## **Yellowstone Grizzly**

# **Bear Investigations**

## 1995

Annual Report of the Interagency Grizzly Bear Study Team You may cite the information printed in this document. Please understand that some materials are preliminary and may change. Please give authors credit.

Suggested citation:

Knight, R. R., and B. M. Blanchard. 1996. Yellowstone grizzly bear investigations: annual report of the Interagency Grizzly Bear Study Team, 1995. National Biological Service, Bozeman, Montana.

## YELLOWSTONE GRIZZLY BEAR INVESTIGATIONS

## **Report of the Interagency Grizzly Bear Study Team**

1995

National Biological Service National Park Service Wyoming Game and Fish Department U.S. Fish and Wildlife Service Montana Department of Fish, Wildlife and Parks U.S. Forest Service Idaho Fish and Game Department

Written by: Richard R. Knight and Bonnie M. Blanchard

U.S. Department of the Interior National Biological Service July 1996

## TABLE OF CONTENTS

### Page

| INTRODUCTION                             |
|------------------------------------------|
| RESULTS AND DISCUSSION                   |
| Monitoring/Population Trend              |
| Marked Animals                           |
| Unduplicated Females                     |
| Observation Flights                      |
| Mortalities 12                           |
| Population Trend 14                      |
| Food Habits 14                           |
| Scat Analysis                            |
| Whitebark Pine Cone Production           |
| Feed Sites                               |
| Movements and Feeding Strategies         |
| LITERATURE CITED                         |
| APPENDIX A. Seasonal scat contents, 1994 |

### LIST OF TABLES

- 1. Grizzly bears captured during 1995.
- 2. Grizzly bears monitored, captured, and transported, 1980-95.
- 3. Status of radio-marked grizzly bears, 1995.
- 4. Annual unduplicated female grizzly bears with cubs-of-the-year and adult female deaths, 1973-95.
- 5. Annual unduplicated female grizzly bears with cubs-of-the-year by prioritized method of observation, 1986-95.
- 6. Unmarked grizzly bears observed during observation flights, 1973-95.
- 7. Grizzly bear mortalities recorded during 1995.
- 8. Known and probable grizzly bear deaths, 1973-95.
- 9. Seasonal grizzly bear scat contents during 1995.
- 10. Mean annual whitebark pine cone production on study transects, 1980-95.
- 11. Seasonal frequencies of 49 feeding activities at 41 sites during 1995.
- 12. Annual range sizes (km<sup>2</sup>) of grizzly bears located ≥12 times and during all 3 seasons of 1995.
- 13. Seasonal rates of movement for radio-marked grizzly bears during 1993, 1994, and 1995.

## **LIST OF FIGURES**

- 1. Location of initial observations of 17 unduplicated females with cubs-of-the-year within Bear Management Units inside the Recovery Zone during 1995.
- 2. Percent volume of food items in scats collected 1977-87.
- 3. Locations of whitebark pine cone transects within the study area.
- 4. Whitebark pine cone production on study area transects during 1995.

#### **INTRODUCTION**

The Interagency Grizzly Bear Study Team (IGBST) was initiated in 1973 and is a cooperative effort of the National Biological Service, National Park Service, Forest Service, and since 1974 the States of Idaho, Montana, and Wyoming. The IGBST conducts research that provides information needed by various agencies for immediate and long-term management of grizzly bears (*Ursus arctos horribilis*) inhabiting the Yellowstone area. With increasing demands on most resources in the area, current quantitative data on grizzly bears are required for formulation of management decisions that will insure survival of the population. IGBST annual reports are intended to facilitate the timely transfer of research results and perspectives to management of the population.

Objectives of the study are to determine the status and trend of the grizzly bear population, the use of habitats and food items by the bears, and the effects of land management practices on the bear population. Earlier research on grizzlies within Yellowstone National Park provided data for the period 1959-67 (Craighead et al. 1974). However, changes in management operations by the National Park Service since 1967 - mainly the closing of open pit garbage dumps - have markedly changed some food habits (Mattson et al. 1991), population parameters (Knight and Eberhardt 1985), and growth patterns (Blanchard 1987).

Distribution of grizzly bears within the study area (Basile 1982, Blanchard et al. 1992), movement patterns (Blanchard and Knight 1991), food habits (Mattson et al. 1991), habitat use (Knight et al. 1984), and population dynamics (Knight and Eberhardt 1985, Eberhardt et al. 1994) have been largely determined and are now being studied on a monitoring and updating level. Efforts are being concentrated on developing a GIS-based Cumulative Effects Model and assessing the effects of land use practices.

Movement data conclusively indicate that the existence of semi-autonomous population segments is unlikely and that the determination of population size will be difficult due to the average home range sizes of individual bears (cf. Blanchard and Knight 1991). Population trend indices appear to be more meaningful and measurable than a number estimate (Eberhardt et al. 1986). Research is ongoing in the attempt to document a sensitive and reliable trend index.

**Data analyses and summaries presented in this report supersede all previously published data.** Study methods are reported by Blanchard (1985) and Mattson et al. (1991). The study area has been described in detail by Blanchard and Knight (1991) and Mattson et al. (1991).

#### **RESULTS AND DISCUSSION**

#### **Monitoring/Population Trend**

#### Marked Animals

Thirty-nine individual grizzly bears were captured and marked during 1995 (Table 1), including 19 females (12 adult) and 20 males (12 adult). Twenty-three of the 39 had not been marked previously. Twenty-six captures were a result of research efforts and the bears were released on-site. Twenty-eight captures resulted from management actions involving conflicts on private land (14), campground-trailhead conflicts (2), livestock depredation (2), and conflict in a development (10); and 22 were transported to release sites within the Yellowstone ecosystem.

A total of 71 grizzly bears were monitored for varying intervals during 1995, including 28 adult females. A maximum of 23 adult females were monitored consecutively during October and 21 were wearing active transmitters at denning.

Since 1975, 262 grizzly bears have been radio-marked (Table 3).

#### **Unduplicated Females**

One method of monitoring population trend is recording the number of unduplicated females with cubs-of-the-year (COY) each year. A summary of procedures used to determine whether or not observations are duplicates were reported by and Knight et al. (1995).

Seventeen unduplicated females with 37 COY were observed in 9 Bear Management Units (BMUs) within the Recovery Zone during 1995 (Fig. 1). The current running 6-year average (1990-95) for the entire study area is 21 females per year with an average litter size of 2.19 cubs (Table 4). This 6-year average has steadily increased from 12 females per year with 1.85 cubs per litter during the period of 1973-78.

