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THE BRUNS TRANSFORMATION AND A DUAL SETUP OF GEODETIC
OBSERVATIONAL EQUATIONS

Erik W. Grafarend1
National Geodetic Survey
National Ocean Survey, NOAA
Rockville, Md. 20852

ABSTRACT. The Bruns formula, which equates the disturbing
gravity potential modulo the length of the normal gravity
vector to the height anomaly, is generalized into three
dimensions and into horizontal, equatorial, and inertial
reference frames. It is applied to formulate the space-like
geodetic boundary value problem in geometry and gravity
space. The Bruns transform allows a dual setup of geodetic
observational equations in a network of mass points, the
finite element approximation of the space-like geodetic
boundary value problem, in the following sense: The obser-
vational equations can be expressed rigorously either as a
function of geometric coordinate corrections alone without
any gravity dependent quantity, or alone as a function of
the gravity disturbing potential and its gradients alomne
without any geometric coordinate correction. For opera-
tional purposes, estimable quantities from reference-free
observables are studied in geometry, gravity, and vorticity
spaces. They correspond to invariants with respect to a
linear similarity transformation typified by positional
angles and length ratios in various vector spaces. A
Cartesian series representation of the gravity potential and
its gradients is given--the Cartesian coordinate system is
known to be singularity-free--and is used for a unified
Cartesian setup of observational equations.

1Prepared during a 3-month period in 1978 when the author served as a
Senior Scientist in Geodesy, National Research Council, National Academy of
of Sciences, Washington, D.C., while on leave from the University FAF at
Munich, Federal Republic of Germany.



Science should be the friend of practice, but not
its slave.

C.F. Gauss
INTRODUCTION

Geodesy is conventionally divided into two branches: geometric and physical.
This separation has resulted in various geodetic schools, or research groups,
concentrating on one or the other aspect with little intercommunication. We
would like to show that geodesy is actually a unity. The two branches are only
the sides of a single coin. In detail, we will prove that geodetic observa-
tional equations can be uniquely set up in either the geometric or the physical
mode. For instance, a distance observation can be expressed in terms of either
the coordinates of the end points of a line or the gravity disturbing potential
and its gradient at these points. The proof is based on the classic Bruns
formula which expresses the height anomaly in terms of the gravity disturbing
potential modulo the magnitude of the normal gravity vector. The Bruns formula
will be generalized into three dimensions and into various reference frames:
horizontal, equatorial, and inertial.

To make the Bruns formula operational, we have to inject observable quantities.
Therefore, the first section is devoted to geodetic observables. There are two
perspectives from which to look upon geodetic observables. If we do not introduce
an a priori reference system into the vector space of geodesy, only positional
angles and length ratios are observable. They are invariant with respect to a
linear similarity transformation, characterized by degrees of freedom of type
translation, rotation, and scale. Referring to adjustment procedures, positional
angles and length ratios are estimable quantities. This concept is_applied to
both geometric and physical space. For instance, we construct positional angles
and length ratios in gravity space from a network based on gravity vectors. The
geometric quantities are a function of the length of the gravity vector and
astronomical longitude and latitude at three points.

In the second section we will derive the generalized three-dimensional Bruns
equation from observables that are one-point functions. These can be computed
from observations once we have established a reference system for origin,
orientation, and scale in any geodetic vector space. The first step will be a
transformation of one-point observables into Cartesian coordinates of points on
the approximate surface of the Earth, the telluroid. We will use isoparametric
mappings for astronomical longitude and latitude, gravity potential, and first-
and second-order gradients. The mappings are one-to-one if we use the isotropic-
or zero-order approximation of the gravity field. Uniqueness is lost if we use
another order of approximation. The second step 1s formulation of the transform
of disturbances of gravity into Cartesian coordinate corrections.

The third section deals with a dual setup of geodetic observational equations
of one- and three-point type, either in the geometric or in the gravitational
space. They refer to different formulations of the Bruns transformation based
on astronomical longitudes and latitudes and gravity potential (or gravity
or gravity gradient).

The appendices are a Cartesian form of series representing the gravity
potential and its first- and second-order gradients.



The report reflects current research in space-time geodesy, especially with
respect to the geodetic initial-boundary value problem and its finite element
approximation, the setup of geodetic observational equations in networks of
mass points.

Section 1 is influenced by the concept of geodetic invariants introduced by
Baarda (1973) and estimable quantities introduced by Bossler (1973) and
Grafarend and Schaffrin (1974, 1976). The isoparametric mappings of section 2
which led to the formulation of the three dimensional Bruns transform have been
partly studied by Bocchio (1976 a,b,c), Bruns (1876), Hirvonen (1960, 1961),
Krarup (1969, 1973 a,b), Livieratos (1976, 1978), Marussi (1973, 1974 a,b),
Moritz (1965, 1977), Niemeier (1972) and Grafarend (1972, 1975, 1978 a,b,c).
The first setup of geodetic observational equations to be expressed rigorously
in the gravimetric mode was by Sanso (1978 a,b) by making use of his adjoint
potential. Here, we will reverse his argument exactly by employing the inverse
Bruns transformation and expressing the geodetic observational potential
rigorously in the geometric mode.

Geodesists have hesitated to accept the new three-dimensional mapping.
Therefore we would like to make the following comments. For two-dimensional
cartographic mappings the isoparametric mapping is well known, e.g. Chovitz
(1952, 1954, 1956), O'Keefe (1953), Lane (1939, p. 189), Levi-Civita (1926,

p. 220). Let us quote from O'Keefe (1953): "It is evident that the deformations
produced by the isoparametric method are of the same order as those produced
by other methods."

Another comment is on the definition of a geodetic network. Much research in
geodesy has been performed in two-dimensional network analysis. Such networks
are better termed mathematical networks because they do not take the gravity
field into account. Here, a geodetic network consists of mass points; thus
there is gravitational interaction which we cannot switch off.

1. OBSERVABLES

Having decided foundational questions, we next introduce related observations
which make geodesy operational. A majority of geodesists believe that geodesy
is Euclidean geometry referred to linear space with finite dimensions and
Hilbertian geometry referred to linear space with infinite dimensions. What
then are the basic observables?

In Euclidean geodesy position is given by vectors, for instance,
the position vector
the gravity vector
the vorticity vector
moving in space-time. Let us give an illustration of these vectors, as shown
in figure 1 (p.70). Choose an origin of reference, e.g., the geocenter. The
position vector extends from the reference origin to a mass point in space,

e.g., the topocenter. At this point we draw the gravity vector, the rotation

vector, or any other vector of reference. The corresponding vector spaces are
called



the geometry space,
the gravity space, and
the vorticity space.

The set of all position vectors drawn from the reference origin is called the
geometry space. Gravity space is constructed by a translation of the gravity
vector along the position vector to the reference origin under Euclidean
parallelism. In the same way the vorticity space or any other space of refer-
ence vectors is defined. Coordinates v" of a vector v are provided after we
select a frame of reference €,> ©-8., the inertial frame, such that

N N
S0 ° 1 )
= Bn=ov en= Ve tve Tt e TV ey

1(1)
(Notation: vectors in Euclidean space are denoted by capital letters, or
underlined small letters.)
If the base vectors are orthonormal,
p = 6
(e» sj) 1j 1(2)

where 61. is the Kronecker symbol for an element of the unit matrix and (.,.)
is the sign for the scalar product. Coordinates are recovered by

n
(voe) =v. 1(3)

N 2
2
I l!' , =2 (Vn) 1(4)

n=o

(where I | is the norm sign) is the relation of completeness.

It is assumed that in space-time geodesy the number of independent base vectors,
which is identical to the dimension of the vector space,is (3,1).
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In Hilbertian geodesy, position is given by vectors, for instance,
the position potential,
the gravity potential, and
the vorticity potential.
(In Hilbert space, potential is a vector.)

Figure 2 (p. 70) illustrates these vectors. Coordinates vi'" of

a vector ¥ (vectors in Hilbert space carry an overbar) are provided once we have
select a frame of reference, e.g.,

‘/2n+l r_n_l Pn(sin $) for m=0

— ! — — -
éhm = V2(2n+l) —%—_'_Eg—,— r 1 an(sin $) cos mA for m>0 1(5)
- 1 — —
‘/2(2n+l) E?ﬁ': ;, r 7 1 an(sin $) sin mA for m<0

where P, are Legendre and P,  associated Legendre functions of the first kind,
and A, ¢, r spherical coordinates, such that

® +
—_ nm —
V= E E v [~} . 1(6)

n=o m=-n

Here, ¥ is a "harmonic" function satisfying A¥=0, where A is the three-dimen-
sional Laplace operator.

If the base vectors are orthonormal, as in our example,

(eij’ eu) = Sik Gjl 1(7)



e.g., the integral over the unit sphere divided by 4m. Coordinates are
reproduced by

&, 8 ) = v, 1(8)
- hd +n
el =3 3 o™? 1(9)

n=0 m=-n

(where |[V|[2, the square of the norm, is the integral over the unit sphere of
(v,v)/47m) is the relation of completeness.

