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Erwin Schmid
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ABSTRACT. A method is outlined and illustrated by an example to compute itera-
tively both the eigenvalues and the corresponding matrix of eigenvectors simul-
taneously. The program is applicable to symmetric matrices with real eigenvalues
and, in particular, to the positive definite matrices of least-squares theory. A high
degree of precision, limited only by the capacity of the computer, is atlainable
with relatively few iterations that approach the result exponentially.

In a previous paper (Schmid 1971) a method was
proposed for computing, by iteratlion, the orthogonal
matrix of unit eigenvectors, the so-called modal matrix,
of a symmetric matrix with real coefficients (entries)
together with the corresponding set of eigenvalues. The
present paper reports the effort to implement the theory
with computational results, as justification for claims made
for the efficiency and accuracy of the method. During
this investigation a number of effective refinements in
the theory were found for the case of symmetric matrices.
These 1 have not been able to generalize sufficiently to
apply eflectively to nonsymmetric matrices. The follow-
ing will therefore be restricted to symmetric malrices,
which are of paramount importance in the theory of
least squares.

This restriction makes it feasible to simplify some-
what the notation used previously. For this reason and
for making this presentation self-sufficient, relevant sec-
tions of the previous paper will be repeated.

Essentially, the theory is based on a theorem, the
validity of which depends on the convergence of the
Left-Right Transformations (LRT)} of Rautishauser
(1958) and their identity with the convergents developed
here.

Given is a symmetric matrix N (=N7) with real co-
efficients that, for the present, we will assume positive defi-
nite such as the matrix of the normal equations in
least-squares theory. A product of the type TNT—! is
known as a similarity transformation of N and has
the same eigenvalues, or characteristic roots, as N. It
has been proved that for such N there exists an ortho-
gonal matrix X, i.e., one for which XT=X~1, such that

XNX-1=XNXT=D,
where D is a diagonal matrix whose elements are the
eigenvalues of the matrix N. The orthogonal matrix X

(or its transpose XT) is designated the modal matrix
and its rows (columns) are the unit eigenvectors as-

soclated with the corresponding ecigenvalues in D. The
theorem, cited above, on which the proposed algorithm
is based now reads:

Theorem A: The matrix C~! N* where N*'=C C*,
converges to the modal matrix X as n increases.

The product of C C' is the familiar Cholesky fac-
torization of the symmetric matrix N*" into the lower
triangular matrix (LTM) Cu
the corresponding upper triangular matrix (UTM). The
inversion of the triangular matrix C, needed to form

the product C‘“‘IE’;X“ is a relatively simple and

times its lranspose C”,

straightforward process that is at the root of all matrix
inversions based on the Gauss algorithm. The correspond-
ing convergent N, to the diagonal matrix D is then
N =X NX' (1)
and the magnitude of the off-diagonal terms of this
convergent (1) is the criterion for the sufficiency of
the iteration.
To show the orthogonality of C_IllN“, we form the
product
X XI=(CTINY) (C-IN)T=CI N> (C- )T =
C—1C CHCT) =1,
substituting C C7 for N** and making use of the sym-
metry of N". The transpose XT is therefore X! of X |
and hence X“ =C~1 N is orthogonal.
A superior method of computing X, follows from the
following considerations. Interchanging the factors of
N==C C7 (2)
forms the product CTC , the LRT of C C”. Factor-
ing this product by the Cholesky algorithm we obtain
CTC =K KT
n n n
so that
No=NaN»=C C'C C'=C K K*CT
T e T
or

Nen= (Cn Kn) (Cu Kn)T' (4)



Since C,, and K, are by definition LTM’s, their product
is an LTM and (4) is consequently the Cholesky fac-
torization of N'", which is unique. From the definition

(2), Nin= Czu C«f,, and therefore,
C,, = Cn Ku : (5)

2n
The corresponding convergent to the modal matrix is
X, =C o N»=C'C C'=K-!C-!C C' or
X, =K-1cr, (6)

A simple iterative procedure for computing C,, and
hence K, and X.,, that is remarkably free of error ac-
cumulation is suggested by (5) and (6).