|              |     | 2   | 1                       | 8                                                                                         |                                                   |                |
|--------------|-----|-----|-------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|
| Bear         | Sex | Age | Date                    | Location <sup>a</sup>                                                                     | Release site <sup>a</sup>                         | Trapper        |
| 243          | М   | 4   | 05/24                   | Mormon Cr, SNF                                                                            | on site                                           | IGBST          |
| 244          | М   | 9   | 05/25                   | Mormon Cr, SNF                                                                            | on site                                           | IGBST          |
| G55<br>(257) | М   | 2   | 05/24<br>09/14          | SE of Cody, WY (private, mgt)<br>Gardiner, MT (private, mgt)                              | Blacktail, YNP<br>Eldridge Cr, GNF                | WY<br>MT       |
| G56<br>(259) | М   | 2   | 05/24<br>09/23<br>10/05 | SE of Cody, WY (private, mgt)<br>Gardiner, MT (private, mgt)<br>Wapiti, WY (private, mgt) | Blacktail, YNP<br>Sunlight Cr, SNF<br>mgt removal | WY<br>MT<br>WY |
| 245          | М   | 4   | 06/07                   | Gas Cr, SNF                                                                               | on site                                           | IGBST          |
| 246          | F   | 7   | 06/10                   | Kitty Cr, SNF                                                                             | on site                                           | IGBST          |
| 188          | F   | 7   | 06/11                   | Trail Cr, SNF                                                                             | on site                                           | IGBST          |
| 240          | F   | SAd | 06/29<br>09/07          | Grant, YNP (mgt)<br>Gardiner, MT (mgt)                                                    | Bacon Rind, YNP<br>to zoo                         | YNP<br>MT      |
| 151          | М   | Ad  | 06/30                   | Beam Gulch, SNF                                                                           | on site                                           | IGBST          |
| 215          | М   | Ad  | 07/10                   | Flat Mountain Arm, YNP                                                                    | on site                                           | IGBST          |
| 179          | F   | 6   | 07/15                   | Spread Cr, BTNF                                                                           | on site                                           | WY             |
| G57          | F   | 4   | 07/16                   | N Fork Shoshone, SNF (mgt)                                                                | to zoo                                            | WY             |
| 247          | F   | 6   | 07/22                   | Baldy Mountain, BTNF                                                                      | on site                                           | WY             |
| 248          | F   | 2   | 07/22<br>08/30          | Game Cr, BTNF<br>Game Cr, BTNF                                                            | on site<br>on site                                | WY<br>WY       |
| 249          | F   | 7   | 07/23<br>08/31          | S Fk Shoshone, WY (private, mgt)<br>S Fk Shoshone, WY (private, mgt)                      | Grassy Lake Rd, JDRMP<br>Hominy Peak, TNF         | WY<br>WY       |
| 191          | М   | 18  | 08/01<br>08/22          | Taylor's Fork, MT (private, mgt)<br>Black Butte, MT (private, mgt)                        | Eldridge Cr, GNF<br>mgt removal                   | MT<br>MT       |
| 211          | М   | 5   | 08/05<br>10/11          | Grebe Lake Road, YNP<br>Norris, YNP                                                       | on site<br>on site                                | IGBST<br>IGBST |
| 203          | М   | Ad  | 08/03                   | N Fork Spread Cr, BTNF                                                                    | on site                                           | WY             |
| 250          | М   | 5   | 08/07                   | Grebe Lake Road, YNP                                                                      | on site                                           | IGBST          |
| 251          | М   | 7   | 08/16                   | Split Rock Cr, BTNF                                                                       | on site                                           | WY             |
| 174          | М   | 9   | 08/23<br>08/27          | E Squaw Basin, BTNF<br>E Squaw Basin, BTNF                                                | on site<br>on site                                | WY<br>WY       |
| 252          | М   | 6   | 08/04                   | Game Cr, BTNF                                                                             | on site                                           | WY             |
| 253          | М   | 4   | 08/27                   | Squaw Basin, BTNF                                                                         | on site                                           | WY             |

Table 1. Grizzly bears captured during 1995.

Table 1. Continued.

| Bear | Sex | Age | Date           | Location <sup>a</sup>                                             | Release site <sup>a</sup>    | Trapper  |
|------|-----|-----|----------------|-------------------------------------------------------------------|------------------------------|----------|
| 254  | F   | 6   | 09/02          | Beaver Cr, GNF (mgt)                                              | E Fk Crooked Cr, YNP         | MT       |
| 189  | F   | 14  | 09/07          | Frozen Lake Cr, SNF (mgt)                                         | Blacktail, YNP               | WY       |
| 163  | F   | 11  | 09/08<br>09/19 | Mormon Cr, SNF (mgt)<br>Covered Wagon, MT (private, mgt)          | Bacon Rind Cr, YNP<br>to zoo | WY<br>MT |
| 255  | F   | cub | 09/08<br>09/19 | Mormon Cr, SNF (mgt)<br>Covered Wagon, MT (private, mgt)          | Bacon Rind Cr, YNP<br>to zoo | WY<br>MT |
| 256  | М   | cub | 09/08<br>09/19 | Mormon Cr, SNF (mgt)<br>Covered Wagon, MT (private, mgt)          | Bacon Rind Cr, YNP to zoo    | WY<br>MT |
| 258  | F   | 8   | 09/16          | Boulder River, GNF (nontarget mgt)                                | Trapper Cr, GNF              | MT       |
| 209  | М   | 8   | 09/08          | Elk Ranch, GTNP                                                   | Lamar, YNP                   | WY       |
| 260  | М   | 4   | 09/25          | Antelope Cr, YNP                                                  | on site                      | IGBST    |
| 106  | F   | 19  | 09/23          | N Fork Shoshone, SNF (mgt)                                        | Grassy Lake, TNF             | WY       |
| 261  | F   | Ad  | 09/20          | N Fork Shoshone, SNF (mgt)                                        | Parque Cr, SNF               | WY       |
| 262  | М   | 2   | 09/22          | N Fork Shoshone, SNF (mgt)                                        | Grassy Lake, JDRMP           | WY       |
| 263  | М   | 7   | 09/29          | Brown Cr, Wood R, WY (private, mgt)                               | Swan Lake Flat, YNP          | WY       |
| 125  | F   | 12  | 10/13          | Antelope Cr, YNP                                                  | on site                      | IGBST    |
| 264  | F   | 4   | 10/14          | Indian Cr, YNP                                                    | on site                      | IGBST    |
| 265  | F   | 7   | 10/16          | Dore residence, MT (private, mgt)                                 | Natural Bridge Rd, YNP       | MT       |
| 79   | F   | 21  | 10/14          | Dore residence, MT (private, mgt)                                 | Otter Cr, YNP                | MT       |
| 241  | F   | 1   | 10/15          | N Fork Shoshone, SNF                                              | Black Butte, MT              | WY       |
|      |     |     |                | Research 5 4 13                                                   |                              |          |
|      |     |     |                | New bears: 23<br>Total individual bears: 39<br>Total captures: 56 |                              |          |

<sup>a</sup> BTNF = Bridger-Teton National Forest, GNF = Gallatin National Forest, GTNP = Grand Teton National Park, JDRMP = John D. Rockefeller, Jr. Memorial Parkway, SNF = Shoshone National Forest, YNP = Yellowstone National Park, (mgt = management action).

|      | Number    | Individual bears | Total car  | otures   |            |
|------|-----------|------------------|------------|----------|------------|
| Year | monitored | captured         | Management | Research | Transports |
| 1995 | 71        | 39               | 28         | 26       | 22         |
| 1994 | 60        | 43               | 31         | 23       | 28         |
| 1993 | 43        | 21               | 8          | 13       | 6          |
| 1992 | 41        | 16               | 1          | 15       | 0          |
| 1991 | 42        | 27               | 3          | 28       | 4          |
| 1990 | 35        | 15               | 13         | 4        | 9          |
| 1989 | 40        | 15               | 3          | 14       | 3          |
| 1988 | 46        | 36               | 21         | 23       | 15         |
| 1987 | 30        | 21               | 10         | 15       | 8          |
| 1986 | 29        | 36               | 31         | 19       | 19         |
| 1985 | 21        | 4                | 5          | 0        | 2          |
| 1984 | 35        | 33               | 22         | 20       | 16         |
| 1983 | 26        | 14               | 18         | 0        | 13         |
| 1982 | 46        | 30               | 25         | 27       | 17         |
| 1981 | 43        | 36               | 35         | 30       | 31         |
| 1980 | 34        | 28               | 0          | 32       | 0          |

Table 2. Grizzly bears monitored, captured, and transported, 1980-95.