The earlier question about basic observables can now be answered. Assume a
network, e.g., a triangle, being constructed in a vector space. For the depiction
of any vector by an arrow, as in figure 3 (p. 71), we require an origin, direction, and
a length. To remove these artificial references for translation, rotation, and
scale, we need quantities which are invariant with respect to changes of these
parameters. In other words, we are looking for invariants under a similarity
transformation

v>y' =T+2RY 1(10)

where T is a translation vector, R an orthogonal matrix, and A a scale factor.
It is well known from analytical geometry that length ratios and angles are
dual elements of the basis of invariants under the linear similarity transfor-
mation given above, e.g.,

vy - v,] LD

or

(Vy =¥ vy - v

vy = w01 ey - vyl 1(12)



Finally, we will present three examples for basic observables in the geometry,
gravity, and vorticity spaces.

EXAMPLE 1.1 (geometry space)

Let us introduce a triangle in the geometry space constructed from position
vectors Xy, X, X4 directed from the geocenter to three mass points in space.

At first the network is observed by a theodolite through horizontal direc-
tions and horizon distances (or zenith distances). Related reference frames
are E', E% and F* defined as followsi

The orthonormal observational triad E' is based on the vector E,, directed
from the station point at the topocenter to the target point. The base
vector Epv is the normalized vector of the exterior product of the local,
instantaneous gravity vector -T and Egr. E;+ completes the orthonormal base.
The orthonormal horizontal triad E* is based on the normalized local,
instantaneous gravity vector Eg3y at the topocenter. The base vector Eox is
the normalized vector of the exterior product of the local instantaneous
rotation (vorticity) vector @ and the local instantaneous gravity vector -T.
E4x completes the orthonormal base. The 'carrousel" triad F* is related to
the horizontal triad E* by F* = Rq(Z)E*, where I is the horizontal orientation
unknown such that Fl* is in the zero direction of the horizontal circle of
the theodolite. To summarize, the frames are related as shown in the diagram

R, (1)

E* F*

RE(A,B)
Ry (T,B)

El

where Rp(A,B) = Rz(% - B)R3(A), and A the south azimuth, B the horizon distance,
T the horizontal direction.

Now we can compute the positional angle

(X, - X;, X, - X))
cos ¥ = 2 1 3 1 = <E3}2, E3}3) . 1(13)
sz—xl” HX3-XII|




From the diagram we read

= RE(A,B)E* = RE(A,B)R3T(Z)F* = RE(T,B)F* 1(14)
so that
E3, = cos T cos B Fl* + sin T cos B FZ* + sin B F3* 1(15)
-1
cos ¥_= 1%, = X1 7MIx; - 1]

{(xz*" Xpa) gy = Xp) + (T = Y30 (Y3 = 30

+ (ZZ* - Zl*) (23* - Zl*)

= cos T cos B cos T cos B + sin T cos B sin T

12 12 13 13 12 12 cos B

13 13
1(16)

+ sin B12 sin B13.

Here, the positional angle is represented by horizontal directions and horizon
distances at the three network points and is independent of the origin,
orientation, and scale of the reference systems.

Next, the network is observed by a camera through right ascension and
declination. Related reference frames are E', F', and E° which are defined as
follows:

The orthonormal equatorial triad E° is based on the normalized local instan-
taneous rotation (vorticity) vector Eq. at the topocenter. The base vector E,.
is the normalized vector of the exterior product of the instantaneous ecliptic
normal vector and the local instantaneous rotation (vorticity) vector. E,.
completes the orthonormal base. The 'carrousel" triad F' is related to the
observational triad E' by F' = R3(x)E', where X is the observational orientation
unknown. To summarize, the frames are related as shown in the diagram



P)a(“’d)

E' R3(x) F!

where RE(a,G) = RZC% - 8) R3(a), and o the right ascension, § the declination.

From the diagram we see

F' = Ry(a,8)E" 1Q17)

so that
E;, =cos a cos 8 E,. + sin a cos 8 E,. + sin § E,. 1(18)
cos ¥, = 1%, - x |17 |]x, - x, || 1(19)

{(Xz. - xl.)(x3. - Xl.) + (Y2. - Yl')(Y3f - Yl.)

+ (ZZ. - Zl.)(Z3. - Zl.)

= cos a cos § cos a cos § + sin a cos § sin a cos §

12 12 13 13 12 12 13 13

+ sin 612 sin 613
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(where Sij’ 04 represent differences in §, o between points i and j)

holds because Eq1 = F3+ by definition.

The positional angle above is represented by differences in right ascension
and declination at the three network points and is independent of the origin,
orientation, and scale of the reference systems.

EXAMPLE 1.2 (gravity space)

Let us introduce a triangle in the gravity space constructed from gravity
vectors 'y, Iy, T3,

The network is observed by an astronomic instrument and a gravimeter. Related
reference frames are E*, E°, and F', defined as follows

The frames E* and E° have been introduced in the first example. The 'carrousel"
triad F* is related to the equatorial triad E' by F* = Ry (©..) E°, where O
is the equatorial orientation angle, (also called Greenwich Sidereal time), such
that F. is in the Greenwich direction, the projection of the local instantaneous
gravity vector at Greenwich onto the equatorial plane. The frames are related in
the following manner:

R, (€, )
R (4,9)

E*

where RE(O,é) = Rz(TT - @)R3(O), and A astronomic longitude, ¢ astronomic
latitude, © sideregg time angle.

We can again compute the positional angle

(r,-T,,T,-T,)
cos yo——2 1273717 . 1(20)

1

r - -7 !
Ilrz rlH Hr3 rlll
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From the diagram,

- .. T . .
B = R(8,0)E" = Ry(8,8) Ry(0 ) F' = Ry(A,0)F

1(21)
so that
E3* = cos A cos ¢ Fl. + sin A cos @ FZ. + sin ¢ F3. 1(22)
T =- ‘
HPHE3* 1(23)
-1 -1
cos ¥, = ||r2 - rlll ||r3 -1l 1(24)
[|[F2|| cos A, cos e, - [IFl]l cos A cos @l] [||P3!| cos Ay cos L
- |[P1l| cos A cos él] + [[IFZI! sin A, cos 9, - |lFl|| sin A, cos Ql]
[!|F3l| sin A, cos ¢, - llrl[l sin A, cos 01] + [I[lel sin 9,
- ||r1|| sin ¢.] []|r3[| sin ¢, - ][rlll sin ¢, ]+

Thus, the positional angle is represented by the magnitudes of the gravity
vectors and astronomic longitude and latitude at three network points,and is
independent of the origin, orientation,and scale of the reference systems.

EXAMPLE 1.3 (vorticity space)

Let us introduce a triangle in the rotation space constructed from rotation
(vorticity) vectors 9y, Qz, Q3.

The network is observed with respect to a frame f' uniformly rotating with
rotational speed w. F°, defined in the second example, and f' are related by
F' = RC(Y,B,a) f*, where R, (y,B,a) = Rl(u) Ry (B) R3(Y) are rotation matrices,
and a,B,y Cardan angles (Grfafarend et al., 1979: p. 208).
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The positional angle

(92-91, 93 - Ql)

cos ¥ =

w 1(25
lla, - a,1] [le, - 2,1 (2

can now be computed, taking into account

F3. = (sin ¢ sin vy + cos a sin B cos y) f..
1 1(26)
- (sin o cos v + cos a sin B cos Y) f2'
+ cos a cos 8 f3.
_ -1 -1

cos ¥, = 11,0, |17 [[ay-2, ] 1(28)

{ﬂlﬂz|| (sin a, sin Y, * cos a, sin B, cos YZ)

- ]|Ql]| (sin o, sin Yy + cos a, sin B, cos Yl)]

1 1 1

[l|93|[ (sin o, sin y, + cos a, sin B, cos v,)
- [lo,1] (sin o  siny, + cos a; sin B, cos v,)]
+[||92|| (sin a, cos y, - cos a, sin B, cos Y,)
- HQl][ (sin o) cos y; ~ cos a; sin B, cos y )]

[||Q3|[ (sin oy cos v, - cos a, sin By cos Y,)
- [|Ql]| (sin a; cos y; - cos a; sin B, cos y,)]
+illa,l] cos a, cos B, - |[a;]] cos a; cos 8]

[l]Q3|[ cos a, cos By - Ilﬂlll cos a, cos B]]Q
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is represented as a function of the magnitude of the rotation (vorticity)
vectors and the three Cardan angles at three network points and is independent
of the origin, orientation, and scale of the reference systems.

2. THE BRUNS TRANSFORMATION

Operational geodesy uses observables as input data and coordinates of the
position vector as output data. This input-output relation is called the Bruns
transformation, originally presented in its linear form by Bruns (1878) when
referring to the horizontal frame. The Bruns transformation classically yields
the height anomaly from the disturbing potential divided by normal gravity.
Thus it transforms the 'observable" disturbing potential into the vertical
coordinate called "height," Now, we will present a three-dimensional general-
ization of the Brums transformation which can be used in both terrestrial and
satellite geodesy.

