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The Knudsen formula (Fofonoff, 1962) is the stand-
ard method for computing the density of sea water
from the temperature, salinity and pressure. However,
the Knudsen formula is designed to fit experimental
data over a wide range of temperatures and salinities,
a much wider range, in fact, than is ordinarily en-
countered in the ocean. In a numerical model of ocean
circulation, it is usually necessary to calculate the
density only at a discrete set of levels which are de-
termined in advance. In that case, it is possible to
calculate the density from simple polynomial formulas

if the constant coefficients in these formulas are a
function of pressure and are determined in such a way
as to give a good fit to the classical Knudsen formula
for a realistic range of temperatures and salinities in
the World Ocean.

In many ‘previous studies of ocean circulation the
mathematical models do not include temperature and
salinity explicitly. The models in these studies only
predict the density field and heating, while the effects
of evaporation and precipitation only enter through
the specification of boundary conditions on density.
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Such models are quite adequate for studying many
aspects of the dynamics of the ocean circulation. In the
case of large-scale, ocean-atmosphere interaction, how-
ever, we are interested in the transfer of heat and
salinity in the ocean per se. For such studies the model
must include predictive equations for temperature and
salinity and an equation of state is required as an
additional diagnostic relation.

An extensive body of hydrographic data is available
on magnetic tape files at the National Oceanographic
Data Center in Washington, D. C. In Table 1, the
ranges which include 989, of the volume of the World
Ocean are shown for temperature and salinity at dif-
ferent depths. The ranges are rounded off to the nearest
1C in temperature and 0.1%; in salinity. It can be seen
that near the surface, the range of temperature is
nearly 30C, but decreases to only a few degrees at
great depths. In the same way, the greatest range of
salinities is found at the surface and decreases to only
1% at greater depths.

Let por, Tox and Sox be the density, temperature and
salinity corresponding to the mid-point of the ranges
shown in Table 1 for any given level Zi. Let oT,
6S=(T—To), (S—Sox) represent the departures of
temperature from the mid-point values. We can express
the density as

x1k6T+x2kBS+x3k(6T)2+x4k(55)2+x5k8T85+x6k(6T)3
+X7k(55)25T+ng(5T)25S+Qqu(55)3+ v
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TaBLE 1. 989, range of temperatures and salinities given by
the NODC data for the World Ocean rounded off to 1C and
0.1%; of salinity.

Level

(l'Il) TMin TMﬂ.x SM in SMax
0 —2.000 ..29.000 28.500 36.700
250 —2.000 19.000 33.700 36.600
500 —2.000 14.000 34.000 35.800
750 —2.000 11.000 34.100 35.700
1000 —1.000 9.000 34.200 35.300
1250 —1.000 7.000 34.400 35.100
1500 —1.000 5.000 34.500 35.100
1750 —1.000 4.000 34.500 35.000
2000 —1.000 4.000 34.600 35.000
2250 —1.000 4.000 34.600 35.000
2500 —1.000 3.000 34.600 35.000
2750 —1.000 3.000 34.600 35.000
3000 —1.000 3.000 34.600 35.000
3250 —1.000 3.000 34.600 35.000
3500 —1.000 3.000 34.600 34.900
3750 —1.000 2.000 34.600 34.900
4000 —1.000 2.000 34.600 34.900
4250 —1.000 2.000 34.600 34.900
4500 —1.000 2.000 34.600 34.900
4750 0.000 2.000 34.600 34.900
5000 0.000 2.000 34.600 34.900
5250 0.000 2.000 34.600 34.900
5500 0.000 2.000 34.600 34.900
5750 0.000 2.000 34.700 34.800
6000 0.000 2.000 34.700 34.800

evenly spaced points in the 7-S range shown in
Table 1. It is then possible to write a series of m linear
equation of the form of (1):