|                  |              |             |                      |         | Suspected    | dead                  |
|------------------|--------------|-------------|----------------------|---------|--------------|-----------------------|
|                  |              | Kno         | wn dead              |         |              | Natural or            |
|                  | Huma         | n-caused    | Natural              | Unknown | Human-caused | unknown               |
| 3                | (7)          | 90 (2)      | 1 (28 <sup>a</sup> ) | 77 (9)  | 7 (5)        | $13 (25^{a})$         |
| 4                | (5)          | 93 (2)      | $12 (25^{a})$        | 108 (4) | 11 (7)       | $16 (27^{a})$         |
| 5                | (14)         | 94 (1)      | 56 (1)               |         | 24 (2)       | $19 (25^{a})$         |
| 6                | (8)          | 95 (11)     | 65 (3)               |         | 32 (4)       | $36 (25^{a})$         |
| 8                | (17)         | 97 (16)     | 145 (2)              |         | 75 (1)       | 51 (26 <sup>a</sup> ) |
| 9                | (17)         | 105 (Ad)    | 161 (20)             |         | 102 (2)      | 54 (1)                |
| 10               | (12)         | 110 (5)     | 187 (5)              |         | 147 (10)     | 55 (1)                |
| 14               | (12)         | 113 (2)     | 180 (5)              |         |              | $68  (25^{a})$        |
| 15               | (12)         | 120 (3)     | 200 (11)             |         |              | 84 (31 <sup>a</sup> ) |
| 17               | (2)          | 121 (6)     |                      |         |              | 86 (25 <sup>a</sup> ) |
| 18               | (3)          | 122 (3)     |                      |         |              | 109 (7)               |
| 20               | (14)         | 127 (1)     |                      |         |              |                       |
| 22               | (9)          | 134 (8)     |                      |         |              |                       |
| 25               | (5)          | 150 (5)     |                      |         |              |                       |
| 26               | (22)         | 154 (4)     |                      |         |              |                       |
| 27               | (2)          | 158 (7)     |                      |         |              |                       |
| 28               | (16)         | 160 (5)     |                      |         |              |                       |
| 29               | (1)          | 163 (11)    |                      |         |              |                       |
| 30               | (2)          | 176 (5)     |                      |         |              |                       |
| 31               | (cub)        | 177 (12)    |                      |         |              |                       |
| 34               | (22)         | 181 (18)    |                      |         |              |                       |
| 38               | (13)         | 183 (4)     |                      |         |              |                       |
| 39               | (3)          | 186 (4)     |                      |         |              |                       |
| 45               | (6)          | 191 (18)    |                      |         |              |                       |
| 46               | (5)          | 198 (Ad)    |                      |         |              |                       |
| 47               | (2)          | 202 (4)     |                      |         |              |                       |
| 49               | (3)          | 223 (2)     |                      |         |              |                       |
| 58               | (2)          | 226 (12)    |                      |         |              |                       |
| 59               | (8)          | 230 (SAd)   |                      |         |              |                       |
| 60               | (6)          | 231 (2)     |                      |         |              |                       |
| 62               | (3)          | 235 (4)     |                      |         |              |                       |
| 63               | (4)          | 236 (14)    |                      |         |              |                       |
| 67               | (4)          | 240 (SAd)   |                      |         |              |                       |
| 69               | (3)          | 244 (9)     |                      |         |              |                       |
| 76               | (6)          | 250 (5)     |                      |         |              |                       |
| 81               | (4)          | 255 (cub)   |                      |         |              |                       |
| 83               | (19)         | 256 (cub)   |                      |         |              |                       |
| 87               | (15)         | 257 (SAd)   |                      |         |              |                       |
| 88               | (7)          | 259 (SAd)   |                      |         |              |                       |
|                  |              | . *         |                      |         |              |                       |
|                  |              | Total       | 9 Total              | 2 Total | 7 Total      | 11 Total              |
| <sup>a</sup> Sus | spected died | of old age. |                      |         |              |                       |

Table 3. Status of radio-marked grizzly bears, December 1995. (Age when died or age in 1995).

<sup>a</sup> Suspected died of old age
<sup>b</sup> Known alive in 1991.
<sup>c</sup> Known alive in 1992.
<sup>d</sup> Known alive in 1993.
<sup>e</sup> Known alive in 1994.
<sup>f</sup> Known alive in 1995.

|                    | Off air                                                           |                                                                 | Active                                                  |  |  |  |
|--------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| 2 (24)             | 115 (19)                                                          | 172 (8)                                                         | 79 (21) 261 (Ad)                                        |  |  |  |
| 21 (22)            | 116 (21)                                                          | $173^{b}$ (Ad)                                                  | 106 (19) 262 (2)                                        |  |  |  |
| 23 (19)            | $117^{b}$ (12)                                                    | $175^{b}$ (Ad)                                                  | 124 (15) 263 (Ad)                                       |  |  |  |
| 33 (20)            | 118 (12)                                                          | $178^{b}$ (9)                                                   | 125 (12) 264 (Ad)                                       |  |  |  |
| 35 (20)            | 119 (14)                                                          | $181^{b}$ (6)                                                   | 136 (12) 265 (7)                                        |  |  |  |
| 37 (17)            | 123 (11)                                                          | 184 <sup>d</sup> (14)                                           | 151 (15)                                                |  |  |  |
| 40 (20)            | 126 (23)                                                          | $185^{\rm c}$ (9)                                               | 166 (12)                                                |  |  |  |
| 41 (17)            | 128 <sup>f</sup> (10)                                             | 190 (10)                                                        | 174 (9)                                                 |  |  |  |
| 42 (24)            | 129 (14)                                                          | 192 (8)                                                         | 179 (6)                                                 |  |  |  |
| 43 (18)            | 130 (13)                                                          | 193 (9)                                                         | 182 (6)                                                 |  |  |  |
| 44 (unk)           | 131 (14)                                                          | 194 (19)                                                        | 188 (7)                                                 |  |  |  |
| 48 (17)            | 132 (12)                                                          | $195^{\circ}$ (8)                                               | 189 (14)                                                |  |  |  |
| 50 (21)            | 133 (14)                                                          | $196^{e}$ (10)                                                  | 201 (5)                                                 |  |  |  |
| 57 (24)            | 135 (14)                                                          | $197^{d}$ (11)                                                  | 203 (Ad)                                                |  |  |  |
| 61 (19)            | 137 (15)                                                          | $199^{e}$ (6)                                                   | 207 (14)                                                |  |  |  |
| 64 (17)            | 138 (17)                                                          | $204^{e}$ (5)                                                   | 209 (8)                                                 |  |  |  |
| 70 (17)            | 139 (16)                                                          | $205^{f}$ (11)                                                  | 210 (12)                                                |  |  |  |
| 71 (17)            | $140^{\rm f}$ (16)                                                | $206^{f}$ (21)                                                  | 211 (5)                                                 |  |  |  |
| 72 (18)            | $141^{b}$ (9)                                                     | $208^{f}$ (8)                                                   | 214 (3)                                                 |  |  |  |
| 73 (16)            | $142^{\circ}$ (14)                                                | $212^{f}$ (4)<br>$212^{e}$ (2)                                  | 215 (Ad)                                                |  |  |  |
| 74 (14)            | 143 (16)                                                          | $213^{e}$ (3)<br>$216^{e}$ (9)                                  | $\begin{array}{ccc} 221 & (3) \\ 222 & (3) \end{array}$ |  |  |  |
| 78 (16)            | $ \begin{array}{rrrr} 144 & (9) \\ 146 & (15) \end{array} $       | c (                                                             |                                                         |  |  |  |
| 80 (15)<br>82 (19) | $\begin{array}{ccc} 146 & (15) \\ 148^{\rm f} & (12) \end{array}$ | C · · ·                                                         |                                                         |  |  |  |
| 82 (19)<br>85 (19) | 148 (12)<br>149 (Ad)                                              | $\begin{array}{ccc} 218^{r} & (6) \\ 219^{e} & (5) \end{array}$ |                                                         |  |  |  |
| 83 (19)<br>89 (14) | 149 (Ad)<br>$152^{d}$ (22)                                        | $219^{\circ}$ (3)<br>$220^{\circ}$ (12)                         | 233 (2)<br>237 (12)                                     |  |  |  |
| 91 (14)            | 152 (22)<br>153 (15)                                              | $224^{\rm f}$ (7)                                               | 241 (1)                                                 |  |  |  |
| 92 (14)            | $155^{d}$ (9)                                                     | $225^{\circ}$ (2)                                               | 241 (1)<br>242 (14)                                     |  |  |  |
| 96 (unk)           | 156 (13)                                                          | $223^{\circ}$ (2)<br>$228^{\circ}$ (5)                          | 242 (11)<br>243 (4)                                     |  |  |  |
| 98 (unk)           | 150 (15)<br>157 (Ad)                                              | $229^{\rm f}$ (12)                                              | 246 (7)                                                 |  |  |  |
| 99 (14)            | 159 (Ad)                                                          | $234^{\rm f}$ (10)                                              | 247 (6)                                                 |  |  |  |
| 100 (12)           | 162 (21)                                                          | $238^{f}$ (2)                                                   | 248 (2)                                                 |  |  |  |
| $101^{\rm f}$ (12) | $164^{b}$ (11)                                                    | $239^{\rm f}$ (Ad)                                              | 249 (Ad)                                                |  |  |  |
| 103 (21)           | $165^{b}$ (17)                                                    | $245^{\rm f}$ (4)                                               | 251 (7)                                                 |  |  |  |
| $104^{\rm f}$ (13) | 167 (20)                                                          |                                                                 | 252 (6)                                                 |  |  |  |
| 107 (16)           | $168^{d}$ (9)                                                     |                                                                 | 253 (4)                                                 |  |  |  |
| 111 (12)           | $169^{\circ}$ (9)                                                 |                                                                 | 254 (6)                                                 |  |  |  |
| $112^{f}$ (22)     | 170 (14)                                                          |                                                                 | 258 (8)                                                 |  |  |  |
| 114 (13)           | 171 (14)                                                          |                                                                 | 260 (Àd)                                                |  |  |  |
|                    | 112 Total                                                         |                                                                 | 44 Total                                                |  |  |  |

