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PREFACE

This publication has the same title as the author's thesis
which was prepared in partial fulfillment of a Master of Science
degree from the Ohio State University (Department of Geodetic
Science) in 1978. Two minor changes appear in this version. The
text and format conform to U.S. Government style and the original
computer program listing is omitted.

Mention of a commercial company or product does not
constitute an endorsement by NOAA National Ocean
Survey. Use for publicity or advertising purposes
of information from this publication concerning pro-
prietary products or the tests of such products is
not authorized.
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OPTIMIZATION OF HORIZONTAL CONTROL NETWORKS
BY NONLINEAR PROGRAMING

Dennis G. Milbert
National Geodetic Survey
National Ocean Survey, NOAA
Rockville, Md. 20852

ABSTRACT. Some practical aspects of horizon-
tal control network design are considered,
and the techniques of linear and nonlinear
programing are briefly reviewed. Rotation-
ally invariant constraints are written for
the coordinate variance sum at each station.
These constraints are also gquasi-homogeneous
in the sense that a Moore-Penrose generalized
inverse is used in computation. The objec-
tive function to be minimized is a cost pro-
portional to the number of observations.
Results are displayed for several test net-
works. Methods of improvement of the design
algorithm are then discussed.

INTRODUCTION
Horizontal Control Network Design

For those with the responsibility to supply horizontal
control, the design of geodetic networks providing such control
is an important problem. Developing a network design to meet
particular accuracy standards can be done before any observa-
tions are made because the accuracy a particular design attains
does not depend upon values of the observations. All that is
required is knowledge of the accuracy of the proposed observa-
tions. Traditionally, general guidelines developed over many
years were the only criteria for network design. Deficiencies
discovered after completion of the field work could only be re-
medied by expensive reobservation.

The invention of the electronic digital computer provided the
technical capability of detailed analysis of a design before
work commenced. Such detailed analysis ensures that a given
network design will meet user requirements. Further, the compu-~
tational resources provided by modern computers allow modeling
of the economic implications of a design. A more unified view
of a geodetic network design is the result of these considera-
tions.
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Accuracy Requirements

In an ideal situation, accuracy requirements for a horizontal
control network are established in response to user needs. The
requirements, in turn, dictate the design of the network and the
field procedures to be used. One can see that a network design
is a reflection of user regquirements.

Current horizontal control standards are based upon the
distance relative accuracy between directly connected adjacent
points (Federal Geodetic Control Committee 1974, p. 3). Such a
standard is attractive since users generally wish to survey from
one or more control points to one or more other control points.
An absolute positional accuracy is not always required, elimina-
ting the need for a variance-covariance matrix of adjusted para-
meters. This elimination simplifies the network design task,
since the variance-covariance matrix of adjusted parameters
depends upon the choice of a constrained position. Relative
accuracy criteria are invariant with respect to the selection of
a single constrained point. Relative accuracies provide a
measure of network accuracy without imposing a coordinate "bias"
upon the user.

Network Costs

The cost of execution of a particular horizontal network
design is an extremely complex problem. Equipment cost and
depreciation, field procedures, labor, transportation, communi-
cation, support, and administrative costs all contribute to the
final cost of a particular network design. Because of the
complexity of the economics, examination of some crude approxima-
tions to this problem is instructive.

Consider a level theodolite or electronic distance-measurement
instrument centered over the monument, operated by experienced
personnel. One can roughly approximate the cost of the observa-
tions by the time it takes to perform the observations. One can
see that the costs are proportional to the number of repetitions.

The next level of approximation can be added by considering
the time necessary to recover the mark, erect and dismantle a
portable observation tower (if necessary), and center and level
the instrument. This cost is essentially a one-time cost propor-
tional to the number of occupied stations. This cost would be
in addition to the cost of observations discussed above.

Further sophistication can be introduced by transportation
costs. These costs are roughly proportional to the distance
between stations. Terrain and roads, however, dominate the
estimate of time spent in transport. An adequate terrain model
vastly increases the cost model complexity.



In addition to the above factors, the assignment of labor
within the field party will have a major effect upon the total
cost (Gergen 1978). Such an assignment would efficiently
coordinate reconnaissance, transport, tower construction and
dismantlement, light-keeping, and observation. The most
efficient task allocation does not seem to vary in any simple
fashion with respect to the variation of the elements of a net-
work. Moreover, an optimal task allocation would require a
detailed model of field methods in which a subtask would be to
perform the observations necessary to fulfill some desired
specifications.

In closing, this topic illustrates the complexity inherent in
a detailed cost model and serves as a guide to the cost model
selected for investigation of horizontal network design.

Second-Order Network Design

In second-order network design, the variance-covariance
matrix of the observations is unknown, and is solved using a
known network configuration and a desired variance-covariance
matrix of the station coordinates (Grafarend 1974, p. 720).
Second-order design is the converse of first-order design, where
observation variances are known and the network configuration is
unknown.

Second-order design merits attention for two reasons. First,
a large number of practical difficulties plague the implementation
of a first-order design. The geodesist rarely has complete
flexibility in the placement of stations. Terrain, property
rights, station intervisibility, presence of old control stations,
and specific user requirements all impose constraints upon the
placement of new stations (Hoyle 1977). Second, the simplest
approximation to the cost of a horizontal control network is
proportional to the number of observations. Because second-order
design solves for the observation variance-covariance matrix, it
is possible to compute the cost of a given design since one may
compute the number of repetitions of each observation given the
variance of each single observation.

The second-order design problem does not yield a unique solu-
tion (Bossler et al. 1973). An infinite number of observation
covariance matrices will satisfy a required coordinate covariance
matrix for a given network configuration. Given this multiplicity.
additional constraint is needed to determine a unique solution. '

A desirable quality of a second-order network design would be
that it would have a minimum cost expressed in some approximate
cost model. The solution of such a problem lies in the realm of
optimization under constraints, also known as mathematical
programing. In such a solution, the costs of a design are
minimized while satisfying specified accuracy requirements.



The parametrization of the costs and accuracy requirements in
terms of observation repetitions allow such a solution to easily

proceed. The dual problem, maximizing the design accuracy while
meeting a desired cost requirement, is also solvable by mathe-
matical programing. The dual problem is not pursued further in
this report.

Practical Considerations for Network Design

Many practical considerations enter into the network-design
problem. The model, types of observations, procedures used in
the field, and auxiliary design requirements all need to be
considered before a network-design algorithm can be constructed.
Allowing for such requirements at an early state ensures a
useful design tool for the geodesist.

Model

Assume that all control points lie on a plane. Even for
large control networks, this approximation will be quite good.
In addition, only direction and distance measurements are
considered in the design. These are generally the only observa-
tion types at the economic disposal of the design agency.