The idea of the Bruns transformation is the following: Let a vector field
V be observed, for instance,at a point P on the Earth's surface. Decompose
the vector field into a normal part,whose structure is known ( which approximates
the real vector field),and into a disturbing part:

P p P 2(1)

The normal part Vp at P can be linearized by a Taylor series with origin at
a point p of the telluroid:

=3V + (grad v P-p) + o
v v, (g )p (P-p

P 2 2(2)

where op indicates second-and higher-order terms. If we know the approximate
position vector P, we can determine the '"displacement vector" P-p from

VP - Vp = (grad vP)p (P—E) + GVP. 2(3)

Figure 4 (p.71) illustrates the vector field in geometric space. Let us call the

two-point functions, Vp - Vp = AV and P-p = Ax, anomalies of the vector field
and the position vector, respectively, so that

A = 3 3
v (grad VP)p Ax + SVP. 2(4)
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We can choose AV = 0 which we refer to as the isoparametric mapping of GGP - Ax
Ax = B8V, 6v = Cbx, 2(5)
where
B=C = - (grad VP); , 2(6)

the Brun's matrix, which is the inverse of the gradient of the vector field at
point p. Here we have assumed that grad vP is a regular matrix excluding rank
deficiencies with respect to injectivity. In practice, singularities appear
and have to be treated separately.

Thus far the Bruns transformation 2(5) of vector field disturbances into
position vector anomalies is coordinate-free. 1Its form with respect to geodetic
reference frames is the following:

Ax® = B'8v 2(7)

Ax* = BXSV 2(8)

2x° = B9s% 2(9)

B* = RE(A,¢)B' 2(10)

B® = Rg(u,v) Rg(egr)B' . 2(11)

Ax* = [Ax+, by-, 8z+]T displays the coordinates of the "displacement vector" in

the Earth-fixed equatorial triad f°, Ax* = [Ax*, Ay*, Az*]T, and the correspond-
ing coordinates in the horizon triad e*, Ax® = [AxC, Ay©, AzC]T in the "fixed"
or inertial (ecliptic) triad e®, where u,v are Eulerian angles,as shown in the
following diagram:
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(€]
. Ry(0g,) .

R (9,4) Ry (Ar9)

e* Aﬂf £>

R, (L)

Instead we could represent the "displacement vector'" in the 'network" frames
(written by capital letters). In the theory of mappings the two frames are called
Eulerian and Lagrangian; thus we have here the Eulerian description.

Before we show examples of the thus far abstract Bruns transformation, we first
note another remarkable property.

In many applications, the vector field of observables is 'conservativey 1i.e.,

div 8¥v = 0, rot 6v = 0 2(12)

at least insofar as we are outside of the masses.

A consequence of the Bruns transfor-
mation 2(5) is then

div Ax = 0, rot Ax = O; 2(13)

thus 6V and Ax can be expressed as the gradient of a scalar potential. If we
introduce
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8Vv = grad dw, 2(14)

Ax = grad §x = B grad &w 2(15)

follows. &x will be called the adjoint potential. In the first instance, it
might be surprising that the "'displacement vector' which leads to the position
vector is a "harmonic" function, div Ax = div grad §x = 0, but the result is
quite "natural."

Another basic assumption we have made is that we know the approximate posi--
tion vector p, but from where? If we have settled a convention about origin,
orientation, and scale of a geodetic network to, for example, the geocenter,
directions to extragalactic objects and a unit length in geometry space, how
can we find the approximate position vector p in a geodetic reference system?
The factor of uncertainty is introduced by the fact that nearly all geodetic
observables depend on the gravity field whose coordinates in Hilbert space
(e.g., coefficients in a spherical harmonic representation of the gravitational
field) are unknown. Fortunately, there are geodetic observables that are
gravity free, like positional angles and distance ratios. Only because of
this can geodesy be made operational: coordinates in Euclidean and Hilbert
spaces can be determined. This general statement will be verified in
example 2.1.

EXAMPLE 2.1 (longitude, latitude, potential)

Let us introduce the isoparametric mapping

Rp = Ay %p =0 Wp = v, 2(16)

where A and ¢ are astronomic longitude and latitude, W the scalar gravity
potential, A and ¢ geodetic longitude and latitude, and w the scalar normal
gravity potential (better known in geodesy by the letter U). Longitude and
latitude are spherical coordinates in gravity space defined by

=
It

arc tan l"y/I‘x 2(17)

>
il

arc tan Yy/yX 2(18)

/ 2 2
¢ = T
arc tan Z/ FX + Fy 2(19)

and
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/2 2
¢ = arc tan v /Yy~ + 2(20)

where (T'y, Ty, T,), (vx» Yy Y,) are Cartesian coordinates of the gravity vector
T, v, respeczively, in the "Eulerian" frame f°'. With respect to a chosen refer-
ence system, (A, ¢, W) are "observable," whereas (), ¢, w) are "computable,"
as in the representation of the potential given in the first section.

A zero-order approximation of the actual gravity potential is
-1
w=-gn |[z]| - 2(21)

where gm is the product of the gravitational constant and the mass of the model

terrestrial body, ||3_c|l =4/72 ] 5, the length of the vector x.
x +y +z

w/ox = gm ||x| [_3 X 2(22)

(and similarly for y and z).

A = arc tan y/x

% = arc tan z/\/x2 + y2

2(23)

2(24)

and

W= gm/Vx2 + y2 + 22 2(25)

are the corresponding zero-order mapping equations. They can be inverted into

= B0
X W cos A cos @ 2(26)

sin A cos ¢ 2(27)

<
"
=3
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= -@ i
z W sin ¢ 2(28)

(excluding, of course, ¢ = + n/2). If we know (A, ¢, W) and (gm) from observed
quantities, Cartesian coordinates of the approximate position vector can be
computed. But how can we call the quantities (A, &, W, gm) observable?

Astronomical longitude and latitude are quantities derived from observations
related to geodetic astronomy. Fundamental catalogs and a variety of reductions
(precession, nutation, polar motion, aberration, parallax, etc.) are involved.
The setup of an observational equation in geodetic astronomy is not routine and
assumes, strictly speaking, approximate a priori information about the position
of an observer in geometry space. From gravimetric leveling we obtain only
potential differences. In order to be able to derive absolute potential, the
reference system should contain sufficient information in its definition. 1In
addition, if we introduce length observations and we extend the isoparametric
mapping to the isometric case in geometry space by

PPy = PPy, 2(29)

for example, by imposing equal length of an observational line between two points
on the Earth's surface and the corresponding points on the telluroid, we will be
able to determine a value for gm. More details will be given in section 3.

The next step is a computation of the Bruns matrix.

A S
v=1¢|, OS¢ =]5¢ 2(30)
W Sw

ax/3x  A/dy ar/8zZ
C' = - |3¢/3x 3¢/3y 3¢/dz 2(3D)
dw/3x 3w/dy dw/oz



R A + X 0
2 2 2.2
X +y X +y
2 2
- Xz 'x +y
‘/ ‘/ 292
(x2+y2+zz) x2+y2 (x +y +z ) X +y Ttz
X gmy _ 81“2
- - 2 2 2 3/2
(xP4y2422)3/2 (x24y2422y3/ (x24y2422y3/
r =
W sin A W cos A
-—_——— + — — 0
gm cos & gm cos ¢
—lcosAsind) —lsinl\sin(b —w—cos<I>
gm gm gm
w2 w2 . 2 .
- 7 cos A cos @ - 5 sin A cos @ 5 sin ¢
(gm) (gm) (gm)
g = ¢t

A% = C RLOL,0)

19
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C*

B*

o _ .0
A" =C RE(egr) RE(u,Y)

where the dot, asterisk, and circle denote equatorial, horizontal, and ecliptic
coordinates, respectively.

A zero-order approximation of the vector Ax* is

A * = 0
* 2(32)

Ayx = 0
Y 2(33)

m
Az* = '57 Sw 2(34)

which corresponds to the original Bruns formula, because within the zero-order
approximation

I|2 gm 2(35)

Finally, figure 5 (p. 71) illustrates the isoparametric mapping in the
curvi-linear gravity and Cartesian geometry space.

EXAMPLE 2.2 (longitude, latitude, gravity)

Let us introduce the isoparametric mapping

p T %S0 TpTYy 2(36)
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where A and ¢ are astronomic longitude and latitude, I' the length of the gravity
vector, » and ¢ geodetic longitude and latitude, and y the length of the normal
gravity vector. We refer also to (A, &, T) as the spherical coordinates cf the
gravity vector. Alternatively, a Cartesian representation of 2(36) is the
vector identity

L=y, 2(37)
or
T = Yx 2(38)
Fy =7y 2(39)
I, =, 2(40)
in an "Eulerian" frame f°. Because
Fx =T cos A cos &
2(41)
' =T sin A cos @
Y 2(42)
I_ =T sin @ 2(43)

the spherical and the Cartesian mappings are equivalent (excluding again
b =+ m/2).

Corresponding to the first example, astroncmical longitude and latitude
are observed by astronomical instruments, and the length of the gravity vector
by gravimeters. In addition, the scale of gravity space has to be included
in the reference system.
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A zero-order approximation of the actual gravity potential is

w=-gn||xl|™

dw/dx = - gm |[§1|_3x =y

and similarly for y and z.