| Year  | Females | Cubs            | Mean litter size | Adult female deaths (known and probable) |
|-------|---------|-----------------|------------------|------------------------------------------|
| 1973  | 14      | 26              | 1.86             | 4                                        |
| 1974  | 15      | 26              | 1.73             | 4                                        |
| 1975  | 4       | 6               | 1.50             | 1                                        |
| 1976  | 16      | 30              | 1.88             | 1                                        |
| 1977  | 13      | 25              | 1.92             | 6                                        |
| 1978  | 9       | 18              | 2.00             | 1                                        |
| 1979  | 13      | 29              | 2.23             | 2                                        |
| 1980  | 12      | 23              | 1.92             | 1                                        |
| 1981  | 13      | 24              | 1.85             | 5                                        |
| 1982  | 11      | 20              | 1.82             | 4                                        |
| 1983  | 13      | 22              | 1.69             | 2                                        |
| 1984  | 17      | 30              | 1.76             | 2                                        |
| 1985  | 9       | 16              | 1.78             | 2                                        |
| 1986  | 25      | 48              | 1.92             | 2                                        |
| 1987  | 13      | 29              | 2.23             | 2                                        |
| 1988  | 19      | 40              | 2.11             | 2                                        |
| 1989  | 16      | 30              | 1.88             | 0                                        |
| 1990  | 24      | 57              | 2.38             | 4                                        |
| 1991  | 24      | 43 <sup>a</sup> | 1.87             | 0                                        |
| 1992  | 23      | 56              | 2.43             | 0                                        |
| 1993  | 20      | 41              | 2.05             | 3                                        |
| 1994  | 20      | 47              | 2.35             | 3                                        |
| 1995  | 17      | 37              | 2.18             | 3                                        |
| Total | 360     | 723             |                  | 54                                       |
| Mean  | 15.65   | 31.43           | 2.01             | 2.35                                     |

Table 4. Annual unduplicated female grizzly bears with cubs-of-the-year and adult female deaths, 1973-95.

<sup>a</sup> Number of cubs for 23 females; litter size for 1 female unknown.

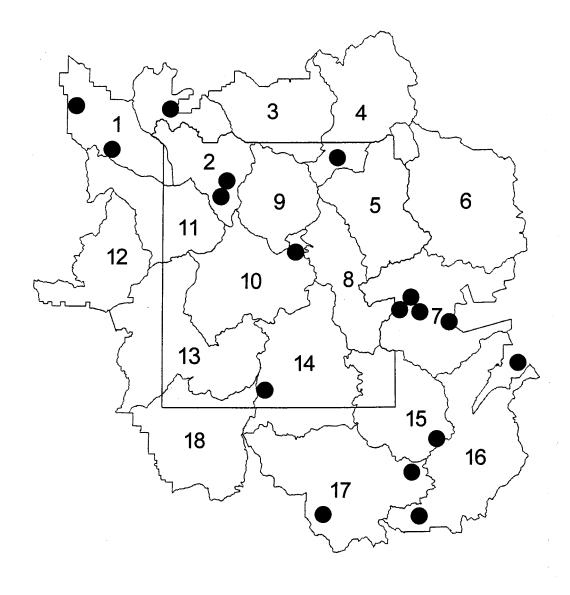



Fig. 1. Locations of initial observations of 17 unduplicated females with cubs-of-the-year within Bear Management Units inside the Recovery Zone during 1995.

#### **Observation** Flights

During 1995, 12% of the unduplicated females with COY were seen on IGBST observation flights (Table 5). Observation flights accounted for an average 40% of the unduplicated observations during 1986-95 when methodology was similar; 11% were recorded incidentally on observation flights made by other researchers over the study area, 35% from ground sightings, and 14% from IGBST trapping efforts and radio-tracking flights only.

|      |       | Observation flights |           | Radio        |       |
|------|-------|---------------------|-----------|--------------|-------|
| Year | IGBST | Other               | sightings | flights/trap | Total |
| 1986 | 9     | 2                   | 10        | 4            | 25    |
| 1987 | 5     | 1                   | 4         | 3            | 13    |
| 1988 | 7     | 1                   | 7         | 4            | 19    |
| 1989 | 7     | 2                   | 5         | 2            | 16    |
| 1990 | 8     | 0                   | 12        | 4            | 24    |
| 1991 | 17    | 2                   | 2         | 3            | 24    |
| 1992 | 10    | 4                   | 6         | 3            | 23    |
| 1993 | 3     | 4                   | 10        | 3            | 20    |
| 1994 | 12    | 4                   | 2         | 2            | 20    |
| 1995 | 2     | 2                   | 12        | 1            | 17    |

Table 5. Annual unduplicated female grizzly bears with the cubs-of-the-year by prioritized method of observation, 1986-95.

The 18 BMUs were flown at least once between 14 June and 13 September for an average 2.17 hours each. Grizzly bear observation rate was 1.07 bears/hour on 30 observation flights (Table 6) compared to 0.18 unmarked bears/hour on 75 radio-tracking flights. Females with COY were seen an average of 0.077/hour on observation flights and 0.005/hour on radio-tracking flights. Radio-marked bears were seen 4% of the time on radio-tracking flights (0.16 bears/hour).

| Year | Number<br>flights | Number<br>hours | Total bears | Bears/hour | Unduplicated<br>females with<br>COY/hour |
|------|-------------------|-----------------|-------------|------------|------------------------------------------|
| 1973 | 24                | 75.90           | 59          | 0.78       | 0.03                                     |
| 1974 | 47                | 146.30          | 128         | 0.87       | 0.06                                     |
| 1975 | 24                | 47.20           | 20          | 0.42       | 0.02                                     |
| 1976 | 5                 | 18.50           | 30          | 1.62       | 0.05                                     |
| 1977 | 0                 |                 |             |            |                                          |
| 1978 | 0                 |                 |             |            |                                          |
| 1979 | 7                 | 23.00           | 14          | 0.61       | 0.13                                     |
| 1980 | 6                 | 22.30           | 27          | 1.21       | 0.18                                     |
| 1981 | 4                 | 16.00           | 13          | 0.81       | 0.25                                     |
| 1982 | 6                 | 23.70           | 23          | 0.97       | 0.13                                     |
| 1983 | 41                | 124.30          | 36          | 0.29       | 0.03                                     |
| 1984 | 11                | 29.00           | 27          | 0.93       | 0.24                                     |
| 1985 | 16                | 30.50           | 21          | 0.69       | 0.07                                     |
| 1986 | 24                | 52.00           | 29          | 0.56       | 0.17                                     |
| 1987 | 20                | 47.20           | 35          | 0.74       | 0.11                                     |
| 1988 | 17                | 33.87           | 62          | 0.66       | 0.21                                     |
| 1989 | 37                | 88.71           | 87          | 0.98       | 0.08                                     |
| 1990 | 39                | 86.01           | 81          | 0.94       | 0.09                                     |
| 1991 | 46                | 99.24           | 257         | 2.59       | 0.17                                     |
| 1992 | 31                | 68.73           | 204         | 2.97       | 0.15                                     |
| 1993 | 29                | 58.42           | 43          | 0.74       | 0.05                                     |
| 1994 | 32                | 64.46           | 112         | 1.75       | 0.19                                     |
| 1995 | 30                | 65.20           | 70          | 1.07       | 0.08                                     |

Table 6. Unmarked grizzly bears observed during observation flights, 1973-95.