Using a standard, two-dimension x-y Cartesian coordinate
system with azimuth measured clockwise from the north (y axis),
one easily derives the observation equations (Schwarz 1974-75)
For a direction from station i to station j,

c05q.j sina.j
§d. .= =— =< §xX. + §
ij Sij i i Yy
COSuij 5% sinaij
S | . .
* S.. J S.. GYJ 621
ij ij

where zy is the rotation unknown for the direction set at

station i; a;:, the azimuth from station i to station j; and
S;++ the distance from station i to station j. For distance
frgm station i to station j,

OV .

§S..= —51nai-6x- - c05aij6yi + 51nai-6xj + COSuiJ 3

1j Jj o1 J

The matrix symbol for the coefficients of the differential
changes in the observations with respect to the parameters
(station coordinates) is A, the design matrix. Since a second-
order network design approach is being used, the coordinates of
the stations are assumed to be known so that the design matrix
is completely determined.



Observation Variance-Covariance Matrix

In second-order network design, the observation variance-
covariance matrix, &, is solved with respect to a given station
configuration and a required coordinate variance-covariance
matrix, Iy. To determine I, one must develop some functional
relation in terms of observation repetitions. In this report, we
assume that the observations are uncorrelated and the repetitions
of each observation are also uncorrelated.

Now, directions are not estimable guantities; but McKay
(1973, pp. 9-15) has shown that, with a constraint of the sum of
the residuals equaling zero, the adjusted directions are uncor-
related. However, it is not the case that repetitions of
distance observations are uncorrelated. One approach to this
problem is considered at the end of this report.

Another technique that can use uncorrelated observations is
the weight-recovery method of Sprinsky (1974, pp. 203-204). This
method computes a unique set of observation weights that will
satisfy a required coordinate variance-covariance matrix. The
user then selects the type and number of observations from this
set. Note that this method may or may not lead to a minimum
cost solution.

Field Procedures

When designing a network, special consideration should be
made for field operations. It 1s guite possible for an observa-
tion scheme developed in the office to be difficult, if not
impossible, to execute in the field. Direction observations are
particularly sensitive to this problem. It is extremely cumber-
some to develop a scheme of theodolite pointings that would
produce direction observations of desired weights. Field pro-
cedures require an equal number of pointings to all sighted
stations (Dracup and Fronczek 1977). A network-design algorithm
should reflect this problem.

Because of the size and distance of a target, different
variances may be obtained on direction observations from the same
station with the same instrument. Additionally, one may have to
perform observations with instruments of different accuracies. A

network-design program should be flexible enough to accommodate
such cases.

Auxiliary Design Requirements

A geodetic network is not characterized only by some ideal
variance-covariance matrix. The design geodesist may also wish
to satisfy some auxiliary design criteria. One such criterion is
a requirement that each point be redundantly determined to some
degree. Such a redundancy requirement is extremely important
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since it provides a mechanism for blunder detection and a margin
of safety in the event some observation must be deleted.

When using second-order network design and solving for
observation repetitions, redundancy requirements can easily be
met. This is done by never allowing a network design to have
zero repetitions of an observation. This ensures that each
observation will be made at least once and the design algorithm
will never delete an observation automatically. Still, the
design geodesist must initially select a set of observations that
will satisfy those redundancy requirements in effect.

MATHEMATICAL PROGRAMING
When maximizing or minimizing some function subject to

certain constraints, the problem is said to fall in the realm of
optimization under constraints, also known as mathematical

programing. The general form for such a problem is
max or min z = f(y;, ..., yn) (1)
where <
g;(yys «--r ¥y) 5 by (2)
yy 2 0 (3 =1 ton) (3)
<
and where Irepresents <, =, or >. Eq (1) is the objective
function, which is the function to be optimized. Egq (2) is the
constraint - Eq (3) covers the nonnegativity restrictions that

are assumed to be present in a programing problem although they
may not always be explicitly written.

Linear Programing

When f and gj are linear functions of Y in eq (1) and (2),
the mathematical programing problem is said to be a linear
programing problem. This then has the form

max or min z = Ciyl + ... * Ch¥p (4)
where

aj1vya + ... ainyn % bl' (5)

Note that the nonnegativity restrictions are still in effect
although they are not formally expressed. Such a linear problem
has a solution computed through a procedure named the Simplex
algorithm (Gillett 1976). The remainder of this section will
discuss this algorithm.



To best understand the Simplex algorithm, consider

max z = 12yl + 18y, (6)
2y; Y yp < 4 (7)
y1 t 2y, < 4. (8)

A graphical representation of this problem is presented in
figure 1.
¥

Yq

Figure l.--Linear programing sample.

The nonnegativity requirements ensure that only positive
values of y, and Yo are considered so that any possible solution
to the probiem lles in the first quadrant. Plotting the con-
straint of eq (7), one sees that the range of possible solutions

is now bounded by the lines which intersect at (0,4), (2,0), and
(0,0). Similarly, the possible solutions described by eqg (8) are
bounded by the lines that intersect at (0,2), (4,0), and (0,0).

The intersection of these two regions represents the possible
solutions to both eg (7) and (8) together. These are called the
feasible solutions and are represented by the region bounded by
the lines that intersect at (0,2), (4/3,4/3), (2,0), and (0,0).



Now, the region of feasible solutions contains an infinite
number of solutions that satisfy the constraints; however, one
must find a feasible solution which optimizes the objective

function. In figure 1, the objective function is plotted as a
dotted line for different values of z; one can see that z
achieves a maximum feasible solution at (4/3,4/3) where z = 40.

This is the optional feasible solution to this particular linear
programing problem.

One can prove, although not done so here, that the optional
solution will occur either at one corner or along one edge of the
region of feasible solutions in any linear programing problem.

If the optional solution falls along an edge of the region, then
the solution possesses multiple optimal solutions. The Simplex
algorithm starts at one corner of the region and proceeds to
another corner such that the objective function is nondecreasing
(or nonincreasing in a minimization problem). This cycle is
repeated until a corner is reached where all other possikle

corners have an equal or smaller (or an equal or larger for minimi-
zation) objective function. This point is then the optimal
feasible solution to the problem.

To apply the Simplex algorithm, one must place the linear
programing problem into an equivalent form. This form must
satisfy three conditions.

1. All constraints must be represented by equalities.

2. Each constraint must contain a variable possessing
a coefficient of 1 in that constraint and 0 in all other
constraints.

3. The right-hand side of each constraint, bj, must be
greater than or equal to zero.

Consider, once again, the example. Condition 3 is already
satisfied in that the constraints (7) and (8) have positive
right-hand sides. Conditions 1 and 2 can be satisfied together
by creating a slack variable for each constraint. For less than
or equal constraints, this is done by simply adding a unique
variable to each less than or equal constraint, and representing
the variable with a zero coefficient in the objective function.
The example then becomes

max z z - 12y, - 18y2 + Oy3 + Oy4 =0

2yl + Y, +y,y = 4

I
S

+ 2y, +
vyt 2y, ty,



where y, and y, are the slack variables. They are so named
because they "take up the slack" in the inequalities. Note that
the nonnegativity restrictions apply to the slack variables as
well as the original variables. This, then, is the equivalent
form of the example.

