/a1) The number of cells at velocity points is then given by

Kij 5 Minimum of
2

g
Hij

OKij

k51

mDk11/2

Di11/2
HDk (ri11/2 2 ri21/2)uk51 (6.29)

(Ki11/2, j11/2, Ki21/2, j11/2, Ki21/2, j21/2, Ki11/2, j21/2). (7.2)

The depth at i, j may then be calculated according to a1 Ok
q52

Dq(ri11/2 2 ri21/2)q21/2J.
formula corresponding to (7.1). The boundary condition
on velocity is very simple,

The expression for FV has an exactly parallel form. As
before q corresponds to a dummy vertical index within the (u, v)i, j 5 0, k . Ki, j , (7.3)
summation with respect to k.

It is now possible to summarize the numerical integration and in the case of the transport stream function,
procedure. New values of temperature and salinity are
predicted from equations of the form given in (6.16). Rela-

ci11/2, j11/2 5 const, Ki11/2, j11/2 5 0 (7.4)tion (6.2) and a corresponding equation for the v-compo-
nent serve to predict (u9, v9)l11. These components are ci11/2, j 2 ci21/2, j 5 0, Kij 5 0 (7.5)
then used to find the new values of (û, v̂)l11,

ci, j21/2 2 ci, j11/2 5 0, Kij 5 0. (7.6)

(û, v̂)l11 5 (u9, v9)l11 2
1
H OK

k51
(u9, v9)l11 Dk11/2 . (6.30) The constant in (7.4) has a different value for the shores

of the mainland and each island. The procedure for com-
puting these values is given in Section 3.

The predicted values of (ū, v̄) may be obtained from (6.25) In the case of temperature and salinity the boundary
and (6.26) using the new value of the transport stream condition must be set for each point adjacent to a wall. Due
function. to the irregular bottom topography the boundary condition

Once new time levels for the predicted variables have may change from one level to the next for any single point
been found, the diagnostic relations based on the continu- in the horizontal plane. First a test is made. If
ity equation and the equation of state are used to find w
and r for the new time level. Experience has shown [12] k . Ki11/21A, j11/21B (7.7)
that repeated use of the leap-frog time differencing scheme
may lead to a serious ‘‘split’’ between adjacent time levels.

1 Personal communication.This is caused by the fact that centered differences artifi-
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then islands or continental boundaries. In such cases it would
be necessary to construct a more complicated path around
the perimeter of several adjoining rectangles of variousTi11/21A, j11/21B,k 5 Ti11/2, j11/2,k , (7.8)
shapes.

Corresponding to (3.6) it is possible to define the verti-where
cally averaged flow vector as

(A, B) 5 (1, 0), (21, 0), (0, 1), (0, 21). (7.9)

v̄l 5 v̄0 1 OR
r51

er
lv̄r , (8.4)

The test given by (7.7) indicates whether k exceeds the
maximum number of levels at any adjacent temperature
and salinity point. This indicates the existence of an adja- where
cent wall. The exact computational procedure used to set
the boundary condition according to (7.7)–(7.9) will natu- v̄ 5 (aH)21 [2i(ci, j21/2 2 ci, j11/2)/Dj11/2

(8.5)rally depend on the computing equipment used. In some
1 jm(ci11/2, j 2 ci21/2, j )/Di11/2].cases it may be optimum to test during the course of the

computations. In other cases it may be more efficient to
Using the operator given in (8.3) to denote the line integralstore the results of tests carried out in an initial inspection
around a closed path, it is possible to write the finite differ-in the form of a table. The table would then be used to
ence equivalent of 3.12 asset the boundary conditions.

VIII. FINITE DIFFERENCE FORMULATION B [1 1 2Vn Dtk 3 ( )] Sv̄l11
0 1OR

r51
el11

r v̄rD
(8.6)OF ISLANDS

5 B [1 2 2Vn Dtk 3 ( )]v̄l21 1 2 DtB(iFU 1 iFV)l.The formulation in the case of islands is straightforward,
if somewhat cumbersome. The method follows the outline

The terms FU and FV in (8.6) have previously been definedgiven for the continuous equations in Section 3. If R is the
in (6.29) of the previous section. It is possible to write Rnumber of islands it is necessary to include R 1 1 separate
equations like (8.6) for closed paths around each island.fields for the stream function:
Since the right-hand side of (8.6) is known, these R rela-
tions constitute a set of linear equations sufficient to find

c l 5 c0
l 1 OR

r51
er

lcr . (8.1) er . The matrix of coefficients on the left of (8.6) can be
determined, then inverted and stored in memory at the
beginning of the computation, since they do not vary with

Only c0 is a function of time, the remaining fields, cr , are time. Once the left-hand side of (8.6) is calculated at each
kept fixed and stored in the permanent memory of the time step, e11

r can then be computed by a simple matrix
machine. It is only necessary to recompute an amplitude multiplication.
er for each island, at each time step.