#### **Mortalities**

Eighteen known mortalities were recorded during 1995 (Table 7). Seventeen were humancaused and the cause of 1 was unknown, although suspected to be an illegal mortality due to the characteristics of the site where the carcass was located. The carcass was 50 yards from an established trail in a meadow, an unlikely site for a natural mortality.

| Bear | Sex | Age | Date  | Туре     | Location <sup>a</sup>           | Cause                                                  |
|------|-----|-----|-------|----------|---------------------------------|--------------------------------------------------------|
| 244  | М   | 9   | 06/01 | Known    | Sam Berry Meadows, SNF          | Human-caused, collar found cut off                     |
| G57  | F   | 4   | 07/16 | Known    | N Fork Shoshone, SNF            | Human-caused, mgt removal to zoo                       |
| 250  | М   | 5   | 08/15 | Known    | Hayden Valley, YNP              | Human-caused, electrocuted by power line               |
| unm  | М   | Ad  | 08/19 | Known    | Hayden Valley, YNP              | Human-caused, electrocuted by power line               |
| unm  | М   | SAd | 08/10 | Known    | Hayden Valley, YNP              | Human-caused, electrocuted by power line               |
| 191  | М   | 18  | 08/22 | Known    | Black Butte Ranch, MT (private) | Human-caused, mgt removal                              |
| 240  | F   | SAd | 09/07 | Known    | Gardiner, MT                    | Human-caused, 3rd mgt capture, to zoo                  |
| 87   | М   | 15  | 09/16 | Known    | Sage Cr, GNF                    | Human-caused, moose hunter                             |
| 257  | М   | 2   | 09/17 | Known    | Lightening Cr, GNF              | Human-caused, shot                                     |
| 163  | F   | 11  | 09/19 | Known    | Covered Wagon Ranch, MT         | Human-caused, 3rd mgt capture, to zoo                  |
| 255  | F   | cub | 09/19 | Known    | Covered Wagon Ranch, MT         | Human-caused, to zoo                                   |
| 256  | М   | cub | 09/19 | Known    | Covered Wagon Ranch, MT         | Human-caused, to zoo                                   |
| unm  | F   | Ad  | 09/19 | Known    | head Slough Cr, GNF             | Human-caused, self-defense by elk hunter, had yearling |
| unm  | F   | SAd | 09/21 | Known    | Rodent Cr, BTNF                 | Human-caused, self defense by hunter                   |
| 259  | М   | SAd | 10/05 | Known    | Wapiti, WY                      | Human-caused, 3rd mgt captured, mgt removal            |
| unm  | М   | 3   | 10/12 | Known    | Table Mountain, SNF             | Human-caused, shot by hunter, in camp                  |
| unm  | F   | Ad  | 10/17 | Known    | Bliss Cr Meadows, SNF           | Human-caused, shot by hunter, had 2 COY                |
| unm  | unk | Ad  | 10/01 | Known    | Houlihan Cr, SNF                | Unknown                                                |
|      |     |     |       |          |                                 |                                                        |
| unm  | ?   | 1   | July  | Possible | Open Creek/Trident, SNF         | Unknown, report of carcass, female and yearling nearby |

Table 7. Grizzly bear mortalities recorded during 1995.

<sup>a</sup> BTNF = Bridger-Teton National Forest, GNF = Gallatin National Forest, SNF = Shoshone National Forest, YNP = Yellowstone National Park.

Grizzly bear mortalities from 1973-95 are depicted in Table 8. These deaths include known and probable mortalities as defined by Craighead et al. (1988).

|                                      | All bears    | 5                  | All adult fem | ales  |
|--------------------------------------|--------------|--------------------|---------------|-------|
| Year                                 | Human-caused | Other <sup>a</sup> | Human-caused  | Other |
| 1973                                 | 14           | 3                  | 4             | 0     |
| 1974                                 | 15           | 1                  | 4             | 0     |
| 1975                                 | 3            | 0                  | 1             | 0     |
| 1976                                 | 6            | 1                  | 1             | 0     |
| 1977                                 | 16           | 1                  | 6             | 0     |
| 1978                                 | 7            | 0                  | 1             | 0     |
| 1979                                 | 8            | 0                  | 1             | 0     |
| 1980                                 | 6            | 4                  | 1             | 0     |
| 1981                                 | 10           | 3                  | 3             | 2     |
| 1982                                 | 14           | 3                  | 4             | 0     |
| 1983                                 | 6            | 1                  | 2             | 0     |
| 1984                                 | 9            | 2                  | 2             | 0     |
| 1985                                 | 6            | 7                  | 2             | 0     |
| 1986                                 | 9            | 2                  | 2             | 0     |
| 1987                                 | 3            | 0                  | 2             | 0     |
| 1988                                 | 5            | 8                  | 0             | 2     |
| 1989                                 | 2            | 1                  | 0             | 0     |
| 1990                                 | 9            | 0                  | 4             | 0     |
| 1991                                 | 0            | 0                  | 0             | 0     |
| 1992                                 | 4            | 4                  | 0             | 0     |
| 1993                                 | 3            | 2                  | 2             | 1     |
| 1994                                 | 10           | 1                  | 3             | 0     |
| 1995<br><sup>a</sup> Includes dooths | 17           | 1                  | 4             | 0     |

Table 8. Known and probable grizzly bear deaths, 1973-95

<sup>a</sup> Includes deaths from natural and unknown causes.

#### **Population Trend**

The following is an excerpt from "How Many Grizzlies in Yellowstone?" by L. L. Eberhardt and R. R. Knight. 1996. Journal of Wildlife Management 60(2):416-421.

When faced with uncertainty about a species, the first question administrators and the public ask is "How many are there?" This appears to be an entirely reasonable inquiry, but is usually the wrong question. The crucial questions are "Is the population increasing or decreasing?" and "Which parameters are responsible for the observed trend?"

Trend data indicate that the Yellowstone grizzly bear population has been increasing in recent years, after a decline induced by closure of open garbage dumps in 1970-71. The initial results of our study indicated a slow rate of decrease through 1980, roughly 2% per year (Knight and Eberhardt 1985). Current analyses (Eberhardt et al. 1994, Knight and Blanchard 1995, Knight et al. 1995) show a positive annual rate of change (roughly 2 to 5%). The turning point appeared to occur in the mid-1980s, when the policy of preventing adult female mortalities whenever feasible began to be widely observed. This policy has not been without costs in time, human resources, and public relations to the agencies, and has required continued cooperation and extra efforts.

A population estimate with 90% confidence limits of 280-610 bears was made using Peterson estimates and bootstrapping techniques.

Although the grizzly population may be increasing, so has human use of its range, with continuing potential for human-bear conflicts. Relaxation of concerns about population size and trend probably will lead to an increase in bear mortalities, because it is much easier to destroy a bear than to manage sources of bear-human conflicts.

Because bear-human conflict situations continue to increase, and often result in death of bears (Blanchard and Knight 1995), we believe alternate use of some bears is worthwhile.

#### **Food Habits**

#### Scat Analysis

Food habits represented by fecal analysis often do not accurately reflect relative proportions of ingested items because different diet items are digested at varying rates and to different degrees. More easily digested items such as meat and berries are underrepresented in fecal analysis while vegetal items are over-represented. A more complete understanding of food habits should involve analysis of feeding activities recorded at sites where bears were located visually and by radio-telemetry. Scats were primarily composed of graminoid and forb foliage during all 3 seasons (Table 9). Volume of these food items was greater than the 1977-87 average (Fig. 2). Dandelions (*Taraxacum*) and clover (*Trifolium*) were the predominant forbs consumed.