Suppose we desire to minimize the objective function rather
than maximize it. This is expressed in the equivalent form by an
objective function in which the coefficients are the negative of
the original. Therefore, if it is desired to optimize

min z z - 12yl - 18y, + Oy3 + Oy4 = 0,
then the proper equivalent form is expressed as

max z z + 12yq + 18y2 + Oy3 + Oy4 = 0.

When this is done, remember that the optimal value of the
objective function will be -z when the solution is obtained.

Consider the example where eq (8) i1s now an equality rather
than an inequality; then

max z = 12yl + l8y2 (6)

2y, Y, < 4 (7)

Yy + 2y2 = 4, (9)
Eq (9) already satisfies conditions 1 and 3 as 1t stands. To
satisfy condition 2, add another variable called an artificial
variable. If this variable, however, possesses any value other
than 0 in the final solution, then eq (9) will be incorrect and
the solution will be wrong. To ensure that the artificial

variables will be 0 in the final solution, we include them in
the objective function with a small negative coefficient, -T.
Then the Simplex algorithm will "drive out" the artificial
variables in the process of finding a solution. The eguivalent
form of the example now becomes

max z z - 12yl - 18y2 + Oy3 - Ty4 =0
2 + + = 4
Yy Y, Y,
yy *+ 2y2 + Y, = 4
where Y5 is a slack variable and Y4 is an artificial variable.

Consider the example when eq (8) is now a greater than or
equal inequality rather than a less than or equal to inequality:



10

max z = 12yl + l8y2 (6)
2Yl + Yy = 4 (7)
y, * 2y, > 4. (10)
To satisfy condition 1, add a slack variable to eq (10). Since

such a variable must be nonnegative because of the nonnegativity
restrictions, it must be entered into eqg (10) with a negative
coefficient:

+ - = . l
Yq 2y2 Y, 4 (11)

Notice that eq (11) still does not satisfy condition 2 since it
has a coefficient of -1 rather than +1. Therefore, an artificial
variable must also be added to eq (1ll). Once this is done,

the proper equivalent form is found:

max 2z z - 12yl - l8y2 + Oy3 + Oy4 - Ty5 =0
: = 4
2yl + v, + Y, s

Y1 *t 2y, -y, tyg =4

2

where y, and y, are slack variables and Yg is an artificial

variable. 4

Now that the technique for converting any linear programing
problem into an equivalent form for Simplex algorithm solution
has been explored, all that remains in this discussion is to
examine how the Simplex algorithm computes the optimal solution
from an equivalent form. Consider the equivalent form of the
original example:

max z z — 12 - 18 + 0 + 0 =0 12
yl y2 y3 Y, (12)
2 + + = 4 13
Yy Y, Yy (13)
+ 2 + = 4,
Yq Y, T vy = 4 (14)

The constraints (13) and (14) contain a total of four variables,
giving two equations in four unknowns. If any two of the
variables are set to 0, then a unigue solution exists for the
remaining two variables. These two remaining variables are
called the basic variables and there are (%) = 6 ways of choosing
them from the set of four variables. When this is done, (y 1Yo)
achieves the values of (0,2), (0,4), (4/3,4/3), (4,0), (2,0}, and
(0,0) in figure 1. These are called the basic solutions to the
linear programing problem.
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Notice that two of the basic solutions, (0,4) and (4,0), do
not lie in the region of feasible solutions. The Simplex
algorithm only works upon the basic feasible solutions (i.e.,
the subset of basic solutions contained in the region of
feasible solutions). This subset is the set of corners (0,2),
(4/3,4/3), (2,0), and (0,0). The optimal solution, (4/3,4/3),
is the optimal basic feasible solution.

To ensure the Simplex algorithm can always start with a
basic feasible solution, condition 2 was imposed upon all
equivalent forms. Requiring each constraint in the equivalent
form to possess a variable with a coefficient of 1 in that
constraint and 0 in all others enables the Simplex algorithm to
always begin with a basic feasible solution. This is done by
making each artificial variable and each slack variable with a

coefficient of 1 a basic variable. All the nonbasic variables
are initially set to 0. In the example, Y3 and y, are the basic
variables. Furthermore, the following are immediately seen:

Yy, = 0 yog = 0

y3 = 4 Yq = 4
and 2 = O

The Simplex algorithm "moves" from one basic feasible
solution to the next by making one basic variable a nonbasic
variable and by making a nonbasic variable a basic variable. The
basic variable that becomes nonbasic is said to "leave" the basis,
and the nonbasic variable which becomes basic is said to "enter"
the basis.

The Simplex algorithm selects the variables to leave and enter
the basis in such a fashion that the objective function is non-
decreasing. The variable with the most negative coefficient in
the objective function is the variable to next enter the basis.
If all the coefficients are greater than or equal to zero, then
the optimal solution has been achieved. Examination of eqg (12)
shows that y, will next enter the basis.

Next, the ratios of the right-hand side of each constraint to
the corresponding coefficient of the newly entering variable are
computed. For example,

4/1

il
NN

from eq (13);
and

4/2

Il
N}

from eq (14).
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If any of these ratios is not positive, then a finite solution
does not exist; that is, the objective function is not bounded

by the constraints. The example is bounded, and the ratios are
positive. The variable with a coefficient of 1 in the equation
that corresponds to the minimum positive ratio will be the
variable to next leave the basis. The minimum positive ratio
corresponds to eqg (14), and y4 1s the variable with a coefficient
of 1 in that equation. Therefore, y, will next leave the basis.

Once the variables to next leave and enter the basis have
been identified, the Simplex algorithm performs a change of
basis. The change of basis is a series of elementary trans-
formations executed so that:

1. The new basic variable will have a coefficient of 1 in
the constraint equation that currently holds the variable which
is leaving the basis.

2. The new basic variable has a coefficient of 0 in all the
other constraints and objective equations.

Performing a change of basis from y,4 to Yo, One executes
step 1 by dividing eq {(14) by 2 to yield

l/2yl + y, + l/2y4 = 2. (15)
Eg (15) 1is then multiplied by 18 and added to eq (12); then

eq (15) is multiplied by -1 and added to eq (13). This yields
a new set of equations:

zZ - 3yl + Oy2 +0y3+9y4 = 36 (16)
1
l§y1 + Yy~ l/2y4 = 2 (17)
l/2yl + Yo + 1/2y4 = 2. (15)
Now y, and y; are the basic variables. One immediately sees the
following:
yl:O y2:2
and 3 4
z = 36.
This completes one cycle of the algorithm. Since a negative

coefficient still exists in the objective function, one knows
that the solution is not yet optimal.
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To complete the solution, execute a second cycle. The most
negative coefficient in the objective function belongs to the
variable y;. It shall next enter the basis. When computing the
ratios, the values obtained are

(2/1%) = 4/3 for eq (17)
and 1
(2/5) = 4 for eq (15).
The smaller positive ratio belongs to eq (17), indicating that

the variable y; will next leave the basis. Multiplying eq (17)
by 2/3 becomes

ly; + 2/3y3 - l/3y4 = 4/3. (18)
Eq (18) is then multiplied by 3 and added to eq (16); then
eq (18) is multiplied by -1/2 and added to eq (15). This yields
a new set of egquations:

z + Oyl + Oy2 + 2y3 + 8y4 = 40

Y1 + 2/3y3 - l/3y4 = 4/3

and
Y, = l/3y3 + 2/3y4 = 4/3.
Now y; and y, are the basic variables. Thus one immediately sees:
Yy, = 4/3 Yy = 4/3
Yy, =0 yg =0
and 3 4
z = 40.