The Cholesky factorization of the given matrix N in
our notation is N=C CT An LRT and a second fac-
-*K LG
C, K =C completes the ﬁrst iterative cycle. Factoring
lhe product CTC, into K KT yields C K =C_ elc.,

the index n of C“ being doubled at each step. Thus after
1+ 1 iterations we obtain C, and K, with n = 2

torization gives CT C The multiplication

This procedure is superior to raising N to the 2n'
power by successive exponentiation as implied in the
original paper. A well-known property of the LRT is that
it tends to rearrange the rows and columns of the trans-
formed matrix such that the diagonal terms, and even-
tually the eigenvalues, are in progressive decreasing
order. One consequence of this is that a considerably
higher indexed C, can be obtained by the iterative ap-
proach of the previous paragraph than by straightfor-
ward Cholesky factorization of N#", In fact, with a prop-
erly scaled matrix, the only limitation to this iterative
process appears to be the limitation of the electronic
computer in floating point mode with respect to the size
of the exponents of 10. The exponents of the elements of
the C, and K, matrices increase numerically with
creasing n and eventually bring the computation to a

halt.

Further improvement in precision results from the use
of X211 from (6) rather than from X“=C*:l N" specified
in theorem A. Not only is the index of the convergent re-
sulting from the use of the matrix (6) twice as large
but, by the nature of its formation, this formula produces
an orthogonal matrix almost precisely, as the numerical
example below will indicate. For a similarity trans-
formation with an orthogonal matrix this fact is of
basic importance.

An electronic computer operating in floating point
mode has an upper and lower limit to the magnitude of
exponents it can handle. The small desk computer used
in the computation of the numerical example, for in-
stance, has a range of numbers between 10" and 10'*°
in floating point with 14 significant digits. In order to

keep the elements of the matrix N*" within these limits
for maximum n, it is expedient to scale N so that its de-
terminant det N=1. For an m Xm matrix N, this can be
accomplished by dividing each element of the given N
by the mth root of the determinantal value, which is de-
termined in the first operation of the program, the
Cholesky factorization of N into C Cl . The deter-
minant of each of the factors C,, and Cl ; is the product
of the diagonal terms of elther ‘of these two triangular
matrices, and the determinant of N is the square of this
product. Let this divisor of the elements of N be k and
the resulting matrix be N*, so that det N* =1. Then

1/k XNX"=XN* XT"=1/k D,

the matrix on the right being the diagonal matrix D with
each element divided by k. The eigenvalues of N* are
thus 1/k times those of N and the eigenvectors are un-
affected.

Another useful device in the application of this algo-
rithm is to increase or decrease each eigenvalue of N
by a scalar k simply by adding or subtracting k to each
diagonal term of N. This transformation aliso does not
affect the eigenvectors, as is seen from the identity

X(N+kDH X =XNXT+XkIX"=D +kI,

since XXT=1 and the scalar k is permutable in matrix
multiplication. If the given N is not posilive definite, i.e.,
if it has one or more negative or zero eigenvalues, the
ordinary Cholesky factorization with real numbers will
fail because some reduced diagonal term becomes negative
or zero. By adding a sufficiently large constant to each
diagonal term of the given matrix N, a solution for the
modal matrix and eigenvalues is obtained which differs
from the solution for the given matrix only in that all
eigenvalues are positive and too large by this constant.
This transformation is also eflective in the case of a
matrix in which the two smallest eigenvalues are very
nearly alike. The convergence for such matrices is
notoriously slow, a fact which is known from the theory
of LRT’s, although exaclly equal eigenvalues create no
problem whatever in the algorithm. By subtracting from
all the diagonal terms of the given matrix a quantity
equal to the leading common digits of these nearly equal
eigenvalues, a matrix is produced that converges normal-
ly. The digits in question are obtained, of course, from
the preliminary computation that has failed to converge
sufficiently.