|                                                                                                              | Spring                                          | <u>(<i>n</i> = 50)</u>                         | <u>Summer</u>                                    | <u>(n = 54)</u>                                  | Fall ( <i>n</i>                  | = 7)                             |                                                  | <u>n = 116)</u>                                 |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------------|
|                                                                                                              | % freq.                                         | % vol.                                         | % freq.                                          | % vol.                                           | % freq.                          | % vol.                           | % freq.                                          | % vol.                                          |
| Whitebark pine seeds                                                                                         | 4.00                                            | 1.70                                           |                                                  |                                                  |                                  |                                  | 1.72                                             | 0.73                                            |
| Berries<br>Shepherdia canadensis<br>Vaccinium                                                                |                                                 |                                                | 1.85<br>3.70                                     | 0.04<br>1.36                                     |                                  |                                  | 0.86<br>3.45                                     | 0.02<br>2.25                                    |
| Sporophytes<br><i>Equisetum</i><br>mushrooms                                                                 | 2.00                                            | 0.50                                           | 11.11<br>1.85                                    | 3.80<br>0.09                                     | 28.57                            | 18.57                            | 6.03<br>2.59                                     | 1.98<br>1.16                                    |
| Foliage<br>Graminoids<br>Forbs<br><i>Cirsium</i><br><i>Epilobium</i><br><i>Taraxacum</i><br><i>Trifolium</i> | 86.00<br>32.00<br>2.00<br>8.00<br>18.00<br>8.00 | 70.04<br>18.00<br>0.30<br>5.50<br>8.80<br>3.40 | 74.07<br>79.63<br>9.26<br>7.41<br>37.04<br>33.33 | 35.94<br>45.83<br>7.89<br>4.26<br>15.56<br>15.31 | 57.14<br>71.43<br>14.29<br>28.57 | 25.00<br>56.43<br>10.71<br>17.14 | 77.39<br>56.89<br>6.90<br>6.90<br>25.86<br>20.69 | 50.16<br>33.36<br>4.84<br>4.35<br>11.51<br>9.63 |
| Roots<br>Lomatium<br>Melica                                                                                  | 2.00<br>2.00                                    | 2.00<br>2.00                                   | 5.56                                             | 5.37                                             |                                  |                                  | 2.59                                             | 2.50                                            |
| Mammals<br>Elk<br>Bison                                                                                      | 20.00<br>8.00<br>8.00                           | 5.74<br>0.64<br>4.70                           | 16.67<br>5.56<br>9.26                            | 5.35<br>2.17<br>3.06                             |                                  |                                  | 16.38<br>6.03<br>7.76                            | 4.97<br>1.28<br>3.45                            |
| Insects<br>Ants                                                                                              | 4.00<br>2.00                                    | 0.12<br>0.02                                   | 14.81<br>9.26                                    | 0.67<br>0.20                                     |                                  |                                  | 9.48<br>6.03                                     | 0.38<br>0.12                                    |
| Debris                                                                                                       | 16.00                                           | 1.90                                           | 11.11                                            | 1.48                                             |                                  |                                  | 12.93                                            | 1.59                                            |

#### Table 9. Seasonal grizzly bear scat contents during 1995.

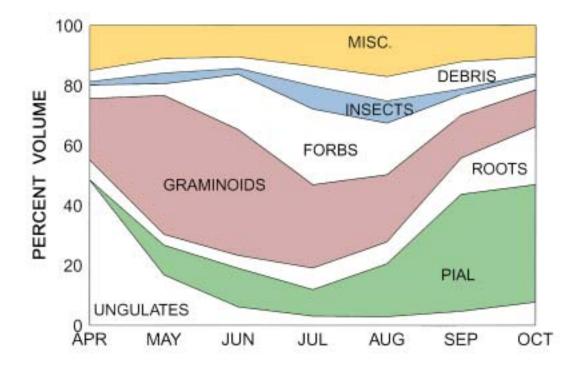



Fig. 2. Percent volume of food items in scats collected 1977-87.

#### Whitebark Pine Cone Production

Grizzly bears generally consume the seeds of whitebark pine (*Pinus albicaulis*) to the near exclusion of other food items when available in sufficient quantities. These seeds are largely unavailable to bears until cone production approaches 20 cones/tree (Blanchard 1990). Widespread use by bears generally occurs when production exceeds 22 cones/tree (Mattson et al. 1992). Cone production during 1995 averaged <2 cones/tree for the 19 transects in the Yellowstone ecosystem (Table 10, Fig. 3). Only 1 transect in the southeast corner of the study area produced >20 cones/tree (Figure 4). Five transects in the southeast quarter produced an average 9 cones/tree compared to <1 cone/tree for the rest of the area.

| Year | Total<br>cones | Total<br>trees | Total<br>transects | Mean<br>cones<br>per<br>tree | Mean<br>cones<br>per<br>transect | <u>Cones</u><br>SD | /transee<br>Min | Mean<br>Julian date<br>read each<br>year |     |
|------|----------------|----------------|--------------------|------------------------------|----------------------------------|--------------------|-----------------|------------------------------------------|-----|
| 1980 | 2,312          | 90             | 9                  | 25.69                        | 256.89                           | 122.99             | 139             | 562                                      | 212 |
| 1981 | 1,191          | 90             | 9                  | 13.23                        | 132.33                           | 148.69             | 8               | 489                                      | 204 |
| 1982 | 1,443          | 85             | 9                  | 16.98                        | 160.33                           | 154.18             | 0               | 463                                      | 229 |
| 1983 | 1,531          | 88             | 9                  | 17.40                        | 170.11                           | 88.78              | 78              | 372                                      | 211 |
| 1984 | 360            | 56             | 6                  | 6.43                         | 60.00                            | 41.41              | 14              | 124                                      | 220 |
| 1985 | 2,312          | 85             | 9                  | 27.20                        | 256.89                           | 192.27             | 17              | 625                                      | 214 |
| 1986 | 103            | 75             | 8                  | 1.37                         | 12.88                            | 13.18              | 0               | 38                                       | 207 |
| 1987 | 394            | 155            | 16                 | 2.54                         | 24.63                            | 37.49              | 0               | 118                                      | 217 |
| 1988 | 406            | 169            | 17                 | 2.40                         | 23.88                            | 44.32              | 0               | 148                                      | 208 |
| 1989 | 10,199         | 209            | 21                 | 48.80                        | 485.67                           | 384.27             | 7               | 1,473                                    | 206 |
| 1990 | 319            | 207            | 21                 | 1.54                         | 15.19                            | 51.52              | 0               | 243                                      | 212 |
| 1991 | 2,744          | 177            | 18                 | 15.50                        | 152.44                           | 107.99             | 7               | 366                                      | 215 |
| 1992 | 2,876          | 187            | 19                 | 15.38                        | 151.37                           | 81.67              | 19              | 294                                      | 209 |
| 1993 | 1,926          | 189            | 19                 | 10.19                        | 101.37                           | 114.97             | 0               | 456                                      | 217 |
| 1994 | 361            | 178            | 19                 | 2.03                         | 19.00                            | 54.25              | 0               | 244                                      | 207 |
| 1995 | 514            | 188            | 19                 | 2.73                         | 27.05                            | 61.41              | 0               | 277                                      | 215 |

Table 10. Mean annual whitebark pine cone production on study transects, 1980-95.

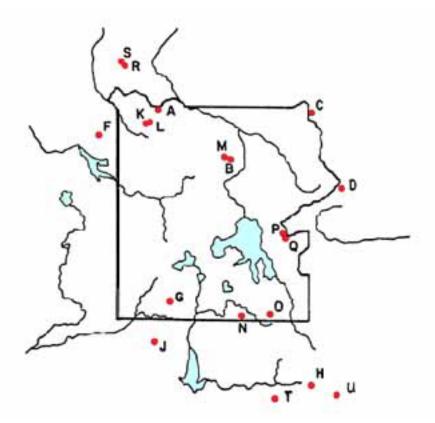



Fig. 3. Locations of whitebark pine cone transects within the study area.

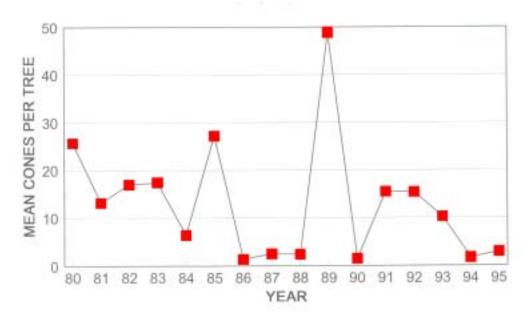



Fig. 4. Whitebark pine cone production on study area transects during 1995.

Low cone production can be attributed to a late killing frost during the spring of 1993 (Diana Tombeck, personal communication). Terminal reproductive organs were killed, affecting cone production for 3 years. We would hope to see better production in 1996.

During years of low whitebark pine seed availability, grizzly bears often seek alternate foods in association with human activities and the number of management actions and mortalities both increase during fall. During August-November, grizzly bears were captured 38 times, 23 of which resulted in transport of the bears away from conflict situations at lower elevations.