A = arc tan y/x

¢ = arc tan z/ Vx2+y2

-2
I =gn ||zl

are the global mapping equations. They can be inverted into

X = VE%E cos A cos ¢
y=V%n—sinAcos<I>
z = V-%? sin ¢

(excluding ¢ = + 7/2).
see that only the "radial" component has changed from gm W-

A "Cartesian' proof of 2(49), 2(50), 2(51) follows.

global mapping equations

Starting with

2(44)

2(45)

2(46)

2(47)

2(48)

2(49)

2(50)

2(51)

Compare 2(26), 2(27), 2(28) to 2(49), 2(50), 2(51) to
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rX=YX=—gml|zll'3x 2(52)
Ty=Yy="gm||§||-3y 2(53)
and
TZ=YZ='gmH§H_BZ' 2(54)
We write these in the general form:
A =Wx 2(55)
B =?;2+},Tizz)“3/_2y 2(56)
¢ =mz . 2(57)
Insert 2(57) into 2(55) and 2(56) to derive
A=<k 2(58)
B = g y 2(59)
or
x=act 2 2(60)
-1

y=BC ~ 2z . 2(61)
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Writing 2(57) as

PayZ22)32 2 b, 2(62)
leads to
2 -2 2 -2 -
(A"C "+ B°C “ + 1)3/2 z3 = C 1 az 2(63)
(A + B2 + C )3/2 z2 = c—l a 2(64)
2
z° = a ¢ (a% + B2 + ¢)~3/2 2(65)
x =T F‘lz fi]
Xz = V T cos A cos 2(66)
y=T_T -1 z 2m
y z =v T sin A cos ¢ 2(67)
= 2 2 21-
z = () r Ir 3/4 _ o,
x ‘/gm 2 ( < T Fy + Tz ) = %r sin ¢ . 2(68)

A first-order approximation of the actual gravity potential is
-1
v=-gn |x[7 - w? 4 yD 2(69)
where w is the length of the rotation (vorticity) vector.

dw/3x = Y, = (+ gm |l§I|—3 - 2m2) b 2(70)
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- 2
aw/ay +gm |]x||7 - 2% ¥ 2(71)

[}
<
1]

dw/oz + gm |‘§l|_3 z

n
<
[]

. 2(72)

Equations 2(70), 2(71), 2(72) can be written in the general form:

A= +ﬂ X

L( 2er PEARENTH i 2(73)
B = _ +J y

| 2+y — )3/2 2(74)
C=——5 337 - 2(75)

(x"+y +z7)

Insert 2(75) into 2(73) and 2(74) to obtain

A= C% + b)) x 2(76)

+ )y 2(77)

or

b
i

Az (B + bz)_l 2(78)

Bz (C + bz)—l

«
1]

2(79)

which, together with 2(57), is written as
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-2 2 2
(x2 + y2 + 22)3 =C a  z ’

leads to

-2

Al + 8% + ¢+ b2 =2 a? (¢ +b)®

This is an equation of the tenth order, i.e., of the form

Zlo+a29+...+8=0

2(80)

2(81)

2(82)

Equation 2(82) gives a set of solutions for z, then 2(78) for x, and 2(79) for
y. Thus we have inverted 2(38), 2(39), 2(40) in gravity space into equations

in geometry space.
solution space can be easily obtained.

The next setup will be a computation of the Bruns matrix.

Yx 2Yx
_ Y — Y
= , Sv =
vy A 1N
C' = -3y/3x
X - %wlxl[ + 2w2 Xy
¢ =3 gn |lxl[7 xy - 2 Il 2+ 20?
Xz vz

to a first-order approximation.

0f course, the inversion is not single-valued, but the

XZ

2(83)

2(84)

2(85)



Because the gravity vector field to the first order is conservative, div dv = O,
rot v = 0 leads via the Bruns transformation to div Ax = 0, vot Ax = 0. Thus
if 8y is taken from the space of spherical harmonics, so is Ax.

Figure 6 (p. 72) illustrates the isoparametric mapping in the Cartesian gravity
and geometric Space.

EXAMPLE 2.3 (longitude, latitude, gravity gradient)

Let us introduce the isoparametric mapping
.. W, .
P p’ P P’ ij ij 2(86)

where A and ¢ are astronomic longitude and latitude, W;. second-order gradients
of the actual gravity potential (i,j ranging over x,y,zg, A and ¢ geodetic
longitude and latitude, and w;i+ second-order gradients of the normal gravity
potential in the horizontal trlad. Specific gravity gradients W,,, wyz, Wy
and Wy = wyy - Wyx are assumed to be measured by a torsion balance, ofr any %ij
by a Gradiometer.

The first problem is to find a representation of model gravity gradients in

the equatorial triad. Because of the transformation f° -+ e* = Ry (A,9) £°,
the first-order gradient tensor (grad y) can be determined by

. T
(grad y)* = RE(A,¢) (grad y) Rp ONY-J I 2(87)

For instance ,

2

Wkzx T 3 gm |l§ll_5 x" - 22) cos A sin ¢ cos ¢ 2(88)

+ 3 gm Ilg[]_s Xz cos A cos 2¢
+ 3 gm []gl[_s Xy sin A cos ¢

+3 gm ||x]]™ yz sin & sin ¢
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=+ 3 gm ||§||_5 (x2 - zz) sin A sin ¢ cos ¢

Wy*z*
-3 gm [|§||_5 xz sin ¢ cos 2¢
+ 3 gn |[>_<||_5 Xy cos A cos ¢
+ 3 gm |l§[|_5 yz cos A sin ¢
Vxkyk +3 gm ]|§||—5 x> sin A cos A sin2¢

-3 gm l|§|[_5 y2 sin A cos A

+ 3 gm ||§||—5 z” sin A cos A cosz¢

+ 3 gm I[g[l_s Xy cos 2X sin ¢

- 3 gnm ]|§||—5 xz sin 2X sin ¢ cos ¢

- 3 gm I|§[|-5 yz cos 2\ cos ¢ .

If we choose the zero-order approximation of the normal gravity potential

we+gm||x]7
the gravity gradients are given by
CTREEE N IE TR [ SIS e TRTLEN
Examples of 2(92) are
w..=-3gul[g]|7 sz —%yz —%zz:l

-5
wx'y°= - 3 gnm ]|§ll Xy

2(89)

2(90)

2(91)

2(92)

2(93)

2(94)

If we are interested in the zero-order approximation 2(91), the isoparametric

mapping equations 2(86) can be summed up to be
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A = arc tan y/x 2(95)

¢ = arc tan z/ Vx2+y2 2(96)

wij = wij (x, y, z) . 2097)

The general solution can be represented by

x = ||x|] cos A cos @ 2(98)
y = ||x]] sin A cos ¢ 2(99)
z = ||x|| sin @ . 2(100)
Scale is taken from
Wiy o= en |]x]]7? £y5 (1,0) 2(101)

Hzl] = %vfij (4,9) 3’£ﬂl (no summation) 2(102)
ij

where f;; (A,9) is a specific expression, an example of which, for i=x and j=z,
is shown below. Substituting equations 2(98) to 2(100) into 2(88) yields

- . 2 2
LA + 3 gnm ||x[| 3 {(51n ® -~ cos"A cos2¢) cos A sin @ cos ¢ 2(103)

2
+ cos"A sin & cos ® cos 29 + sinzA cos A cos3® + sinzA sin2® cos ¢}

it

gn |1xl17 £ a,0).
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Compare 2(26) — 2(28), 2(49) - 2(51) and 2(98) - 2(103) in order to see that
only the "radial" component has changed in the following way:

£ 2(104)
&% 2(105)

3

/igm_ fij (A,9) (no summation). 2(106)
ij

Thus any coordinate of the Cartesian tensor of gravity gradients is as easily
chosen as another.

In addition to the isoparametric mapping of 2(86), I tried one with only the
gravity gradients mapped isoparametrically, but the mapping equations turned

out extremely nonlinear and I have been unable to invert them.

The next step is the computation of the Bruns matrix.

A Sx
v=1¢ s sv = | 8¢
w Sw. . 2(107)
ij 1]
IA/dx Ir/dy dr/3z
C" = - |3¢/3x 30 /3y 3¢/3z 2(108)

dw, . /3x  dw,./dy dw, [dz]
1] 1] 1]

The first two rows of the matrix C° were computed within 2(31); in addition

Bwij/ax, BWij/By, Bwij/Bz 2(109)

have to be computed. Using 2(92) we arrive at
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aW_ ,/3X = 2(110)
1] -

_ T T
3 gm x| -5 elx §§>_< x+ | |x|]° <<5ij>_(T+§?x eT+gxe.>§

Finally, figure 7 (p. 72) illustrates the isoparametric mapping in the
generalized gravity and geometric space.