Another application of this device is for a matrix, all
of whose eigenvalues are known to exceed a large num-
ber, say 1,000. In such cases it is advisable to subtract
1,000 from all diagonal terms of the given matrix and
thus gain 3 additional significant digits in the result.



However, the number subtracted must not be too large,
L.e., too close to the smallest eigenvalue, because in that
case the resulting matrix approaches singularity and the
algorithm becomes unstable. In fact, if the matrix as
given is of this nalure, it may be necessary to add a
constant to the diagonal terms lo obtain a sufliciently
precise result. One indication of this situation, i.e., that
the ratio between the largest and smallest eigenvalue is
excessive for the compuler in question, is that the num-

4.3951590683864—01
—8.2442907566567—-01
3.1870201627928-01
1.5991082680715-01

5.9680546178517-01
5.5401755926016-01
3.9824530605089-01
1.2221218290361-01
and D is the diagonal matrix D(.l, 9, 16, 25).

9.1512693587807 00 6.5720123130050-01
0.5726123130050-01 1.1181926816828 01
3.9705902716662 00 7.3475030994285 00
-3.61 738661638001 1.7717316323321 00

The first step in the program is the Cholesky fact-
orization of N into C,, C . The product of the diagonal
terms of these two lrlan"ular matrices gives the values
of det N. From the conslruction we know in this par-
ticular instance that det N is 4X9X16X25=14,4100,
i.e., the product of the diagonal entries of 1), the imposed
eigenvalues of N. Dividing each element of N by 14400%,
we get the matrix N* whose determinant = 1, and which
now replaces N in our computations. This divisor is
stored and eventually used as a multiplier for the eigen-
values of N* to give the corresponding values of N.
The computer repeats this cycle eight times:

1) multiplying C* by
C'C intoK K7

C,  and factoring the product

ber of iterations the computer can carry out without
overflowing becomes small.

Before going into further theorelical queslions, we
show some results of a numerical computation which was
carried out on a programmable electronic desk cal-
culator. In order to have a running check on the results,
the symmetric matrix N to be tested was constructed
from the formula N=X"DX, where X is the arbitrary
orthogonal 4 X4 matrix

—6.5619076001253-01 1.1021582116132-01

—0.8252850637838-02 —9.3395882078510-~02
4.1138783519257-01 =7.5373231581578-01

6.2661323926591-01 6.3521328293980--01

The resulling symmetric input matrix N is then

3.9703902716662 00
7.3175030991285 00
1.4329426781752 01
4.6125167561154 00

-3.611738066:10380-01
1.7717316323321 00
4.612516756:1151 00
1.9331377012634 01

2) multiplying C by K to obtain with (5) the
quantity C,, for step (1) of the next ileration, until
the entries of the matrix C" C = get too large for the

computer to handle.

Having found C, and K, for maximum n, all that
remains t() be done is to invert the I.TM K, and form
K71 CT —

Verwent N

in accordance with (6) and the con-
]

'_X NXT . The

2n

(eight) appears to be typica] for this particular pro-

number of iterations

¢ram and computer and permits the computation of
N, =X  NX"  the 128th convergent to the diagonal

128
matrix of eigenvalues D.

The results to 12 decimals for X,.5 are

0.159910826807 0.422242132904
-0.318702046279 —0.398245306051
0.821129075667 —0.5514017559262
0.439515906836 0.5963051461790

and for Nj.g
21.999999999990 0.000000000QOS
15.999999999996

To produce this output requires only one inversion
of a triangular matrix and only one modal matrix and
one convergent, i.e., the final ones, X., and N,, need
to be computed. .~

Comparison of the output X,.s with the X used ini-
tially to form N shows that the rows are in reverse

0.626613239266 0.635213282910
—0.414387835192 0.753732315316
0.068252856637 0.093395832078
—0.656190760010 0.110215821161
—-0.00000000021 —0.000000000013
0.000000000002 -0.000000000002
9.000000000030 —0.0060000000051

4.000000000028

order, a consequence of the LRT’s characteristic rear-
rangement of eigenvalues in order of descending magni-
tudes. With the use of permutation maltrices it can be
shown that a permutation of the rows of X and a similar
permutation of the rows and columns of the D matrix
produce an orthogonal matrix X and diagonal D re-



spectively, such that the resulting N X‘ D X is iden-
tical with N = X"DX. It should also be noted that some
of the eigenvectors have changed sign. This, too, is a
consequence of the rearrangement of the eigenvalues.