The objective function no longer contains any negative
coefficients. The solution is optimal and agrees with the
solution obtained through graphical considerations.

In general terms, the equivalent form of the linear program-
ing problem is

n
- .v. = b
max z z Z;l ij] o (19)
]
n
> a..y. = b. (20)
=1 i34 i

where 1 is 1 to m over the basic variables.
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Let xx be the entry variable with the most negative coefficient

in eq (19). If all coefficients are nonnegative, the solution
yi = bj i =1,m (basic)
is optimal. If not, the ratios are formed:
by
s i = 1,m (basic);
dik

and the smallest positive ratio is chosen and represented by
b,./ayn, where r represents the leaving variable, y,, and the rth
pivotal equation with the ayk pivotal element. If any ratio

is negative, a bounded solution does not exist. If not, a
change of basis is performed from y, to yx. The change of basis
is nothing more than the transformations used in the Gauss-
Jordan method of solving linear equations. The pivotal equation
becomes

n
2: iE:l y. = X (21)
]:

where the pivotal element becomes 1. Now eq (21) is multiplied
by cx and added to eqg (19). The new objective equation becomes

n a_. c. b
rj _ rr

z - (c. - c ———)y. =Db -

521 ] k ar B O a

where the j=k coefficient becomes 0.

The remaining equations are computed by multiplying the
pivotal eq (21) by ajx and subtracting the result from equations i

where i equals 1 to m (basic) and i is not equal to r. Then
eqg (20) becomes

n a_.a. a.. b
> (a.. - —El—ik)y. = b, - —%&~£ (1 # 1)
=1 \ I 4y /) * rk
and
n a_ . b
Y, Sy, =~ ({=n).
i=1 %rx rk

This completes one cycle of the Simplex algorithm. The pro-
cedure repeats until all the coefficients of eq (22) become
negative.
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Nonlinear Programing

When £ or any gij is not a linear function of 'S in eq (1) or
(2), the mathematical programing problem is said to be a non-
linear programing problem. No algorithm currently exists to
solve an arbitrary nonline€ar programing problem with the ease
and reliability that the Simplex algorithm displays in the solu-
tion of the general linear programing problem.

Although no simple general algorithm exists to exactly solve
an arbitrary nonlinear problem, a large number of approaches exist
for the nonlinear programing problem solution. Some methods use
a variety of approximations--some are iterative, and some require
derivatives of the functions. An approximation method is now
considered.

Separable Functions

A function is said to be separable if it can be written in the
form

<
9p(yy) + --- +gplyy) £ b

This quality is important since, if a function is separable, an
approximation can be made to potentially linearize such a
function. An approximate linearization would allow the applica-
tion of the powerful Simplex algorithm to solve for the approxi-
mate solution.

Note that a function which appears to be nonseparable may, in
fact, be separable. Such a function may be transformed by a
change of variables into a clearly separable function. Consider

Y|¥, < b (23)

and create two new variables:

Y1 =¥, tY
and 1 3 4

Y2 = Y3 - y4'

The eq (23) can be replaced by

2 2
y3 - y4 < b
Y Y, - Y, =0
and 1 3 4
P + 3 .
Yy m ¥y ty, =0

Therefore, eq (23) was indeed a separable function although it
did not appear so at first.
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Piecewise Linear Approximation

Consider the separable function

b.

VIIA

gl(yl) + e .. + gn(yn)

One can approximate each element of the function, g;, over a
range of values U,s to Umj for the y. variable. Thé values Ujj4
are known as the b%eak points of thejpiecewise linear approxima-
tion. A set of m new variables is created for each yj so that

where

0 < yij
For eq (23) to give a satisfactory approximation, impose the
condition that,

iU

i,5 ~ Yi-1,3

if yij> 0, then yi—l,j = Ui—l,j . (24)
Exactly how this condition is imposed 1s discussed later.

The function gy is then approximated as a linear function over
each adjacent pailr of break points. This gives an approximation

gj(yj) = g(UO) + cljylj + ...+ cmjymj (25)
over the range U,s to U .. Here, the piecewise slope, cji, 1is
. J mj 1]
defined as
. . . - . (U .
= gJ(Ul]) gj( i-l,j) . (26)
c,. = 3 —
1] i i-1,7
At this point, computing an example is constructive. Consider

the function g(y) = 1/y over the region 1 <y £ 6. The function
is to be approximated with six equally spaced break points at

the integers. 1In this case, m = 5. The results are displayed
in table 1.
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Table 1.--Piecewlise approximation sample
i U; g(Ui) c.
0 1 1
1 2 1/2 -1/2
2 3 1/3 ~-1/6
3 4 1/4 -1/12
4 5 1/5 -1/20
5 6 1/6 -1/30

The expression for y is now
y =1l 4ty vy, tyygt+y, +tyg
Now, the piecewise linear approximation of g(y) is

gly) = 1 - 1/2y; - 1/6y, - l/l2y3 - 1/20y, - l/30y5,

and is graphed in figure 2. One can see that this approximation
becomes much better for large values of y; and, of course, the
approximation is exact at the break points.

gly)=1ly
2

1

=

Figure 2.--Piecewise linear approximation of 1/y
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Suppose a solution is desired for the nonlinear programing
problem

min z = 2y
where
1/y < 0.2.

The objective function is linear, and the constraint is nonlinear
and separable. Using a piecewise linear approximation at integer
break points from 1 to 6, the problem may be reformulated as

min z = 2 + 2yl + 2y2 + 2y + 2y + 2y

3 4 5
1 - l/2yl - l/6y2 - l/lZy3 - l/20y4 - l/30y5 < 0.2

where Y. <1, and 1 = 1,5.

Manipulating the first constraint algebraically, the problem
becomes

5
1/2y, + 1/6y, + 1/12y, + 1/20y, + 1/30y; > 0.8

min z = 2 + 2y_ + 2y + 2y + 2y + 2y
and 1 2 3 4

where yv. < 1, and i = 1,5. From this formulation and by figure 2,
one canlsee that the optimal means of satisfying the constraint

is by using the largest possible value of Y before using yj4+7-
Thus the condition expressed by eq (24) is automatically satisfied
by the form of the piecewise linear approximation. One can show
that this will always be the case for an arbitrary function which
is said to be convex. This, however, leads into the theory of
convex sets and is beyond the intended scope of this report. The
interested reader should refer to Hadley (1961).