2 .
=[o(T,S,Z) —po X 10 (1) 6T: 051 oIy k) fPrpor
6T, LAY 5512 X2k P2—Pok
To find the set of coefficients, x1x, Xak, £3x" * * Xmr, Which : : L= : . (2
provides the best fit to the Knudsen formula, we first : : Znk :
compute the density from the Knudsen formula for m 0Tm 0Snm Pm— POk
TaBLE 2. The constants in the polynomial formula (1), retaining only the first three terms on the left. m =350,
A (po—1)1073 Ty So X1 X2 X3
0 24458 13.50 32.600 —0.19494—00 0.77475—00 —0.49038—02
250 28.475 8.50 35.150 —0.15781—00 0.78318—00 —0.52669—02
500 29.797 6.00 34.900 —0.13728—00 0.78650—00 —0.55278—-02
750 31.144 4.50 34.900 —0.12720—00 0.78807—00 —0.56610—02
1000 32.236 4.00 34.750 —0.12795-00 0.78710—00 —0.56274—02
1250 33.505 3.00 34.750 —0.123124-00 0.78763—00 —0.56972—-02
1500 34.808 2.00 34.800 —0.11837+4-00 0.78822—00 —0.57761-02
1750 35.969 1.50 34.750 —0.118964-00 0.78751—-00 —0.57631—02
2000 37.143 1.50 34.800 —0.12543—-00 0.78560—00 —0.56422—-02
2250 38.272 1.50 34.800 —0.13168—-00 0.78368—00 —0.55239-02
2500 39.462 1.00 34.800 —0.13250—-00 0.78300—00 —0.55116—02
2750 40.582 1.00 34.800 —0.13871—-00 0.78109—00 —0.53946—02
3000 41.695 1.00 34.800 —0.14483—-00 0.77920—00 —0.52793-02
3250 42.801 1.00 34.800 —0.15088—-00 0.77733—00 —0.51654—02
3500 43.863 1.00 34.750 —0.15673—00 0.77544—00 —0.50557—-02
3750 45.038 0.50 34.750 —0.15771—-00 0.77475—00 —0.50466—02
4000 46.130 0.50 34.750 —0.16363—00 0.77292—00 —0.49360—-02
4250 47.216 0.50 34.750 —0.16948—00 0.77110—00 —0.48268—02
4500 48.296 0.50 34.750 —0.17524—00 0.76930—00 —0.47193-02
4750 49.278 1.00 34.750 —0.18556—00 0.76641—00 —0.45102—-02
5000 50.344 1.00 34.750 —0.19107—-00 0.76467—00 —0.44074—-02
5250 51.404 1.00 34.750 —0.19650—00 0.76295—-00 —0.43061—02
5500 52.459 1.00 34.750 —0.20186—00 0.76126—00 —0.42068—02
5750 53.508 1.00 34.750 —0.20715—00 0.75958—00 —0.41138—-02
6000 54.552 1.00 34.750 —0.21237—-00 0.75792—-00 ~—0.40172—-02
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Density Deviations From The Knudsen fFormula

Fic. 1. The average percentage error in (p—1)X 1073 over the ranges given in Table 1, where
the Knudsen formula is taken as a standard.

If m=mn, the vector x can be determined by directly
solving (2). However, the case of interest is for m>n.
In that case, we have an overdetermined system and
an iterative procedure must be used to find the best
least-squares fit. The algorithm used in the present
study is outlined by Hanson and Lawson (1969). The
actual calculation is carried out with a Jet Propulsion
Laboratory Fortran subroutine designated LSQL2.

A set of coefficients computed by this procedure is
shown in Tables 2 and 3. In Table 2, » is set equal to 3,
while in Table 3 » is set to 9. In Fig. 1 the average
absolute error over the ranges of Table 1 is plotted in
terms of percent of sigma-f units. The average is
calculated from 2400 equally spaced points. The error is
compared to the difference between the Eckart (1958)
formula and the Knudsen formula, as well as the average
difference found by Bein ef al. (1935) between labora-
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F16. 2a. Lines of constant density based on the Knudsen and
Eckart formulas. The Eckart curves are shifted slightly to the
left at Jow temperatures.

tory measurements and Knudsen’s formula. Note that
the polynomials give a much better fit to the Knudsen
formula than Eckart’s formula, and also that the fit of
the polynomials is particularly accurate at greater
depths where the range is small. The steps in the curves
are due to the fact that round-off has not allowed the
ranges to vary continuously with respect to depth.

To present a more complete picture of the relative
difference between the present polynomials, and the
Eckart and Knudsen formulas, we refer to Figs. 2a
and 2b. These figures show lines of constant density
plotted on a conventional T-S diagram. Fig. 2a com-
pares the density corresponding to surface pressure
calculated from the Eckart and Knudsen formulas.
Note that the Eckart formula gives consistently higher
values of density at lower temperatures. On the other
hand, the third-order polynomial curves based on the
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I'16. 2b. Nearly coincident lines of constant density based on the
third-order polynomial formula (1) and the Knudsen formula.
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Density Gradient Deviations From The Knudsea Formula

F16. 3. The percentage error in gradients of density over the ranges given in Table 1.

coefficients given in Table 3 coincide so closely with the
Knudsen formula that the resolution of the diagram
does not allow us to discriminate between the two.

In dynamic calculations, horizontal gradients of
density are more important than the density itself.
In Fig. 3, the difference between the density gradients
computed from the polynomials and the density
gradients computed from the Knudsen formula are
expressed as a percentage of the density gradient com-
puted from the Knudsen formula. The gradients are
computed over intervals of 0.05C and 0.05%, of salinity.
As in Fig. 1, the percentage deviation at each level is
based on the average of 2400 evenly spaced points.
Note that the results are similar to Fig. 1. The fit is
superior to that of the Eckart formula and is much
more accurate over the smaller ranges at great depths.

For special model studies it may be desirable to find
polynomial formulas for different levels, and fitted to
different ranges of temperature and salinity than those
of Table 1. The authors would be happy to make their

Fortran program available to their colleagues upon
request.
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