Let G be some horizontal vector such that
IX. COMPUTATIONS CARRIED OUT

WITH THE METHOD
G 5 iG x 1 jG y. (8.2)

To illustrate how the method could be applied, two ex-
We define the numerical equivalent of a line integral in amples will be sketched briefly. Detailed results will be
terms of an operator B, given elsewhere. The layout of the grid for the first compu-

tation carried out by M. D. Cox is shown in Fig. 4. The
area covers the Indian Ocean, extending from the Asian

BG 5 Ol1DI

i5I
[G x

i,J 2 G x
i,J1DJ ]

Di11/2

m (8.3) continent down to 188 S. On the west it is bounded by
Africa, and on the east by the meridian at 1028 E and the
Malayan Peninsula. The first stage of the calculation was1 OJ1DJ

j5J
[G y

I1DI, j 2 G y
I, j ] Dj11/2 .

carried out with a 48 mesh and six levels in the vertical
direction. Temperature, salinity, and wind stress fields
taken from climatic atlases are specified at the surface asThe line integral is taken counterclockwise in the i, j plane.

The integral given in (8.3) is a simple rectangular path. a function of season of the year. In the first stage of the
calculation it is possible to take a time step of 12 h, eachIn some cases it may not be possible to construct simple

rectangular paths around islands, because of other nearby time step requiring 10 s to compute on a UNIVAC 1108
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FIG. 4. Numerical grid used for calculation of the seasonal changes in circulation of the Indian Ocean. (Left) 28 resolution and (right) 18

resolution.

computer. Only a few fields are stored permanently in the the effect of persistent fluctuations. The basin includes
spherical geometry and extends from the equator to 708S65K rapid access memory of the machine. Most of the

fields are kept on the magnetic drums and cycled through with a gap in the meridional wall at about 608. Cyclic
boundary conditions are assumed in the gap, so that thethe memory when needed. Shifts from magnetic drums to

memory take place while the computation is in progress, flow coming in is exactly like that going out. The total
flow through the gap must be computed according to theso that no extra time is required for the transfer process.

Experience indicates that it is advantageous to start with Kamenkovitch method outlined in Section III. The compu-
tation is carried out for a rotation rate one order of magni-a large value of AM and decrease this value as the grid is

successively refined. The lateral diffusion coefficient, AH , tude less than that of the earth. The ocean circulation is
is kept at a low value throughout the computation. The
motivation for this procedure is that the density field ad-
justs itself very slowly, while the velocity field can adjust
relatively rapidly to any change in the lateral friction coef-
ficient. Each new stage of the computation must be started
with a forward time step followed by centered time steps.

The layout of the grid in the second and third stages of
the computation is shown in Fig. 4. The final mesh size is
18 of latitude and longitude. Along the open boundary the
transport stream function is taken from charts of Sverdrup
transport computed by Welander [20]. The temperature
and salinity distributions in the vertical section, which en-
closes the area, were taken from hydrographic data sup-
plied by the World Oceanographic Data Center A. Let û
and v̂ denote the deviation of the velocity components
from the vertical mean. The total transport through the
boundary is determined by the transport stream function,
and the gradients normal to the boundary of û and v̂ are
set equal to zero. This condition allows the vertical profile
of the inflow and outflow to adjust geostrophically to the
density field specified at the boundary.

A second computation performed with the present
model is part of a study of the thermohaline circulation of
the southern hemisphere oceans. The final pattern of the
mass transport stream function is shown in Fig. 5, based FIG. 5. The pattern of transport stream function obtained in a theoret-

ical study of the Antarctic Circumpolar Current.on an average taken over the final part of the run to remove
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being driven by both a wind stress distribution and a den- The first term on the right vanishes with the boundary
condition that c 5 0 along the lateral boundaries.sity gradient imposed at the surface. Initially all density

surfaces are flat and the fluid is at complete rest. The Therefore,
low rotation explains the unrealistic width of the western
boundary current.