IMPLEMENTATION

A number of correspondences must be made to implement second-
order network design in the form of a mathematical programing
problem:

min z = f(y., ..., v ) (27)
and 1 n

gl(yl: e sy Yn) _<bl (28)
where 1 = 1,m. The variable, yj will represent the repetitions
of the jth observation. Eg (28 )will be constraints upon the
design coordinate variances. This will ensure that the desired
coordinate variances, b;, are always satisfied. The objective
function (27) 1is in this particular problem the cost function.
This will model the costs incurred by a particular combination
of observations. The remainder of this section is devoted to
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the formulation of the nonlinear programing problem to optimize
a second-order, horizontal control geodetic network design
problem.

Variance Constraints

From the theory of least-squares adjustment (Uotila 1967),

r, = (atmiayd (29) .
The design matrix, A, was developed in the first section and is
completely known. The variance-covariance matrix of the observa-

tions, ¥, is unknown and will be a function of the observation |
repetitions. The variance-covariance of the coordinates, Iy, wWill

contain the required coordinate variances and is partially known.

We assume that the repetitions of an observation are uncorre-
lated so that

Q
[\

"

=N N}
[

o]

[l

where o2 is the variance of a single observation i, n; is the
i i

repetitions of the ith observation, and o%_

i

the mean of the repetitions of the ith observation. We also
assume that the observations are uncorrelated, yielding the
variance-covariance matrix

is the wvariance of

I
1
oy

52
2
o

This matrix has the inverse

1 0
gf
1
-1 ™)
)X = 2
92
0 In
2
2
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For an arbitrary design matrix, at:-1la is a nondiagonal
matrix of variables, niy. No simple form exists for the inverse
of a matrix of variables--so an approximation used by Greve
(1972, pp. 39-40) is applied to the problem. Then

. t (30)
L, *® Gi; 4G

where,
t -1 _.-1 t -1

This 1s an iterative equation that approximates the variance-
covariance matrix of the coordinates in terms of a current
estimate of the repetitions of each observation and of prior
estimates of the optimal repetitions of the observations.
Therefore, the design algorithm will be iterative and require
an initial estimate of the optimal repetitions.

Rotationally Invariant Constraints

Having developed a relation for the variance-covariance matrix
at coordinates in terms of observation repetitions, one can write
l/2u2 constraint inequalities. These inequalities would act as
constraints on the variances and covariances of the coordinates.
Practice has been to use m pairs of constraints on the variances
of the x and y coordinates:

f Wy eees vy <_o>2<i
and 5

fyi(yl' et yn) = Oyi
where 1 = 1,m stations.

Using the approximation

L= GZGt
X

and the fact that » is diagonal with elements Oi/ni’ one sees that
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o - T_ — e ——
g2 g2 ;oz/n O2
X9 X1n 17771 X
gz g2 ; O2
Y11 Yinl . 71
. |=
) ! | .
. 5 ! .
o2 o2 90/ | 2
*m1 mn m
2 2 2
g et e gy Gy
Lfml mn | 0 m
for the diagonal elements ¢of the variance-covariance matrix of
the coordinates, St and Gy . Therefore, the constraints
i i

for the ith station have the form

n
2 gi og/n. < oi (31)
j=1 ji > i

and
n
}: g2 G?/n. < 62 (32)
21 Yii 373 Y

where o; and o§ are the maximum allowable variances in x and y
i i
at the ith station.

The drawback to these constraints is that different optimal
solutions are computed for different orientations of a given
configuration. As discussed in the beginning of this report,
control networks are based upon a standard independent of network
orientation. One desires the design algorithm to reflect this
property. It happens that the sum of the variances of the x and
y coordinates is invariant with respect to rotation of the
network or coordinate system. Therefore, a set of constraints
written in terms of the sum of the coordinate variances should
give a consistent optimal solution independent of the network

or coordinate system orientation. The constraints for 1/2u = m
stations would have the form
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filn,, ..., n_) < 02 + 02 (1 = 1,m)
i1 n. — X, Y
i i
where f: is the sum of £ and f . In terms of elements of the
. L . N X . .
G matrix, this gives i 1
n 2
) (gi + gl ) "3 ol wol (33)
=1 i Y51 ng T Yi

These new constraints are merely the pairwise sum of eq (31)
and (32). Note that these constraints are functions of the
reciprocal of the observation repetitions and are therefore
nonlinear.

Piecewise Linear Approximation

Since the variance constraints are nonlinear in the
variable n., the Simplex algorithm cannot be used. However,
the constraints (33) are immediately seen to be separable.
Applying the technique of piecewise linear approximation,
discussed previously, the constraints are approximated
over % break points at integer spacing from 1 to &. Then for
the ith station,

n -1
2 2 2 n.
2 0f (gx + g ) G—-— 2 gk < 02 4 o2 (34)
=1 ji Yyi k=1 k(k+1) Xy Yy

where 0 < nsp < 1 for all j and k. Now each variable, n.
becomes the kth repetition of the ith observation. when
rearranging terms, eq (34) becomes

I

< 2 2 Qi% -n n

> o.{g + g > ik 2 2 2( 2 2
vk j( X. . v.. ) & ey < 0o+ 0l =3 oilg + g
j=1 ji ji/ k=1 k(k+1) X, v =1 "%y yji

and the number of repetitions of the jth observation is

Qif
n. = 1 + N., -
J o1 Ik

The piecewise linear approximation is made from 1 rather
than from a number close to 0 for two reasons. Primarily,
it prevents the elimination (by assigning 0 repetitions) of
an observation. This ensures that any redundant observations
for error checking are preserved. In addition, a poor
approximation is obtained for the reciprocal function over the
region 0 to 1 using a single variable. A better approximation
is produced by using several variables in the region; however,
in the field, only an integral number of observations may be
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performed. Rather than do more work to compute a solution that
is not physically realizable and may hurt error detection, the
simple route is chosen by using an interval from 1.

Direction Constraints

One desires to satisfy the condition that all direction
observations in a given set at a station be observed with the
same number of repetitions. This condition can be met in either
of two ways. First, a series of equality constraints can be
constructed requiring that the set of direction repetitions be
equal. Second, let n; represent the number of repetitions of
the ith direction observation to all sighted stations. This
second approach is used for the design algorithm.