Let us summarize what the examples tell us. If we refer to the isotropic
(zero-order) approximation of the normal gravity field

w=-gn ||z

we can represent zero-order coordinates of telluroid points by

X = II§|[ cos A cos ¢

||§|| sin A cos ¢

«
It

N
I

|[x]] sin o

where scale is taken from a quantity referring to the gravity field,like Ilgll,
as given by 2(104), 2(105), 2(106). For a higher order normal gravity field
the (x, y, z) representation is more complicated as can be inferred from 2(78),
2(79) and 2(82). 1In addition, the examples emphasize the nearly arbitrary
choice of the isoparametric mapping p > P. As we will see in the next

chapter, the isoparametric mapping

leads to the Stokes approximation of the geodetic boundary value problem and
its finite element form.
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3. THE DUAL SETUP OF GEODETIC OBSERVATIONAL EQUATIONS

Once we have decided upon the reference system in either the geometry,
gravity, or vorticity space, we are able to set up geodetic observational
equations. In general, these depend on coordinates in these spaces. Let us
assume for a moment we know the approximate coordinates such that we can
linearize observational equations. The quantities "observed minus computed'
Yp - yp can be represented by the gradients with respect to these coordinates,
such as

- = + 8
Yp =y, = (grad, yp), bx + 0y, 3(1)

where 8y is the disturbance vector. There are geodetic observational equations
which depend on coordinates only of the geometry space, but, in general, they
are a function of gravity space coordinates of Hilbert type, e.g., spherical
harmonic coefficients.

To present the idea of dual setup of geodetic observational equations in a
simple way, we will start with a priori parameters which describe the normal

gravity field, e.g., (gm).

If we use the dual Bruns transformation

Ax

B §v
3(2)

3(3)

(=]
<
I
(@}
>
"

which expresses coordinate corrections in the geometry space in terms of
disturbances in the gravity space (with BC = I, det B # 0, det C # 0) to
replace geometric coordinate corrections by gravimetric coordinate disturbances
and vice versa, we arrive at the observational equations

1
|
I
]

g

>
k]

P 1= 3(4)

3(5)

1<
e
}
<
it
>
N
[}
<

These depend either on geometric or on gravimetric unknowns. Thus we have two
alternatives in adjusting a geodetic network, a geometric mode or a gravimetric
mode, as shown by the following examples.
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EXAMPLE 3.1 (geometry space)

As shown in example 1.1, geometric positional angles or length ratios are
independent of a reference system with degrees of freedom for translation,
rotation, and scale. The linearized observational equations read

- -

Axl

Ayl

Azl

AXZ

X X X
I312 = Y312 = B¥31p = [All | Ay, | A13] byy | = Ay bx 3(6)

Az2

Ax3

Ay3
Az3j

where the matrices Ali are functions of the coordinates (xl, Y1s Z1s %95 Yoo
235 X3, Y3 z3) at the points (py, py, p3),and 1212 represents either positional

angles or length ratios. If horizontal directions and horizon distances have
been observed, they are correlated observations, in general. (See formula 1(16).)

The vector Ax of geometric coordinate corrections can now be transformed into
gravimetric coordinate disturbances by the three-dimensional Bruns formula,

e.g., 2(31), 2(84) or 2(108).

(a) Isoparametric mapping of type longitude, latitude, geopotential:

Ax® SA
Ay® = B’ S8 3(7)
Az® Sw

2 2\-1 36w 98w
= ; - = Y. 3(8
" (Yx Yy) ( Yy ox Tk oy ®)
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(Grafarend (1978a): formulas 1(21), 1(22)).

1
6¢l
val

6A2

X X _ x
1312 7 ¥312 T MY3yp < [}11 By | a8y | A, Bé] 86, | =a, 6y . 300

6w2

6K3

6¢3

B

GW3J

Thus, we have found that the observed geometric positional angles or distance
ratios depend now only on the disturbing potential 6w and the coordinates 34w
of its gradients. Equations 3(6) and 3(10) are dual.

If we know scale, distance observations can be approached in the same way.

(b) Isoparametric mapping of type longitude, latitude, gravity:

Ax' SX
Ay’ = B’ 8¢ 3(11)
Az Sy

sx 3(8)
8¢ 3(9)
s = oL 35w . 3dw 36w
Y x 8ox Yy By T Vz %z 3(12)

(Grafarend (1978b): formulas (1.38)),
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or

Ax 6yx
Ay® =B’ 8y 3(13)
Az GYZ
(B* is, of course, a general notation, and not equal to B" in 3(11).)
Gyi = ai Sw . 3(14)
-5YX -
1
§
Yyl
GYZl
GYX
Y. -y =ay.r =|a. B | A, B | A B 62-6 3(15)
I312 7 Y312 T M3 11 P10t A By Ay Byl | Sy f T A 0
Gyzz
ny3
§
Yy3

Thus, we have found that the observed geometric positional angles or distance
ratios depend now only on the coordinates 946w of the gradient of the disturb-
ing potential. If we know scale, distance observations can be approached

in the same way.
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(c) Isoparametric mapping of type longitude, latitude, gravity gradient:
Ax SA

N =3B
Az Sw,

3(16)

§x 3(8)
8¢ 3(9)

S .3, 8
Vi~ %1% %% 3(17)

It
@

o X = X = B A, B,l= 8¢ = A, 8y . 3(18)
T30 " Y312 T a2 [511 B | a8y | A, 3] 2 2 %Y

Thus, we have found that the observed geometric positional angles or distance
ratios depend now only on the coordinates 3;8w and Biajdw of the first- and
second-order gradients of the disturbing potential.

If we know scale, distance observations can be approached in the same way.

EXAMPLE 3.2 (gravity space) .

As we have seen in example 1.2 gravimetric positional angles or length ratios
are independent of a reference system with degrees of freedom for translation,
rotation, and scale. The linearized observational equations read
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Y4 3(19)

r r _
_ _ - A A 5 = A6
312 = ¥312 T P31 [A21 | 4y, | 2%] "y, 2 %L

=<

R

where the matrices A2 are functions of the coordinates (Yxl, Y

i yl’ Yzl, YXZ’

Yo 0o Y

y2© %2
either positional angles or length ratios in gravity space. If astronomical
longitude, latitude, and gravity have been observed, they are correlated
observations, in general. (See formula 1(24).)

s Yx3’ Yy3’ YZB) at the points (yl, Yo Y3) and Y212 represents

The vector 8y of gravimetric coordinate corrections can now be transformed
into geometric coordinate corrections by the inverse of the three-dimensional
Bruns formula, e.g., 2(84).

Sy Ax

3(20)
Sy, Az®

3(21)
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Thus, we have found that the observed gravimetric positional angles or length
ratios depend now only on geometric coordinate corrections. Equations 3(15)
and 3(21) are dual.

The next step is to assume that we know orientation and scale in gravity
space. The linear observational equations for astronomical longitude and
latitude, the length of the gravity vector, and potential differences read

hy - xp = (ax/ax)p AX + (SA/By)p Ay + (ax/az)p Az + A 3(22)
o5 - ¢p = (3¢/8x)p Ax + (3¢/8y)p Ay + (8¢/Bz)p Az + 8¢ 3(23)
I'p - Y, = (ay/az)p Ax + (BY/By)p Ay + (3Y/3z)p Az + S8y 3(24)
1 3(25)

w2 - Wl - (w2 - wl) = ~ (Bw/ax)pl Axl - (awlay)pl Ay - (Bw/az)pl Az1

+ (dw/dz) sz + (Aw/3y) Ay2 + (dw/3z) Az2

P, P, P,
+ 6w2 - 6w1.

(a) Isoparametric mapping of type longitude, latitude, geopotential:

Ax® SA
5] - 2] -
Az® Sw

6 3(8)
8¢ 3(9)
6y 3(12)
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P
p = ¢, = 0% =
WP - wp = Aw =0

28w+p —=—p 3(27)

where

-1/2
—Y /

(Grafarend (1978a): formula 1(23)).
The observational equation for the length of the gravity vector is well known;

it is the boundary condition for the "harmonic' potential Sw. Even better
known is its zero-order approximation based on 2(21)

2 3

T 0wt oo (Bw) = - Ay 3(28)
(Grafarend (1978a): formula 1(26)).

Thus, we have found that the observed length of the gravity vector depends only
on the disturbing potential 6w and the coordinate 38w/3p or 38w/dr of its

gradient vector, where r = Ilzl

The dual formulation is obtained if we make use of the inverse three-dimensional
Bruns transformation

3T . 3(29)

Employing the summation convention over i = x,y,z,
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8y = vle, v, s, sx 3(30)

Ax -1 Ax
r. - =Ay = A |ayl+ C . 9. |a 3(31)
S R v R E R Iy

where the vector of geometric coordinate corrections Ax is a "harmonic"
function as long as we measure in empty space. Again we have found that the
observed length of the gravity vector depends only on the geometry vector Ax
and its gradient. Equations 3(27) (or 3(28)) and 3(31) are dual.

(b) Isoparametric mapping of type longitude, latitude, gravity

Ax® 8A
Ay*| =B" |&¢ 3(32)
Az” Sy

A 3(8)
69 3(9)
Sy 3(12)

p p
@P - ¢p = Ap = 0
FP—YP=AY=0
- = _ p d8w
W, woo=Aw = 8w+ TS 3(33)

where
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_-1/2
=y

(Grafarend (1978b): formula (1.39)).

The observational equation for the potential is well known; it serves
alternatively as the boundary condition for the "harmonic" potential Sw. TFor
the zero-order approximation 2(21) we find

Sw + %—g&-(éw) = Aw . 3(34)

Thus, we have found that the absolute potential depends only on the disturbing
potential 8w and the coordinate 38w/dp or 38w/dr of its gradient vector where

r=|lgl] .