#### Feed Sites

Ground investigations at 62 aerial locations of radio-marked and unmarked grizzly bears from May-October revealed evidence of feeding activity at 19% of the sites. Evidence of activity other than feeding was recorded at an additional 14 sites, and no sign of bear activity was evident at the remaining 36 sites.

Grizzly bear activity was recorded at an additional 40 sites not associated with an aerial location of bear (29 with feeding activity and 11 with other sign recorded). Activities are summarized in Table 11 for those 41 sites with evidence of feeding.

| Feeding activity       | Spring <sup>a</sup><br>(n = 29) | Summer <sup>b</sup> $(n = 18)$ | Fall <sup>c</sup> $(n = 2)$ | Total $(n = 49)$ |
|------------------------|---------------------------------|--------------------------------|-----------------------------|------------------|
| Whitebark pine seeds   | 0.04                            | 0                              | 0                           | 0.02             |
| Grazing                | 0.24                            | 0.11                           | 0                           | 0.18             |
| Digging roots          | 0.04                            | 0.61                           | 0                           | 0.25             |
| Digging rodents/caches | 0.28                            | 0.17                           | 0                           | 0.23             |
| Large mammals          | 0.35                            | 0                              | 0                           | 0.20             |
| Searching for insects  | 0.07                            | 0.06                           | 0.50                        | 0.08             |
| Mushrooms              | 0                               | 0.06                           | 0.50                        | 0.04             |

Table 11. Seasonal frequencies of 49 activities at 41 feeding sites during 1995.

<sup>a</sup> Spring = May-June.

<sup>b</sup> Summer = July-August.

<sup>c</sup> Fall = September-October.

Predation on ungulates (elk and bison) was the most frequently recorded spring feeding activity. Digging for pocket gophers (*Thomomys talpoides*) and their root caches and grazing were also common feeding activities in spring. During summer, digging for biscuitroot (*Lomatium cous*) and yampa (*Perideridia gairdneri*) were the most frequently observed feeding activity. Sample sizes were too small during fall to determine feeding activities, although bears probably engaged in a variety of activities in the absence of whitebark pine seeds. When conditions were similar in the fall of 1994, grizzly bears dug for roots and pocket gophers, and searched for ants and mushrooms. Some also looked for alternate foods in association with human activity.

#### MOVEMENTS AND FEEDING STRATEGIES

Annual range sizes and seasonal rates of movement were not significantly different from the cohort means recorded 1975-87 (Tables 12 and 13), although extreme variation among individuals was apparent. Spring and summer rates of movement were generally lower than the 13-year mean due to average to above average availability of native foods. When native foods are abundant, bears are not forced to range widely in search of alternate foods. Winter-killed and weakened ungulates were abundant during spring because an ice crust formed in February prevented many ungulates from digging through to forage (Gunther et al. 1996). Elk calves were abundant during late spring and early summer. Average to above average precipitation during spring and summer resulted in abundant succulent vegetation and root crops. However, during fall virtually no whitebark pine seeds and few cutworm moths were available. These 2 high-fat content foods are preferred late summer and fall foods when available. Alternate food sources primarily included succulent foliage, roots, mushrooms, and foods associated with human activity. Grizzly bear-human conflicts (144), confrontations (49), and management actions (23) occurred within the Yellowstone Ecosystem in 1995 resulting in the transport of 18 and removal of 7 nuisance grizzlies (Gunther et al. 1996).

|                | Number of |                  | cohor | 75-87<br>t_mean |
|----------------|-----------|------------------|-------|-----------------|
| Cohort         | locations | MCP <sup>a</sup> | MCP   | (SD)            |
| Females        |           |                  |       |                 |
| With yearlings | 19        | 181              | 338   | (244)           |
|                | 19        | 132              |       |                 |
| Lone adults    | 14        | 215              | 236   | (114)           |
|                | 20        | 64               |       |                 |
|                | 13        | 173              |       |                 |
|                | 35        | 413              |       |                 |
|                | 22        | 126              |       |                 |
|                | 16        | 1,880            |       |                 |
| Subadults      | 15        | 81               | 365   | (191)           |
|                | 24        | 579              |       | × ,             |
|                | 25        | 168              |       |                 |
| Males          |           |                  |       |                 |
| Subadults      | 14        | 399              | 698   | (598)           |
|                | 22        | 765              |       |                 |
|                | 21        | 263              |       |                 |
|                | 10        | 1,937            |       |                 |
| Adults         | 19        | 2,534            | 874   | (630)           |
|                | 18        | 2421             |       | ~ /             |
|                | 12        | 332              |       |                 |

Table 12. Annual range sizes  $(km^2)$  of grizzly bears located  $\geq 12$  times and during all 3 seasons of 1995.

<sup>a</sup> Minimum Convex Polygon.

|        |                        | Mean km/day/animal |      |      |         |         |  |
|--------|------------------------|--------------------|------|------|---------|---------|--|
|        |                        |                    |      |      | 1975-87 |         |  |
| Season | Cohort                 | 1993               | 1994 | 1995 | mean    | (SD)    |  |
| Spring | Adult females with COY | 1.6                | 0.4  | 0.4  | 0.7     | (0.3)   |  |
| 1 0    | Females with yearling  | 0.6                | 1.8  | 0.4  | 1.1     | (0.7)   |  |
|        | Lone adult females     | 1.1                | 0.8  | 0.6  | 1.0     | (0.6)   |  |
|        | Subadult females       |                    | 0.9  | 0.8  |         | · · · · |  |
|        | Subadult males         | 1.0                | 0.8  | 0.4  | 1.1     | (0.6)   |  |
|        | Adult males            | 0.2                | 0.9  | 0.6  | 1.3     | (0.8)   |  |
| Summer | Adult females with COY | 1.3                | 0.6  | 0.5  | 1.3     | (1.0)   |  |
|        | Females with yearling  | 0.9                | 1.7  | 0.9  | 1.7     | (0.9)   |  |
|        | Lone adult females     | 0.5                | 1.1  | 0.9  | 1.3     | (0.7)   |  |
|        | Subadult females       |                    | 1.2  | 0.5  |         |         |  |
|        | Subadult males         | 0.9                | 0.9  | 0.7  | 1.1     | (0.9)   |  |
|        | Adult males            | 0.5                | 1.6  | 1.3  | 1.9     | (1.1)   |  |
| Fall   | Adult females with COY | 0.9                | 0.6  |      | 1.2     | (1.0)   |  |
|        | Females with yearling  | 0.7                | 1.4  | 1.0  | 1.6     | (0.9)   |  |
|        | Lone adult females     | 0.7                | 1.0  | 0.7  | 1.0     | (0.7)   |  |
|        | Subadult females       |                    | 0.7  | 0.5  |         |         |  |
|        | Subadult males         | 0.8                | 0.9  | 1.1  | 1.1     | (0.8)   |  |
|        | Adult males            | 0.4                | 1.3  | 1.7  | 1.4     | (0.8)   |  |

Table 13. Seasonal rates of movement for radio-marked grizzly bears during 1993, 1994, and 1995.