The second approach is particularly attractive because it
avoids increasing the number of constraints and reduces the
number of variables. 1Instead of £-1 variables per direction, the
method uses 2-1 variables per direction set; and in a piecewise
linear approximation, an additional constraint is applied to

each variable. So a reduction in the number of variables also
reduces the number of constraints. Using this approach, for the
ith station with aj direction observations in the jth direction
set,
a.
ﬁi J 2 ( 2 2 >;§f"n k
El +
L1 he1 0B \T¥yiq Yiin/ ko1 KD
n aj
2 2 2 2
<0 + 0 - > ol 6; + g >
i Yi o 541 821 3B \U%5in Yyin

and the number of repetitions of the jth direction set is

2-1
nj =1 + 2; njk
k=1

Moore-Penrose Generalized Inverse

The coordinate variances at a station assume different values
when selecting a different constrained point, even in a minimally
constrained network. This is due to the fact that coordinates
are not estimable quantities. Because of this, an optimal
design will vary according to the selection of the constrained
point. In Young (1974, p. 357), one sees that the error ellipses
steadily increase in size further from the constrained point.
Since a simple relation exists between coordinate variances and
error ellipse axes, the example also illustrates the increase in
coordinate variances. A network design would possess an
increasing number of observation repetitions further from the
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constrained point. A control network, which minimally satisfies
its relative accuracy specifications, should not vary with
respect to the constrained point.

To formulate the constraints such that this increase would
not occur is desirable. One approach is to use the Moore-
Penrose generalized inverse, (A z-1la)*, in place of the Cayley
inverse. The generalized inverse generates coordinate variances
that are not distance invariant from the centroid of the net-
work (Pope 1971); bkut the increase is in a much slower fashion
than that of the Cayley inverse. This quality, in combination
with rotational invariance, provides a guasi-homogeneous measure
of a geodetic network. Such a measure has been proposed by
Bjerhammar (1973, pp. 293-295).

Cost Function

The cost function, as discussed earlier, can be exceedingly
complex. For this design algorithm, the cost is approximated
by a linear function of the repetitions of each observation.
The function to be minimized is

where c; is the cost for each repetition of the ith opgervation.

Using a piecewise linear approximation increases the number
of variables. Each of these must be accounted for by a cost
coefficient. Since the cost function is linear and the
approximation is made over unit intervals, the function to be
minimized becomes

for an L2 order plecewlse approximation.

Since nj represents the repetitions of a set of directions
at a station, the cost function should model the larger cost of
an occupation that sights a larger number of stations. This
condition is satisfied by minimizing

a.
1

Wt

Slil
C. n..
1 k=1 K §Z1 13
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for aj directions in the ith girection set. For this design
algorithm, the cji's are assumed equal for a specific ith
direction set. This gilves

RESULTS

A program was written in FORTRAN IV (FORmula TRANslator)
to solve the second-order network design problem using the
constraints and cost function described earlier. The solution
proceeds in an iterative manner, where the most recent estimate
of the repetitions of each observation is used to form a new
variance-covariance matrix for the next cycle. The output
displays the repetitions of each observation required to meet
or better the design specifications.

The input consists of three sets of cards--position cards,
distance observation cards, and direction observation cards.
Each position card consists of a station number, the x and y
coordinates in meters, and the required variance sum

in square meters. Each distance card contains the occupied and
sighted station numbers, the wvariance and the cost of the
single observation, and an initial estimate of the optimal
repetitions of that observation. Each direction set consists
of an occupation card and any number of direction observation
cards. The direction occupation card identifies the occupied
station number, the cost of observing one repetition of one of
the directions (all are assumed equal), and an initial estimate
of the optimal repetitions of the set. Each direction observa-
tion card contains the number of the sighted station and the
variance of that particular observation in square seconds.

The program inputs the data set, constructing the design
matrix as each observation is read. The invariant quantities
in the Simplex tableau are entered, and the iteration commences.
In each iteration, the G matrix is computed using a library
pseudoinverse routine, the constraints are entered into the
tableau, and the linearized programing problem is solved by
a library Simplex routine. This cycle then repeats for a
desired number of iterations. The final solution consists
merely of the repetitions of each observation, a resultant
cost for each observation, and a total cost of the entire
observation scheme.
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A serendipitous result of using a piecewise linear approxima-
tion at integer points is that a significant number of the
observations are optimized at integer values. As seen in
figure 2, the piecewise approximation has extreme points at
the integers; and it is often there that the solution achieves
optimal values. This has two advantages. Since the approxima-
tion is exact at the integer points, exact observation variances
are being reflected in the optimal solution. In addition, since
only an integer number of repetitions can actually be observed,
a more physically realizable observation scheme results. All
this occurs without incorporating the increased complexity of
integer programing techniques.

Quadrilateral Deformation

This series of data sets was run to investigate the behavior
of the optimal solution subject to the deformation of a triangu-
lation quadrilateral. Throughout these sets, each direction
is assumed to have a variance of 9s? (seconds squared) and
the same cost (1 unit) no matter where it is observed. For
each data set, the same accuracy constraint is used for each
station:

2 2 2
ot Oy < 0.0004 m~ (meter squared).
By using these same values, the variation in the optional
solution is due solely to the variation in the geometry of the
quadrilateral.

The first test (fig. 3) was a symmetric quadrilateral, 5 km
(kilometers) on a side.

(0,5000) B C (5000,5000)
(0,0) A D (5000,0)
Figure 3.--Symmetric triangulation quadrilateral.

The optimal solution designed by the methods previously
described is summarized in table 2.
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Table 2.--Symmetric quadrilateral
design
Station Repetitions
A 5.2
B 6.0
C 6.0
D 6.0

Total cost = 69.6

Notice that no particular reason exists for station A to have
less than six observations. This could have just as easily
happened at any station. The piecewise linear approximation
does tend to keep the solution at integer values as discussed
earlier. The total cost is obtained by summing the product of
the number of direction observations at a station by the
indicated number of repetitions over all the stations.

The next test uses the same data set, except that station C
now has the coordinates (4000,5000). The solution recovered for
stations A to D was (6.8,5.0,5.0,6.0) for a total cost of 68.4
units. The surprising result of this design is that it has
an optimal total cost smaller than the optimal total cost of
the symmetric quadrilateral. To investigate this behavior, a
number of data sets were run; the results are summarized in
table 3.
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Table 3.--Deformed quadrilateral design, I

C coordinates

Repetitions

Total cost

(5000,5000) :

(4000,5000) :

(3000,5000) :

(2500,5000) :

(4000,4000) :

69.6

68.4

64.8

64.6

64.3
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Table 3.--Deformed quadrilateral design, I (continued)
C coordinates Repetitions Total cost
10.0

3.6
(3000,3000): 4.0
3.0 61.6

From the results summarized in table 3, it would appear
that the greater the deformation, the cheaper the optimal
design. The mechanism by which this occurs is best described
by considering the network in figure 4.

(0,5000) B
C
0,0) A D (5000,0)
Figure 4.--Deformed triangulation guadrilateral.

As the position of station C comes closer to station A, the
angle BCD tends to increase. The direction observations from
stations B and D intersect an an increasingly poorer geometry.
This makes the observations from A become important. It becomes
more effective to make two additional direction sets at A,
rather than one additional set at B and at D. This is reflected
by a large number of observations at station A in table 3.
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Now, since an entire direction set is observed at each
station, each repetition of direction AC also means a repetition
of AB and AD. The increased number of observations to B and D
better determines those positions, causing a reduction of the
repetitions needed at B and D. This is also reflected in
table 3.