The computation is carried out for a flat bottom. A hK̄t j 5 2 H cm
a2Hr0

[(mclt/H)l 1 (cwt/Hm)w ]J. (A.5)
variable mesh width is used to provide extra resolution
along all lateral boundaries. The smallest mesh interval
near the wall is approximately 18, while in the interior the Multiplying the right-hand side of (2.28) by 2cm/(a2Hr0)
grid points are spaced approximately 68 apart. There are we obtain
eight levels in the vertical. A typical time step is 1/10 of
a day, and the equilibrium solution in Fig. 5 is after 30 hK̄rj 5 I1 1 I2 1 I3 1 I4 , (A.6)
years of model time. This required a total of 200 h of
machine time on the Univac 1108. To examine the realistic

where,case with the correct rotation rate for the earth requires
even more computation, since the time to reach equilib-
rium is longer, and the boundary currents are narrower

I1 5Hcm
a2HFS a

H
E0

2H
L v dzD

l
2S a

Hm
E0

2H
L u dzD

w
GJ (A.7)and require more grid points for accurate resolution.

APPENDIX
I2 5Hcm

a2HFSmn
H

E0

2H
u2 dzD

l
1Sn

H
E0

2H
uv dzD

w
GJ (A.7a)

In order to be sure that a universal scheme will be useful
for studying the behavior of a hydrodynamic system over
an extended period, careful checks should be made of the I3 5H2cm

a2H FS a
H
E0

2H
Fw dzD

l
2S a

Hm
E0

2H
F l dzD

w
GJ (A.8)

energy balance. The choice of numerical scheme given in
this paper is largely motivated by energy considerations.

I4 5 Hcm
a2H FS 1

H
E0

2H
(p 2 ps)w dzD

l
Only an energy consistent scheme will avoid the special
type of instability described by Phillips [15] without exces-
sive damping of important features of the flow.

2 S 1
H

E0

2H
(p 2 ps)l dzD

w
GJ. (A.9)Let

K 5 K̄ 1 K̂, (A.1)
The complete expression for p 2 ps is given in (2.24).

where In order to write down an expression for K̂t , (2.31) and
(2.32) must be multiplied by r0û and r0v̂, respectively.

K̄ 5 r0(ū 2 1 v̄ 2)/2 (A.2) Integrating the sum of the results over the entire volume,

and
hK̂t j 5 I5 1 I6 1 I7 1 I8 (A.10)

K̂ 5 r0 (û 2 1 v̂ 2)/2. (A.3) I5 5 2hr0ûL u 1 r0v̂L vj (A.11)

K̄ may be considered the kinetic energy of the external
I6 5 Hr0 mn

a
(ûuv 2 v̂uu)J (A.11a)mode, and K̂ the kinetic energy of the internal mode. Let

h j designate the volume integral over a closed ocean
I7 5 hr0ûFl 1 r0v̂F wj (A.12)basin. If we multiply the left-hand side of (2.28) by mc/

(a2Hr0) and integrate over the entire volume,
I8 5 2 Hûm

a
(p 2 ps )l 1

v̂
a

(p 2 ps )wJ. (A.13)

H cm
a2Hr0

[(mclt/H)l 1 (cwt/Hm)w]J
To demonstrate the energetic consistency of our model we
wish to show that: (a) the nonlinear terms in the difference

5 H m
a2Hr0

[(mcclt/H)l 1 (ccwt/Hm)w]J (A.4)
equations have no net effect on the total amount of kinetic
energy; and (b) the exchange terms between potential and
kinetic energy are correctly accounted for. The require-2

1
2 Hm2

a2 c2
lt/H 2r0 1

1
a2 c 2

wt/H 2r0J.
ment (a) is satisfied if
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I1 1 I5 5 0 (A.14)
I1 5 2 O

i11/2
O

j11/2
ac Fdw SLu

m
Di11/2Dl

(A.21)I2 1 I6 5 0. (A.14a)

The requirement (b) is equivalent to 2 dl(Lv Dj11/2)
wG.

I4 1 I8 5 2 hgrw j, The overbar without a superscript indicates a vertical aver-
age, while the overbars with superscripts are the two point

or horizontal averages defined by (A.16):

5 2 Hgwz E0

2z
r dzJ. (A.15) I1 5 2 a O

i11/2
O

j11/2
FS2dwc

l

Dj11/2
Lu 1

mdlc
w

Di11/2
LvDDi11/2 Dj11/2 m21

wl

To prove that (A.14) and (A.15) hold for the present 1 dwSc

w

Lu
m

Di11/2D
l

2 dl (c
l

Lv Dj11/2

w

)
numerical scheme involves rather complicated algebraic
manipulation. To simplify the derivations we will use a
notation and approach similar to that of Lilly [11]. 1

1
4

dlSdl dwc ?
Lu
m

Di11/2D2
1
4

dw(dl dw c ? Lv Dj11/2)G.
Let

(A.22)