For the dual formulation we mention only that we have to integrate §y in order
to arrive at dw.

(c) Isoparametric mapping of type longitude, latitude, and gravity gradient

Ax® S
Ay. = B (Sq) 3(35)
Az® Sw, .
1]
SA 3(8)
8¢ 3(9)

Gwij 3(17)
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P p
®p = b, =86 =0
w. P o w. P=aw,. =0
ij ij ij
[ 5
W, - w = (grad w) B |&¢ + Sw 3(36)
P P P S
| 1]
A
I'p =Y = (grady)_ B" |68 + 8y . 3@37)
P p Su
[ 11

Thus, we have found that the observed potential and length of the gravity
vector depend only on the disturbing potential and coordinates of its first- and
second-order gradient.

Another set of geodetic observations depends on the gravity field, e.g.,
astronomical azimuth A and horizon distance B. Their observational equations
are structured according to

_ _ 1,1 1,,.1 1,, 1
A12 0 (Balz/ax YaxT + (Balz/ay YAy + (Balz/az YAz
) ) 3(38)
2 2 2 2
+ (BGlZ/BX YAXT + (aalz/ay YAV + (Bulz/az YAzT + Galz
B., - B = (3R /axl)Axl + (3B,.,/9 l)A 1 + (9B,./9 l)A 1
12 12 12 12799 78y 12/°% )02
2 2 2 2 339)
2 2
+ (aelz/ax YAXT + (aslz/ay YAYT + (aslz/az YAzT + 6612

where a, B are zero-order approximations of A, B and Sa. 6B are subject to the
Laplace condition.

[gg] =L [gﬂ 3(40)

Here, we assumed that the base vectors F' and f* are parallel in the
Euclidean sense. Hence, the observational equations will read
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Axl

Ayl

Y BV T P 41
*12 - 12 T M2 T Ay 8¢ : 3(41)
Ax 1

2

Ay2

Az2

The equations can be formulated in the geometric mode if we transform Si, &¢
according to the inverse three-dimensional Bruns formula of types (a), (b) or
(c). 1In all cases we will obtain

112~ T2 = 3(42)

The dual representation is found to be

A =
Yip = 4 Sy

= 3(43)
where
B - — - o -
82y 83y 62y
o "0 n 1 3(44)
6wl 8y, dwij
@ oy =y i sy =la, | @i dy=|s5,
8¢, 8¢, ) )
| *2 | 2 | "5

if we choose different isoparametric mappings.

At this point we introduce the unknowns describing the gravity field of the
Earth, for instance, the mass density virials

Too Tio Lige Tigpe -oe
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given in the appendix. They appear in the form

X -1 X X -3 X, X x|~
To M0y g 1172 1y (172,

i 3(45)

and must fulfill the Laplace differential equation. Because of this condition,
the degree of freedom is 2n+l, where n is the order of approximation in a series
for the gravitational potential, e.g., for n = 2 only 5 coefficients of the six

are independent as a result of tr Iij = 0.

The quantities "observed minus computed" Yp - ¥, are represented by

]

-y, (az/ax)pr + (az/ay)pAy + (azlaz)pAz 3(47)

+ Qy/at) 8T

+
(0y/31)) 81, + (3y/31)) 81, + (y/d1y) 81,

+ @Y/ 81y

+ (32/3122)p 81,,

+ (Sz/allz)p 6112

§I

+ (Bg/3115), 814

+ (32/3I23)p 6I23
+ ... + GZ



By the symbol "p" we understand the origin of the Taylor series, a set of
approximate coordinates of points in the geometry space and of approximate
gravity field parameters. How can these be determined?

To answer this question we present an example.

Let us introduce the isoparametric mapping

Ax =0
Ay =0
bw =0 3(48)
Ay =0
applied to a zero-order approximation
-1
w=-gn ||zl

of the gravity field.

A = arc tan <
X
¢ = arc tan — % ____
x + y2
W= - gm
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are the global mapping equations.

X = l]g]] cos A cos ¢

y = I]z]] sin A cos ¢

z = I]gl] sin &

Isl| = - &= V5
w2

gm=T .

Thus we have derived approximate values for (x, y, z) and gm:

X = cos h cos ¢

==

y = g-sin A cos ¢

z = % sin ¢
W

g T .
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APPENDIX A.—-INVARIANT REPRESENTATION OF |[x -x'[|™

In terms of Hilbert invariants

i=[]xl]

it = []x']]

i = & 3"
=l ] ="

we will set up series for

%
1
1
T
=]
I
'—l
1
=]
'_l
+
.
ol =
1
N
HI"‘_
}-’—
-
S ]g=]

Set

2
o i i’
T R u
1
_m
2 m (mk2) 2
1+ =1 - m
(Ite) L-trzetore

_ m(urt2) (mt4) E3 + m(m+2) (mt4) (mt+6)

3T 8 41 16

0(85)

oo

- Z (—l)n m(mt+2) (m+4), .. (m+2n-2) !

n=o n! 2"

47

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)
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X
i" < 1; thus the series are convergent within the sphere determined by HESH
Under this assumption we can represent (A6) by IIEJI
SN L nemom Ly,
Heex'||77 =30 4" 477 pIGE™ (A7)

n=o

where PB(i") are Gegenbauer (ultraspherical) polynomials (Abramowitz and Stegun,
1964: p. 774)

m

P2(x) = 1 -
PG = me (49)
PR = 2 [m2)x - 1] 10,
PiGo = M) o [mea)x’ - 3] (A11)
PPG0 = B2 [(mid) (t6)x” — 6 (mid)x” + 3] (A12)
P(x) = ni. n@@2). .. (ok2n-2)x"

n-2

- &‘;‘—Q n(m2) ... (mF2n-4)x

< 1.



+

49
(A13)

(D) (1=2) @=3) | ouos o o b

24

(-t 2=l @B ). 2 (ap-D)] K2
= 0,1, < 3

Despite the identical notation, these should not be confused with associated
Legendre polynomials.
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APPENDIX B.--CARTESIAN REPRESENTATION OF THE GRAVITATIONAL POTENTIAL

In the appendices B-E, we change to index notation (x3, X, x3) in place of
(x, ¥y, z) and utilize the summation convention.

Let

u(@ = - g fdx' o) |lx-x'l7T (B1)

be the Newtonian representation of the gravitational potential. 1In terms of
Hilbert invariants

i= ]z (B2)
it = ||x'[| (B3)
t
i = (X!X) (B4)
Hzll 1=
~1 > 0 -n-1 . (B5)
TP TR FE R e e
n=o
[x']]
holds if ,] fl <1l. Under this assumption the gravitational potential can be
.

represented by

u(x) = —j?: g i_n_l fax'i™ Pn(i") o (x") (86)
n=o

where P are the standard Legendre polynomials.



In cartesian coordinates the Hilbert invariants read

1= |lxll = yaxp
' = Yxix]

[N
]

X, X!
i%i
1,1
'/ XX Y xixg
and the related Legendre polynomials P,(i'")

Po(i") =1

S - T . [
Pl(l ) X X, (V XJXj kaxk)
\ ] l ] ]
3 XXy X Xp - 3 X X XX
P(i")=-2—11 J ] "PP 99
2 B )
x.x! x x' x x' -3 X X x'
P (i") = 5 i1 272 "mm 5 r'r “s
3+t ) = 2 x x x'x'
X, X ‘/ 'x! PP qq
375 ¥ %
N __6_ ' rot _3_ 2, v 482
by - 2-_5--(xixi) 7 (Xixi)(xpxp)(quq) + 35 (err) (xSxS)
4 8

5 2
(xjxj) (Xﬁxk)

etc.

(B6) can be written

51

(B7)

(B8)

(89)

(B10)

(B11)

(B12)

(B13)

(B14)



In cartesian coordinates the Hilbert invariants read

P I =

i'

i"

x|l = yYxix}

X, x!

1 1
v’x.x. "xfx!
i1 i1

and the related Legendre polynomials P,(i')

Po(i") =1

Pl(i") = xixi' 3 (V.ijj VXI'(x.L)

1

x.x! x,x! -1 x x x'x'
1 37471 7] 3°p’p"qq
PZ(1 ) = 2 x!x!
X X1 %y
x.x! x x!' x x' - é-x x x'x'
P (i") = bl ivi 2% mm 5 "r'r "s’s
3 ) X x'x'
ijxj Vxl'(x]:( PXP qxq
4 6
' _ b ' Tt 2
35 (%) =7 () Gox ) (xx ) + 33

(xrxr)z(x;x;)2

P,") = F

etc.