Having identified the mechanism that describes the optimal
distribution of observations, one would expect an even lower
optimal cost if two positions are brought toward the center of
the network. BAn example of such a network is displayed in
figure 5.

- (0,0) A D (5000,0)

Figure 5.--Symmetric deformed quadrilateral .

The next set of solutions (table 4) was computed with the
positions of both B and C altered in a symmetric fashion.



Table 4.--Deformed quadrilateral design, IT

B and C coordinates Repetitions Total cost

5.2

(0,5000) - 6.0

(5000,5000) : 6.0
6.0 69.6

6.0

(1000,5000) - 4.0

(4000,5000) : 4.0
6.0 60.0

5.5

(2000,5000) - 3.0

(3000,5000) : 2.6
6.0 51.3

5.0

(1000,4000) - 3.4

(4000,4000) : 3.4
5.0 50.4

4.5

(2000,3000) - 2.0

(3000,3000) : 2.0
4.5 39.0

31
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Center Point Quadrilateral

The next tests investigate the behavior of the optimal
solution of a center point quadrilateral of triangulation. In
these tests, the geometry of the gquadrilateral remains constant,
but the effect of occupation of the central point is examined.
The observation variances, costs, and required positional
accuracy are identical to those in the preceding topic. The
geometry of the first test is displayed in figure 6.

(0,5000) B C (5000,5000)
N\ /
N Vs
\\ //
E (2500,2500)
// \\
4 \
(0,0) A D (5000,0)
Figure 6.--Center point quadrilateral.

The optimal solution computed for this configuration is (7.0,7.0,
7.0,7.0) with a total cost of 84.0. This should be compared to
the total cost of 69.6 for the symmetric guadrilateral with no
center point.

Station E is occupiled in the next test, with four direction
observations originating to the other stations. The location of
the stations remains the same, however. In this test the optimal
solution is (5.0,5.0,5.0,5.0,3.9) for a total of 75.6. From this
one sees that, if it would cost less than 84.0 - 75.6 = 8.4 to
occupy station E with a theodolite, net savings result by
performing such an occupation.

Circular Traverse
In this final series of tests, the optimal solution of a

circular traverse with a 20-km diameter is investigated. Both
distance and direction observations are made for three different
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design schemes, which will be discussed shortly. The geometry
of the first test is displayed in figure 7; and the station
coordinates in meters are summarized in table 5.

Figure 7.--Circular traverse .
Table 5.--Circular traverse coordinates
Station X Yy
(m) (m)
A 15,000 18,500
B 18,500 15,000
C 20,000 10,000
D 18,500 5,000
E 15,000 1,500
F 10,000 0
G 5,000 1,500
H 1,500 5,000
I 0 10,000
J 1,500 15,000
K 5,000 18,500
L 10,000 20,000
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For all 12 stations, the required accuracy 1is

o2 4+ 6% < 0.0009m° .
X y_

The variance of a direction is assumed to ke l.4s2,(seconds
squares) and for a distance is 0.001175m2. Finally, assume
that the relative costs of a distance and a direction observa-
tion are equivalent. Even if this is not the case, the program
allows any desired costs to be used for a network design. By
using this combination of observation variances, costs, and
desired accuracies, the optimal solution computed by the
algorithm requires each distance to be measured 3.0 times and
each direction set be measured 1.9 times for a total cost of
81.6.

The next test investigates the presence of a direction target
in the center of the traverse (10000,10000). No observations of
any type are made from this target. Since the target is being
observed to strengthen the remainder of the network, the target
position is not accurately required, and an extremely large
variance sum is assigned to it:

02 + 02 < l.Om2
X Yy —

The optimal solution for this data set states that the distances
should be measured from 2.0 to 2.7 times and each direction set
should be measured for a total cost of 64.0. This is a dramatic
reduction, showing the beneficial effect of observing directions
to a central point.

Note the possibility that the solution for the directions,
which specifies each direction set to be observed 1.0 times,
could be smaller. The constraint of the piecewise linear
approximation over the region 1 to % prevents this from happening.
If stricter requirements were made on the coordinate variance

sum, an even larger reduction in the total cost might have been
observed.

The final test investigates the effect upon the optimal
solution if both distance and direction observations are made
to the central point. In this test, the variance of the distance
observations made to the central point is assumed to be 0.0018m?.
This corresponds to a variance of (3 cm plus 3 ppm)2 for the
distance. The optimal solution indicates that the rim distances
be measured 1.0 to 2.0 times, that the spoke distances be
measured once, and that the directions be measured once for a
total cost of 67.4. This optimal solution is slightly higher
than that of the design where distances to the central target
were not measured. Remember: no observation is allowed to be
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measured less than cnce; the cost of a direction is assumed to
be equivalent to the cost of a distance; and the distances and
directions are assumed to be uncorrelated.

IMPROVEMENTS

This final section examines a range of possible improvements
that could be made to the design algorithm embodied in the
program. As discussed earlier, the program was implemented
using a number of approximations. By developing more accurate
representations of observation variances and costs, a better
geodetic network design tool will result.

Computer Storage Allocation

Although this problem was not mentioned earlier, the design
program uses extremely large amounts of computer storage with
consequent increases in computer time requirements. These
increases are of such magnitude that this problem should be
tackled before any operational use could be made of the program.

First, however, one must detail the problem. For all tests,
the program used double precision arithmetic on an International
Business Machine, IBM 370, with virtual storage. The quadri-
lateral of triangulation allowing up to 11 repetitions ran in
the 192k partition. However, the circular traverse with all
the distance and direction observations, allowing up to four
repetitions, ran in the 512k partition. This is a large amount
of computer storage for such a modest size network.

Tableau Sparsity

The reason behind the dramatic increase of computer storage
requirements is primarily due to the piecewise linear approxima-
tion. For such an approximation over integer values from 1 to
2 + 1, there is an 2-fold increase in the number of variables.
Further, the piecewise linear approximation produces an
additional 2-fold increase in slack variables and extra n x %
constraints. (See eq 34.) This results in a 2(n x 2)2 increase
in storage for those constraints alone. One approach to the
reduction is to consider revised forms of the Simplex algorithm.

The Simplex linear programing subroutine called in the
design program already uses a revised Simplex method called
the product form of the inverse (Hadley 1961). 1In this form,
the section of the tableau that holds the simple variables is
invariant while the section which holds the slack and artificial
variables is updated during the change of basis. Now, the
invariant section happens to be an augmented identity matrix
for the piecewise linear approximation over unit values. Because
of this, the identify matrix portion need not be stored so long
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as the Simplex subroutine is specially modified to reproduce the
effect of the identity portion of the matrix. This approach
would reduce storage requirements by almost half.

Variable Piecewise Linear Approximation

A second approach provides for an even more dramatic decrease
in the computer storage regquirements. Consider the piecewise
linear approximation. There is no computational reason for it
to be made over integer values or even over egually spaced break
points. Moreover, if the approximation is viewed from an
iterative standpoint, then it is unnecessary to use the same
break points from iteration to iteration. One can use a crude
approximation over a large region and select subsequent break
points that will always bracket the solution. When done
iteratively, one can solve the nonlinear programing problem to
an arbitrary accuracy using only a small number of break points.