The orthogonality of the X., matrix computed with
(6) can be verified from the product X X" = I. Unlike
the algorithm suggested in Schmid (1971), it needs no
correction in general, the product I bemg diagonal to
within practically the last decimal on the computer. This
is also apparent from the terms of the convergent N,.q,
demonstrating not only the orthogonality of X,. but also
its validity as a convergent lo the modal matrix.

A significant improvement in the convergence and pre-
cision of the result above can be obtained by permuting
the rows and columns of the input symmetric N so as
to put its diagonal terms in descending order of magni-
tude from top to bottom. It will then be necessary to
permute the columns of the output matrix X correspond-
ingly in order to associate the individual eigenvectors
with their proper eigenvalues.

Returning now to the theoretical aspects, we continue

the series of LRT’s beginning with CHCI;I,CTCH
1

K“ Kl‘l ..., as follows

NQ" = = Cn C:

Nen— C1C =K KI

Nfil* K* K =P, Pl

N = }ﬁ P o =Q Q (7)
N2=Q'Q =R R!

Ne=RTR =S ST

NQ"* SF S etc

on

Since it has been postulated that C'C is factorable
into K‘1 K:, the LRT Klll K will also be factorable,
» QT Q  etc. All of these
products will be factorable because the LRT does not
increase the order of magnitude of the coeflicients or
terms of this sequence of matrices and because, in ac-
cordance with the Rutishauser theory, the sequence be-
comes increasingly well-conditioned. It remains to be
shown that, as indicated by the notation in the first
column of tabulation in (7), this sequence of LRT’s is
actually identical with the sequence of convergents of
the 2n™ powers N?" of the given matrix N evaluated at
intervals n, 2n, 3n . . .

producing in sequence PP

The proof is by induction.
According to the theorem A, N*" factored into C C*
yields the orthogonal matrix X =C~!N" and its tran-
spose XT =X~!=N""C
such that
N =X NXT
=C-!N*NN-—*C_ (8)
=CINC

and

n

N‘zn: CflllNzn Cu (83)

by actual multiplication of (8) by itself 2n times. From
(8a) follows

Non=C-IN»C =C-! cacC =CcC

as indicated in the second line of (7). Similarly for the
next line in (7), after factoring C':;C , into K" K]: ap-
plication of the theorem A yields an orthogonal matrix
K= N" "which advances the convergent N by means of
the transformation

K—IIINI:IN I\Ni:i Kll :KiilN“ n
=K“"C*1N Cll K using (8)
= CZ“’ NC, from(5).

This convergent is, therefore, equal to N.,, according
(8) and hence

(N, ) =N2=C 1N C
_K¥|]1 C*llx Cucvll; CnKn =K7111K Iﬂ] K
:KT\KU’

as indicated in the third line of (7).
subsequent lines requires the relations

Induction in the

C, .=C K P
C _C K PHQ“
etc.,
which can be readily established from N®:, N* . . . in

analogy to the derivation of (4) and (5) from N*,
If, therefore, N**=C C' is computable, N N N
. are computable, as are X, X.,. X., . .

LRT’s Nov, Nov N

the degree of approximation attainable, and in practice

< usmg the
. Theoretically there is no limit to

any degree of accuracy desired can be obtained by testing
the orthogonality of the last X computed and correcting
it if necessary to make it rigorously orthogonal. A method
of correction is shown in detail in Schmid (1973)

Setting n=14 in (7) produces the sequence of con-
vergents N, le,’ N
original series of Rutishauser LR transforms for the
case of a symmetric N and Cholesky factorization. This
identity proves theorem A and. by comparison, illustrates
some advantages of the proposed method.