(B6) can be written

2 2
(xjxj) (kak)
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(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)
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u(x) = Z url

n=o

where

° VX.X. (x.x,)l/2 °
iti i“i

372 %1%

3

- - ___ 938 1Tt
u X.X, Jdm'x!x!
3 Z(XQ,XQ)NZ i Jxk 1%5%k

(B15)

(B16)

(B17)

(B18)

(B19)
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35 6 (B20)
u, = X, X.x, X, fdm' [x!x'x'x! - = x'x' § 'x!
4 8(x x 192 kX2 [1J"kz 7 Xi%y Oy (xpx
3 2 35
+ == § Ty! S ) - S—
35 %15 O (¥ } 972 *1%5%1% T i3ke
8(x x )
m m
and
Io = fdm = m (B21)
Ly = Jdox, (B22)
I, = /d -1 xx) s
ij R S T N o SR T (B23)
I = fdm |x.x.X _3 (x.x ) x. 6
ijk 23%9%% T 5 Yt %3k (B24)
I = fdm |x.x.x, x - é-x x.6 (xx ) + ;i-G 8 (x x )2 (B25)
ijkR i3k 7 TiTj kR m m 35 "ij K m m
etc.
In summarizing, we can represent the gravitational potential in Cartesian
coordinates by
@ . - (B26)
w(x) = - gm _ 1<3...(2n-1) < Cx I

gx- . . » . . I3
G{;;; = (ijj)(2n+1)/2 i, 4, i 1112...1n
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where

—~
]
~—
[a Y
=}
»
"
L

.. , X, X, ooeX, = S7o—== X, X, ...X, S, .OX, (B27)
1112...1n i1, i 2(2n-1) i i i 1%

n(n-1) (n-2) (n-3) 2
N . —3) X; X, eeeX, S, . S, .o (x %)
2<4+(2n-1) (2n~-3) i1, i, io.41 5 n-1in %%

+

[ n{n-1)...(n=-22+1)
-+ GO ST (Za-1) (20-3) .. . (20-2041)

X, X X 8 ) (x, x )2)
11 Th-20  tn-(2e+1) tn-(20+2) i1ty Kk

(N o]
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APPENDIX C.-—CARTESIAN REPRESENTATION OF FIRST-ORDER GRADIENTS OF THE
GRAVITATIONAL POTENTIAL

Let

Bu/axi =+ g fdx"p(x") (xi - xi') [x - §'||—3 (c1)

be the Newtonian representation of the first-order gradients of the gravita-
tional potential. 1In terms of Hilbert invariants

i = [lxl] -
it = |]x']] (C3)
im = — (Ex") (Ch)
Hxl ] sl
- ]2 =3 a4 22 @ (c5)
n=o0
NEN
holds if~TT—TT_ <l. Under this assumption the first-order gradients of the
BRI

gravitational potential can be represented by

Bu/axi = +:E: g i_n_3 fdx'i™ Pi(i") (Xi_xi') o (x") (C6)

where Pg are Gegenbauer polynomials (see(A8) - (Al3))
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(c7)
-Pg x) =1
Pi (x) =A3x
P (o) = %(5x2-1)
P2 (0 = 2x(7x-3)
LPZ (x) = 185(21x4-14x2+1)
(C8)

3 S S P n
Pn(x) 3 [% 5...(3+2n-2)x

- Eﬁﬂgll 3.5, .. (3+2n-4)x" "2

n(n—l)é?zz)(n‘3) 3,.5...(3+2n-6)xn_4

+

% n(n-1)...(n- -
+ (-1)* nn ;?4 (3222+1) 3.5...(20-20+1)x" 2{] ,

L =0,1,...<

N3

If we refer to Equations (B15) to (B27) as the Cartesian representation of
the gravitational potential, we will arrive at
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Buo/axi =+ g ||x]] x, I (€9)
du /ox, = - g |x|| 7> 1, + 38 |]x]]7 xx, 1 (c10)
1/°%3 g 11X i7 C8lIE i*5 3
=5 15 -
Suz/axi =+ 3g ll)_(” Xy Iij -5 8 HKII xlixk ik (C11)
=L =7 35 -9 (€12)
23u3/8xi 5 8 x| X% Iijk+ 5 8 x| ]| XX XX I k2
35 -9 315 ~-11
bu,/ox, = - g |lsl1™ wpxey 1+ 25 e a7 xpmpxengx 1,0 (€13)
or, in general,
(C14)
Bu/axi=+g|[)_<|| x; Io
ﬁ 1.3. (2n—l)n IIX”-(Zn+l) % ...x I
=l 1 tar Mt
2 1-3. (2n—l)(2n+l) HKH_(ZH-H” x.x. ..ox. I. .
i%i s S DA |
1 n 1 n

where

sl = J7x
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APPENDIX D.--CARTESIAN REPRESENTATION OF SECOND-ORDER GRADIENTS OF THE
GRAVITATIONAL POTENTIAL

We refer to equations (C9) to (Cl4) as the Cartesian representation of the
first-order gradients of the gravitational potential. Here we will compute
second-order gradients.

2 -5 1 2
Pugfoxan = = 3 sl 17 1y [agxg -5 11sl17 0y ] 1)

2 -5
2%u /ax 3%, = + 3¢ sl 77 (x4 L+ x4 I.) (D2)

-1 | 1xl 177w T [y = 5 111 6]

2 -5 (D3)
) u2/8xiaxj = 3g ||§|I Iij
- 15g [lx|1'7 x, (x, I, +x, I..)
= k "7 Tik i Tjk
105 -9 1 2
2 _ -7 (D4)
105 -9
t—-8 RESR xx, (% IijL + X Lig)

315 -11
g |||

1 2
2 50X Tkem [%ixj -5 | lsll Gij]
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2 105 -9
37u, [ox 9%, = -5~ 8 =l 5%y Tigug
315 -11 (D5)
+557 e [l 7 maxxy Oy Typn © %5 L)
3465 -13 -1 2
- 205 5 317 e, Ty [y 11 0
or, in general,
2 -5 1 2
) u/axiaxj = - 3g ||x]|] I l}ixj - §-|[§]| Gij] (D6)

-y 1.3...(i?—1)(n—l)n g | x| 20%D) Iijiz...i

* 3., - 2 -
+Z 1-3 (21"1 1) (2n+l)n g[ l)_<|| (2n+3)

a1 n.

. (xi I.i i + x, Iii i)
Jije.d 3j geei

+Z 1-3... (2n—131f2n+1) (2n+3) g ! |}-([ | -(2n+5)
n=1

. 1 2
(Xil"'xin Iil...in_l)(xixj 73 |18l 6ij)
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where ||x|] =‘/kak' It is a "nice" exercise to prove

2 _ 2 _
0, tr(a ul/SxiBXj) = 0, tr(':) uz/axiaxj) 0,

1

tr(azu /Bx_ax,)
o Ti 7j

2 _ . 2
0, tr(a ua/axiaxj)— 0, or, in general, tr(a u/Bxiaxj) = 0.

2
tr(a u3/8xiaxj)
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APPENDIX E.--CARTESIAN REPRESENTATION OF THE EUCLIDEAN NORM OF FIRST-ORDER
GRADIENTS OF THE GRAVITY POTENTIAL

il

Let w = u - %wz(xlz + x,2) be the scalar part of the gravity potential such
that yz (aw/Bxi)(aw/Bxi§ is the square of the Euclidean norm of its
first-order gradients. We refer to (Cl4) as the Cartesian representation of
the gravitational potential. The formula

il

(EL)
oW -3
s 117
i
% 1+3...Qn-1n -(2n+1
) S g 7P o k1L
~ ! i fp-p iigee.i
+%Y 1-3...(2n-1) (2041) ~(20+3
}3 a' g ll§|l ) xixl ...xi Ii ;
n=1 1 0 1°°°
- wz x § .,
o ai
(where Greek indices range over 1, 2 only)
contains four terms and we designate it as a + b + ¢ + d. The four-term
scheme leads to
v e n? 4l d? (E2)

+ 2ab + 2ac + 2ad + 2bc + 2bd + 2cd.

Explicitly, it has the form
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2=

+

2 =4 2
sl ™ 1,

2 E 1'3...C2n-1)n 1-3...2n~1)m 2
n! m! &
n=1 m=1

. i X, o= .
1 n-1 J1 Im-1

. (2m-1) (2mt+1)

2 © 1-3.. 2—12+11
g }E }E - (2n )( ntl) 1-3. -
n=1 m=1
-(2n+2 -(2m+2
L T
1 0 Jl...j
m
4
(xaxu)
2 1-3, (2n—l)n H H—(2n+4) x I
11 i, ©
x, 1 + x, I,. + x. L., .
( 1 11l i 1 2 211.. 1n—l 3 31l ln—l)
ﬁ (Zn—l) (2n+1) H ||—(2n+4) X

11 1

(E3)



63

2 v § 1.3...(0n- +3...(2m-1) (2m+1
- 2g 2213n'(n1)n13 (2m-1) (2m+1)

1]
n=1 m=1 m.

I i R P N st

. eeeX, X, oo . .
i i1 3 3 dpeeedy

+ x,I,. + x.I
( 1 11l -1 2 211.. n-1 373 1 1n-l)
S (2n-l)n -(2n+1)
" e 3 = IE] S
n=1 n-1
x, 1 . + x.1,.
1 111 "1n—l 2 211.. ln—l
- 22 L3 G @) |1y mBD) oy kT
n 1 1 1 1
n=1 1 n 1

or

2 2 -4 _ 2
& [1xl17 1,

(E4)

<
It

gt g7, 1
+3g% 12178 x, x, I, 1.
- i3 1 ]
2 !
+6g” 1ull™ w1, 1,
2 —
+9g” |17 x, x

I
i ki kj
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-10
+ 15 ||x]| TR P

225 -12
£ 25 |||

xi xj xk x2 Iij Ikz

2 -
+ag |1l 170 % 1)1

2 -8
= 6e” (g7 % = 1, 1

+ 98" [1xl 7 x; %, 1,1

o "1ij

4
+ w (Xaxu)

- 20" 13117 Gyxp) 1

Iijk)

up to third-order terms.
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Adjustment of geodetic field data using a sequential method. Marvin C. Whiting and Allen J.
Pope, March 1976, 11 pp (PB253967). A sequential adjustment is adopted for use by NGS field
parties.