#### LITERATURE CITED

- Basile, J. 1982. Grizzly bear distribution in the Yellowstone area, 1973-79. U.S. Forest Service Research Note INT-321. 11pp.
- Blanchard, B. 1985. Field techniques used in the study of grizzly bears. National Park Service, Interagency Grizzly Bear Study Team report. 24pp.
- Blanchard, B. 1987. Size and growth patterns of the Yellowstone grizzly bear. International Conference on Bear Research and Management 7:99-108.
- Blanchard, B. 1990. Relationships between whitebark pine cone production and fall grizzly bear movements. Page 362 *in* W.C. Schmidt and K.J. McDonald, compilers. Proceedings symposium on whitebark pine ecosystems: ecology and management of a high-mountain resource. U.S. Forest Service General Technical Report INT-270.
- Blanchard, B., and R. Knight. 1991. Movements of Yellowstone grizzly bears. Biological Conservation 58:41-67.
- Blanchard, B.M., and R.R. Knight. 1995. Biological consequences of relocating grizzly bears in the Yellowstone ecosystem. Journal of Wildlife Management 59:560-565.
- Blanchard, B., R. Knight, and D. Mattson. 1992. Distribution of Yellowstone grizzly bears during the 1980s. American Midland Naturalist 128:332-338.
- Craighead, J.J., J. Varney, and F. Craighead. 1974. A population analysis of the Yellowstone grizzly bears. Montana Forest and Conservation Experiment Station Bulletin 40. University of Montana, Missoula. 20pp.
- Craighead, J.J., K.R. Greer, R.R. Knight, and H.I. Pac. 1988. Grizzly bear mortalities in the Yellowstone ecosystem, 1959-87. Report of the Montana Department of Fish, Wildlife and Parks; Craighead Wildlife-Wildlands Institute; Interagency Grizzly Bear Study Team; and National Fish and Wildlife Foundation. 104pp.
- Eberhardt, L.L., B.M. Blanchard, and R.R. Knight. 1994. Population trend of the Yellowstone grizzly bear as estimated from reproductive and survival rates. Canadian Journal of Zoology 72:360-363.
- Eberhardt, L.L., R.R. Knight, and B.M. Blanchard. 1986. Monitoring grizzly bear population trends. Journal of Wildlife Management 50:613-618.

- Gunther, K.A., M. Bruscino, S. Cain, T. Chu, K. Frey, and R.R. Knight. 1996. Grizzly bear-human conflicts, confrontations, and management actions in the Yellowstone Ecosystem, 1995. Compiled by Yellowstone National Park for the Interagency Grizzly Bear Committee. 39pp.
- Knight, R.R., and B.M. Blanchard. 1995. Yellowstone grizzly bear investigations: annual report of the Interagency Study Team, 1994. U.S. Department of the Interior, National Biological Service, Bozeman, Montana.
- Knight, R.R., B.M. Blanchard, and L.L. Eberhardt. 1995. Appraising status of the Yellowstone grizzly bear population by counting females with cubs-of-the-year. Wildlife Society Bulletin 23:245-248.
- Knight, R.R., and L.L. Eberhardt. 1985. Population dynamics of Yellowstone grizzly bears. Ecology 66:323-334.
- Knight, R.R., D.J. Mattson, and B.M. Blanchard. 1984. Movements and habitat use of the Yellowstone grizzly bear. National Park Service, Interagency Grizzly Bear Study Team report. 177pp.
- Mattson, D.J., B.M. Blanchard, and R.R. Knight. 1991. Food habits of Yellowstone grizzly bears, 1977-1987. Canadian Journal of Zoology 69:1619-1629.
- Mattson, D.J., B. M.Blanchard, and R.R. Knight. 1992. Yellowstone grizzly bear mortality, human-habituation, and whitebark pine seed crops. Journal of Wildlife Management 56:432-442.

## Appendix A

|                                                                                                                                                              | Spring <sup>a</sup><br>(n = 64) |            | Summer <sup>b</sup> $(n = 119)$ |        | Fall <sup>c</sup> $(n = 32)$ |        | Total $(n = 220)$        |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|---------------------------------|--------|------------------------------|--------|--------------------------|-------|
|                                                                                                                                                              | % Freq.                         | % Vol.     | % Freq.                         | % Vol. | % Freq.                      | % Vol. | $\frac{(n-2)}{\%}$ Freq. | % Vol |
| Whitebark pine seeds                                                                                                                                         |                                 |            |                                 |        | 3.13                         | 1.72   | 0.45                     | 0.25  |
| Berries                                                                                                                                                      |                                 |            |                                 |        |                              |        |                          |       |
| Vaccinium                                                                                                                                                    | 3.12                            | 1.32       |                                 |        | 3.13                         | 3.13   | 1.36                     | 0.84  |
| others <sup>d</sup>                                                                                                                                          | 1.56                            | 0.02       | 0.84                            | 0.01   | 3.13                         | 1.88   | 0.91                     | 0.28  |
| Sporophytes                                                                                                                                                  |                                 |            |                                 |        |                              |        |                          |       |
| Equisetum                                                                                                                                                    | 9.38                            | 4.86       | 6.72                            | 2.48   | 3.13                         | 1.41   | 7.27                     | 3.30  |
| mushrooms                                                                                                                                                    | 4.69                            | 1.16       | 10.92                           | 6.55   | 43.75                        | 31.72  | 13.64                    | 8.49  |
| Foliage                                                                                                                                                      |                                 |            |                                 |        |                              |        |                          |       |
| Graminoids                                                                                                                                                   | 68.75                           | 34.25      | 52.10                           | 8.99   | 31.25                        | 7.34   | 54.55                    | 16.71 |
| Forbs                                                                                                                                                        | 68.76                           | 40.00      | 73.11                           | 63.71  | 37.50                        | 29.85  | 68.64                    | 53.07 |
| Agoseris                                                                                                                                                     | 3.13                            | 1.41       | 4.20                            | 2.06   | 3.13                         | 2.50   | 4.09                     | 1.94  |
| Cirsium                                                                                                                                                      | 6.25                            | 2.89       | 5.88                            | 2.10   | 12.50                        | 5.47   | 6.81                     | 2.75  |
| Epilobium                                                                                                                                                    | 3.13                            | 1.55       | 0.84                            | 0.17   |                              |        | 1.36                     | 0.54  |
| Fragaria                                                                                                                                                     | 1.56                            | 0.08       | 2.52                            | 1.69   |                              |        | 1.82                     | 0.94  |
| Lomatium                                                                                                                                                     |                                 |            | 1.68                            | 1.25   |                              |        | 0.90                     | 0.68  |
| Taraxacum                                                                                                                                                    | 32.81                           | 21.86      | 28.57                           | 15.37  | 15.63                        | 6.56   | 27.27                    | 15.3  |
| Trifolium                                                                                                                                                    | 45.31                           | 12.22      | 57.98                           | 41.87  | 15.63                        | 15.31  | 48.18                    | 28.97 |
| Roots                                                                                                                                                        |                                 |            |                                 |        |                              |        |                          |       |
| Lomatium                                                                                                                                                     | 1.56                            | 1.33       | 4.20                            | 2.99   | 3.13                         | 2.34   | 3.18                     | 2.34  |
| Perideridia                                                                                                                                                  |                                 |            | 1.68                            | 0.88   |                              |        | 0.90                     | 0.48  |
| Potamogeton                                                                                                                                                  | 1.56                            | 1.09       |                                 |        |                              |        | 0.45                     | 0.32  |
| Mammals                                                                                                                                                      | 28.13                           | 10.22      | 16.81                           | 8.50   | 21.88                        | 14.06  | 20.45                    | 9.62  |
| Bison                                                                                                                                                        | 14.06                           | 5.02       | 10.08                           | 5.46   | 9.38                         | 4.22   | 10.91                    | 5.03  |
| Elk                                                                                                                                                          | 7.81                            | 2.98       | 1.68                            | 0.64   |                              |        | 3.18                     | 1.21  |
| Moose                                                                                                                                                        |                                 |            | 0.84                            | 0.80   |                              |        | 0.45                     | 0.43  |
| Small mammals                                                                                                                                                | 4.69                            | 0.94       | 3.36                            | 1.60   | 9.38                         | 0.81   | 4.54                     | 1.25  |
| Insects                                                                                                                                                      |                                 |            | 6.72                            | 2.35   |                              |        | 5.45                     | 1.71  |
| Ants                                                                                                                                                         | 3.13                            | 1.41       | 5.88                            | 2.18   | 3.13                         | 0.16   | 4.55                     | 1.61  |
| Grouse                                                                                                                                                       | 1.56                            | 0.16       |                                 |        |                              |        | 0.45                     | 0.05  |
| Cambium                                                                                                                                                      |                                 |            |                                 |        |                              |        | 0.45                     | 0.05  |
| Debris                                                                                                                                                       | 29.69                           | 5.89       | 24.37                           | 2.91   | 56.25                        | 6.41   | 29.10                    | 3.78  |
| <sup>a</sup> March, April, May, ar<br><sup>b</sup> July and August.<br><sup>c</sup> September and Octobe<br><sup>d</sup> <i>Rosa</i> spp., <i>Shepherdic</i> | er.                             | s, Berberi | s repens.                       |        |                              |        |                          |       |

## Appendix A. Seasonal scat contents, 1994.