2h
l

5 hi11/2 1 hi21/2 (A.16)
The boundary conditions on the transport stream function

dlh 5 hi11/2 2 hi21/2. (A.17) given in Section 7 are such that the last four terms of
(A.22) vanish. We also note that (6.25) and (6.26) give

We have the following rules:

(u, v) 5
1

ar0H S2
dw c

l

Dj11/2
, m

dl c
w

Di11/2
D. (A.23)

hdl b 1 bdlh
l

5 dl (h
l
b) (A.18)

Substituting (A.23)–(A.22) and rejecting the terms whichand
vanish on integration,

h
l
b

l

2 hb
l

5 Afdl (bdlh). (A.19)
I1 5 2 O

i11/2
O

j11/2
a2[r0H(uLu 1 vLv) Di11/2 Dj11/2 m21]

wl

.

(A.18) and (A.19) may be easily verified by simply (A.24)
substituting (A.16) and (A.17). It is obvious that (A.16)–
(A.19) hold in the same way, if w is substituted for l. It is now possible to combine I1 and I5 as

I1 1 I5 5 2 O
i11/2

O
j11/2

O
k

a2r0[(u 1 û) Lu 1 (v 1 v̂) Lv ] Di11/2 Dj11/2 Dk11/2 m21
wl

, (A.25)

Substituting zw for b in (A.18) and making use of (A.19) where we have made use of the relation
we obtain

HuLu 5 O
k

uLuDk11/2. (A.26)

hdlz
w

1 zdlh
wwl

5 dl (h
l
z

w
) 1 Afdw(zdwdlh)

l
. (A.20)

From (6.3) it can be seen that (A.25) may be written as
As in the case of (A.18) and (A.19) the rule given by
(A.20) is also valid if w and l are exchanged at all points I1 1 I5 5 2 O

i11/2
O

j11/2
O

k11/2
a2a21

1 r0 F(u 1 û) O6
b51

mVbAbubin the equation.
An expression for I1 may be obtained by multiplying

(6.27) by c and summing over all half integer points. Note 1 (v 1 v̂) O6
b51

mVbAbvbG Di11/2 Dj11/2 Dk11/2 m21,
that it is only necessary to multiply by ac rather than acm/
H, since the factor m/H cancels out in the volume integral: (A.27)
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where Substituting (A.32) in (A.31),

I4 1 I8 5 2 O
i11/2

O
j11/2

O
k

a2[(p 2 ps) dzw] Di11 Dj11 m21.O6
b51

VbAb 5 0 (A.28)
(A.33)

The expression (A.33) is the equivalent of (A.15) for theis the local continuity equation for each cell. To demon-
continuous case and completes the derivation.strate that I1 1 I5 vanishes, it is only necessary to repeat

the arguments given in Section 4. The nonlinear terms will
ACKNOWLEDGMENTSnot change the average kinetic energy of the entire volume

if ub and vb are defined as the arithmetic average between
Much of the credit for the final form of the numerical model is due

adjacent cells. This completes the derivation of (A.14). To to Mr. M. D. Cox. Mr. Cox designed the program to test the numerical
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arose as the work progressed. The author is very grateful to Dr. Adrian(A.21)–(A.25), where I2 replaces I1 and I6 replaces I5 . Since
Gill for pointing out the work of V. M. Kamenkovitch for calculatingthe demonstration is closely parallel to that for (A.14) we
the transport around islands and to Mr. Sol Hellerman for writing aavoid writing out the detailed equations.
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Next we investigate the pressure force terms. If we multi- assistance of Miss Martha Jackson in preparing the figures, and Mrs.
ply (6.27) by c, the arguments of (A.21)–(A.24) may be Dolores Drake and Mrs. Christine Morgan in typing the manuscript is

also appreciated.repeated to show that

I4 5 2 O
i11/2

O
j11/2

O
k
Fum

a
dl(p 2 ps )

w

Di11/2
1

v
a

dw(p 2 ps )
l

Dj11/2
G Di11/2 Dj11/2 Dk11/2 m21.

wl

(A.29)

Let (6.2) be multiplied by û and an equivalent equation
for the v9-component be multiplied by v̂, combining the
results and integrating:

I8 5 2 O
i11/2

O
j11/2

O
k
Fûm

a
dl(p 2 ps )

w

Di11/2
1

v̂
a

dw(p 2 ps )
l

Dj11/2
G Di11/2 Dj11/2 Dk11/2 m21.

wl

(A.30)

The sum I4 1 I8 is then a similar expression with û and v̂ REFERENCES
replaced by the total components u and v, respectively.
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