Reducing the profile of sparse symmetric matrices. Richard A. Snay, June 1976, 24 pp (PB-
258476). An algorithm for improving the profile of a sparse symmetric matrix is introduced
and tested against the widely used reverse Cuthill-McKee algorithm.

National Geodetic Survey data: availability, explanation, and application. Joseph F.
Dracup, Revised January 1979, 45 pp (PB80 118615). The summary gives data and services
available from NGS, accuracy of surveys, and uses of specific data.

Determination of North American Datum 1983 coordinates of map corners. T. Vincenty, October
1976, 8 pp (PB262442). Predictions of changes in coordinates of map corners are detailed.
Recent elevation change in Southern California. S.R. Holdahl, February 1977, 19 pp (PB265~-
940). Velocities of elevation change were determined from Southern Calif. 1leveling data
for 1906-62 and 1959-76 epochs.

Establishment of calibration base lines. Joseph F. Dracup, Charles J. Fronczek, and Raymond
W. Tomlinson, August 1977, 22 pp (PB277130). Specifications are given for establishing cali-
bration base lines.

National Geodetic Survey publications on surveying and geodesy 1976. September 1977, 17 pp
(PB275181). Compilation lists publications authored by NGS staff in 1976, source availa-
bility for out-of-print Coast and Geodetic Survey publications, and subscription information
on the Geodetic Control Data Automatic Mailing List.

Use of calibration base lines. Charles J. Fronczek, December 1977, 38 pp (PB279574). De-~
tailed explanation allows the user to evaluate electromagnetic distance measuring instru-
ments.

Applicability of array algebra. Richard A. Snay, February 1978, 22 pp (PB281196). Condi-
tions required for the transformation from matrix equations into computationally more effi-
cient array equations are considered.

The TRAV-10 horizontal network adjustment program. Charles R. Schwarz, April 1978, 52 pp
(PB283087). The design, objectives, and specifications of the horizontal control adjustment
program are presented.

Application of three-dimensional geodesy to adjustments of horizontal networks. T. Vincenty
and B. R. Bowring, June 1978, 7 pp (PB286672). A method is given for adjusting measurements
in three-dimensional space without reducing them to any computational surface.

Solvability analysis of geodetic networks using logical geometry. Richard A. Snay, October
1978, 29 pp (PB291286). No algorithm based solely on logical geometry has been found that
can unerringly distinguish between solvable and unsolvable horizontal networks. For leveling
networks such an algorithm is well known.

Goldstone validation survey — phase l. William E. Carter and James E. Pettey, November
1978, 44 pp (PB292310). Results are given for a space system validation study conducted at
the Goldstone, Calif., Deep Space Communication Complex.

Determination of North American Datum 1983 coordinates of map corners (second prediction).
T. Vincenty, April 1979, 6 pp (PB297245). New predictions of changes in coordinates of
of map corners are given.

The HAVAGO three~dimensional adjustment program. T. Vincenty, May 1979, 18 pp (PB297069).
The HAVAGO computer program adjusts numerous kinds of geodetic observations for high preci-
sion special surveys and ordinary surveys.

Determination of astronomic positions for California-Nevada boundary monuments near Lake
Tahoe. James E. Pettey, March, 1979, 22 pp (PB301264). Astronomic observations of the
120th meridian were made at the request of the Calif. State Lands Commission.

HOACOS: A program for adjusting horizontal networks in three dimensions. T. Vincenty, July
1979, 18 pp (PB301351). Horizontal networks are adjusted simply and efficiently in the
height=controlled spatial system without reducing observations to the ellipsoid.

Geodetic leveling and the sea level slope along the California coast. Emery I. Balazs and
Bruce C. Douglas, September 1979, 23 pp (PB80 120611). Heights of four local mean sea
levels for the 1941-59 epoch in California are determined and compared from five geodetic
level lines observed (leveled) between 1968-78.

Haystack-Westford Survey. W. E. Carter, C. J. Fronczek, and J. E. Pettey, September 1979,
57 pp. A special purpose survey was conducted for VLBI test comparison.

Gravimetric tidal loading computed from integrated Green's functions. C. C. Goad, October
1979, 15 pp. Tidal loading is computed using integrated Green's functions.

Use of auxiliary ellipsoids in height-controlled spatial adjustments. B. R. Bowring and T.
Vincenty, November 1979, 6 pp. Auxiliary ellipsoids are used in adjustments of networks in
the height—controlled three~dimensional system for controlling heights and simplifying
transformation of coordinates.

Determination of the geopotential from satellite-to-satellite tracking data. B. C. Douglas,
C. C. Goad, and F. F. Morrison, January 1980, 32 pp. The capability of determining the
geopotential from satellite-to~satellite tracking is analyzed.
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The statistics of residuals and the detection of outliers. Allen J. Pope, May 1976,
133 pp (PB258428). A criterion for rejection of bad geodetic data is derived on the
basis of residuals from a simultaneous least-squares adjustment. Subroutine TAURE is
included.

Effect of Geoceiver observations upon the classical triangulation network. R. E. Moose
and S. W. Henriksen, June 1976, 65 pp (PB260921). The use of Geoceiver observations is
investigated as a means of improving triangulation network adjustment results.

Algorithms for computing the geopotential using a simple-layer density model. Foster
Morrison, March 1977, 41 pp (PB266967). Several algorithms are developed for computing
with high accuracy the gravitational attraction of a simple-density layer at arbitrary
altitudes. Computer program is included.

Test results of first-order class III leveling. Charles T. Whalen and Emery Balazs, No-
vember 1976, 30 pp (GPO# 003-017-00393-1) (PB265421). Specifications for releveling the
National vertical control net were tested and the results published.

Selenocentric geodetic reference system. Frederick J. Doyle, Atef A. Elassal, and James
R. Lucas, February 1977, 53 pp (PB266046). Reference system was established by simulta-
neous adjustment of 1,233 metric-camera photographs of the lunar surface from which 2,662
terrain points were positioned.

Application of digital filtering to satellite geodesy. C. C. Goad, May 1977, 73 pp (PB-
270192). Variations in the orbit of GE0S-3 were analyzed for My tidal harmonic co-—
efficient values that perturb the orbits of artificial satellites and the Moon.

Systems for the determination of polar motion. Soren W. Henriksen, May 1977, 55 pp
(PB274698). Methods for determining polar motion are described and their advantages and
disadvantages compared.

Control leveling. Charles T. Whalen, May 1978, 23 pp (GPO# 003-017-00422-8) (PB286838).
The history of the National network of geodetic control, from its origin in 1878, is pre-
sented in addition to the latest observational and computational procedures.

Survey of the McDonald Observatory radial line scheme by relative lateration techniques.
William E. Carter and T. Vincenty, June 1978, 33 pp (PB287427). Results of experimental
application of the “"ratio method” of electromagnetic distance measurements are given
for high resolution crustal deformation studies in the vicinity of the McDonald Lunar
Laser Ranging and Harvard Radio Astronomy Stations.

An algorithm to compute the eigenvectors of a symmetric matrix. FE. Schmid, August 1978,
5 pp (PB287923). Method describes computations for eigenvalues and eigenvectors of a
symmetric matrix.

The application of multiquadric equations and point mass anomaly models to crustal move-
ment studies. Rolland L. Hardy, November 1978, 63 pp (PB293544). Multiquadric equa-
tions, both harmonic¢ and nonharmonic, are suitable as geometric prediction functions for
surface deformation and have potentiality for usage in analysis of subsurface mass redis-—
tribution associated with crustal movements.

Optimization of horizontal control networks by nonlinear programing. Dennis G. Milbert,
August 1979, 44 pp (PB80 117948). Several horizontal geodetic control networks are
optimized at minimum cost while maintaining desired accuracy standards.

Feasibility study of the conjugate gradient method for solving large sparse equation sets.
Lothar Griindig, February 1980, 22 pp. Method is suitable for constrained adjustments of
triangulation networks but not for free adjustments.

Tidal corrections to geodetic quantities. Petr Van{lek, February 1980, 30 pp. Correc—
tions for tidal force are formulated and tidal aspects relating to geodesy are discussed.
Application of special wvariance estimators to geodesy. John D. Bossler and Robert H.
Hanson, February 1980. Special variance estimators, one involving the use of noninteger
degrees of freedom, are analyzed and applied to least-square adjustments of geodetic
control networks to determine their effectiveness.

NOAA Manuals, NOS/NGS subseries

Geodetic bench marks. Lt. Richard P. Floyd, September 1978, 56 pp (GPO# 003-017-00442-2)
(PB296427). Reference guide provides specifications for highly stable bench marks,
including chapters on installation procedures, vertical instability, and site selection
considerations.
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