As an example, suppose a nonlinear function may vary over
1 to 51. Rather than create 50 variables and 50 new constraint
equations, only 5 are created with break points at (1, 11, 21,
31, 41,51). Suppose the solution for that approximation is 14.
Then, the next set of break points could become (9, 11, 13, 15,
17, 19). The next break point could bring the break points into
integer spacing. Using this approach, of course, does not mean
abandonment of the advantages of break points with integer
spacing. Using this iterative approximation, one can replace
each original variable with only two approximation variables.
This would lead to a tableau storage requirement of only 8
for the approximation constraints.

In addition to the greatly reduced storage requirements,
three other reasons point to the variable piecewise linear
approximation. First, the resultant linear programing problem
will be much smaller, so that a solution may be computed much
quicker allowing the iterations to proceed at a rapid pace.
Second, since the problem is reformulated at each iteration,
roundoff error becomes much smaller. Finally, since the
approximation to the inverse is iterative (eqg 30), the algorithm
must repeat anyway, sO a smaller linear programing problem
might as well be solved instead of a large one.

One slight drawback to the iterative approach is that, if the
break points are made to "close in" on the approximate solution
too quickly, additional iterations may have to be performed until
the break points again properly straddle the solution. One must
develop some rules for the optimal rate of contraction of the
break points.
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Distance Observation Correlations

One of the major assumptions made in the design algorithm
was that the distance observations are uncorrelated. This is,
in fact, not the case for modern electromagnetic distance-
measurement instrumentation (Malla 1978). Because of this
correlation, the assumed uncorrelation makes distances appear
more effective than they are in reality.

Two approaches can be used to introduce the effect of
correlation. The first would be to develop some function of n
that adequately models the correlation. A least-squares fit
of the function could be made for data that represent the
variance of the mean over the number of observations. The
least-squares estimate of the variance of the mean could then
be used in the design algorithm.

A second approach, however, is much simpler and uses no
approximations. The piecewise linear approximation requires
the variance of the mean at each break point and nowhere else.
Therefore, if the break points are always at integer values,
then the mean of the variance is only required at these integer
values. These data can be stored in a table. There is no need
to compute some approximate least-sguares function. The second
approach seems most effective for incorporating the correlations
of distance observations.

Relative Accuracy Constraints

As discussed earlier, the specifications for horizontal
control networks are written in terms of length relative
accuracy reguirements. It is natural, therefore, to wish to
determine the length relative accuracies associated with the
optimal solutions computed using the quasi-coordinate invariant
constraints.

The length relative accuracy is expressed as l:r where

6]

1 94y
r ..
1]
and
2 _ 2 _ 2
dij = (xj Xi) + (yj yi) .

Taking the optimal solution for the symmetric triangulation
quadrilateral (5.2,6.0,6.0,6.0) and holding points A and D
fixed, one sees that between B and C

o}

= 3.7
dBC 3 cm

dBC

5000 m
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and
= 1:135,097.

R

For the deformed guadrilateral with C at (3000,3000), between B
and C one computes

o = 4.3 cm
dBC

d 3605.6 m

BC

1l

and
1

= = 1:83,546;
and for the symmetric deformed gquadrilateral with B at (2000,
3000) and C at (3000,3000), between B and C one computes

o} = 3.2 cm
dBC

dBC = 1000 m

and
- 1:31,220.

r

Clearly, the relative accuracy between B and C degrades as
the quadrilateral is deformed. Primarily, this is due to the
change in the distance between B and C. The standard error of
the length between B and C exhibits no special pattern. One
cannot be surprised at the degradation since the original
accuracy constraints were not in terms of length relative
accuracies.

It appears that the only way to ensure an optimal design
satisfying a particular design requirement is to write the
specific requirement into the constraints. Further, before one
can develop a network design algorithm, one must decide which
accuracy measures are applicable to the problem at hand. For
horizontal control networks, one would write the accuracy
constraints in terms of length relative accuracies. By linear
error propagation, the constraints have the form

2

Axi. (Ji - ZOX « t oi ) + 2Ax..Ayi.<3X - 0y

-0, ¢ t o, v > + Ayij <g§ - 20 y + 02 ) < déilj/r2
7i%5 373 i Yi¥y Y3

for all ij over every observed line.
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By being able to design networks directly satisfying the
specifications, one can scrutinize these designs with other
tests, generating ideas for specification revisions. The cycle
would repeat itself, resulting in a stronger set of specifi-
cations.

Station Occupation Costs

The next level of sophistication in modeling the field work
cost is estimating the cost of mark recovery, of tower
construction and dismantlement, and of instrument setup and
leveling. These costs are incurred at each occupied station
regardless of the number of observations made at that station.
Such costs seem to be substantial when compared to the costs
of making the observations. For this reason, the modeling -of
station occupation costs is an important problem.

Mixed Integer Methods
To model the cost of station occupation, one can use a fixed

charge cost function (Gaver and Thompson 1973, pp. 230-231).
The form of this cost function is

n k
min z = z: (ciyi) + Z; bjéj
i=1 j=1
where §: < 1 and &5 must be integer for all j. Since &: is
restric%ed to inteder values, 6j may only be equal to 0"or 1. A
station may only be unoccupied or occupied. Thus, b: refers

to the cost of occupation of the jth station. Howev%r, y; 1is
not restricted to integer values, so the problem becomes a mixed
integer problem. One may desire to also restrict y; to integer
values since only an integer number of observations can be made.
Then the problem becomes an integer programing problem.

Keep in mind that other constraints will be necessary to
enforce the fact that, if no observations from station j are
made, all observations y; originating from that station must
be 0. These constraints are not formulated in this report.

Preservation of Network Redundancy

When modeling station occupation costs by a fixed charge
cost function, one must allow each observation to achieve a
value of zero (i.e., allow each observation not to be made).
Unfortunately, any geodetic network designed in this way is

likely to have a low degree of redundancy, a most undesirable
feature.

One solution that immediately springs to mind is to develop
some constraint which would preserve the redundancy in a network.
This might require the number of different observations to a
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given station meet or exceed a specified amount. Although the
network would possess a margin of safety against observation
blunders, the set of observations without the blunders may not
satisfy the accuracy constraints. It would be self defeating
to design a network that would meet accuracy requirements
against the worst conceivable set of blunders, but this is
edging into an entire problem by itself.

Other Approaches

Perhaps the most efficient approach to network design is to
examine a subset of all possible combinations of observations
by computing some "value" of each observation. In this strategy,
the network would be "built" with the effect of each new
observation being added to the foundation of the previous
observations. This approach is listed last because its
efficiency is bought at the price of examining a subset of all
designs, potentially overlooking a more optimal design. When
such efficient algorithms are devised, they should be tested
against some thorough (if decidedly slower) exhaustive
algorithm.
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