., which in our notation is the

1. Not only the eigenvalues but the corresponding
eigenvectors are produced.

2. Corresponding to i cyeles of this method, 2" LRT’s
would be required to obtain the same convergent to the
diagonal matrix of eigenvalues.

3. Suprisingly enough, although the Rutishauser LRT
is relatively free of error accumulalion, comparison with
the numerical results from the above method, even though



the latter implicitly involves malrices with the eigen-
values raised to the 2n" power, shows even less error
accumulation. Furthermore, any error accumulation
present can be eliminated by making the matrix X,
rigorously orthogonal, a device which is not available
in the Rutishauser approach.

The basic iteration cycle used in the numerical example
comes to an end with X., computed from (6) when
Cy C, can no longer be factored. Inspection of the
off-diagonal terms of the matrix X, NX! =N
show whether N has been sufficiently diagonalized.

If further convergents are needed, the most obvious
procedure that presents itself is to treat this convergent
Nzy in a manner analogous to the initially given N and
find the 2n™ convergent of N,,. It is however, unnec-
essary to repeat the entire cycle, since the tabulation (7)
shows that N the first intermediate result to be com-
puted, is equal to KTK = both of which factors are
available from the last cycle. From this product compute

K’:lrl Kll= Pn Iyl]:

will

and
— T
P];l Pll Qn Qll .
According to theorem A, the orthogonal matrix Y,

=P7>" N used as a similarity transformation on N
produces the higher convergent

Yn N2n Y:: P'l Nl'l_'u N 211N‘j‘lil Pn: P-:l NZn Pu

n

and, therefore,

Yn N2“ YT = Pii Nil:l Pn = P_n1 KIT Kn Pn’

Zn n

=P P PP
=PP
:Nzn l

3n

from (7).

It is, however, more efficient at this point to compute
by analogy with (6) the orthogonal matrix

Y2n = Qﬁnl P’lj: ? (9)
which will advance N,, to N,, by means of the relation
N =Y N Y7

4n 2n 2n 2n

or, since N:,.Zin N an,
N.m:Y‘ZHXQnN X Yo, -

n n
Hence

Ni[;: (Y.’ln X2n) Nzn(Yizn in ) ! . (10)

Also

New =X N XT by definition (11)

4

and

Nji’l=Q:‘ Q“ from (7). (12)

It is apparent from (10) and (11) that the new con-
vergent to the X matrix is

:Xm = an in,

with Y., computed from (9). This completes the first
iteration of the optional new cycle and additional itera-
tions of this type can be repeated as often as desired.
The foregoing considerations show that this type of
iteration cycle is based solely on the application of a few
basic principles used previously and repetitions are based
on a continuation of the tabulation (7).

(13)

The next iteration replaces (9) with
Y new=5"'R"
where QT Q =R RT

n n

RTR =S §r {&re taken from tabulation (7).

n

The new (13) is then
X new=Y new X old

etc.

Fach iteration of this type increases the subscript 2m,
of the previous convergent Nom, by 2,, which is an in-
crease no longer exponential as in the first series of
iterations but, in view of the magnitude of n, still a
considerable linear rate. In this supplemental cycle, the
Y matrix of (9) and (13) approaches the unit matrix
I in the limit, which can serve as a test for the con-
vergence.
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T. Whalen and Emery Balazs, November 1976, 30 p. (PB265-
421). Specifications for releveling the National vertical
control net were tested and the results published.

Selenocentric geodetic reference system. Frederick J.
Doyle, Atef A. Elassal, and James R. Lucas, February 1977,
53 p. (PB266046). Reference system was established by
simultaneous adjustment of 1,244 metric-camera photographs
of the lunar surface from which 2,662 terrain points were
positioned.

Application of digital filtering to satellite geodesy.
C. C. Goad, May 1977, 73 p. (PB270192). Variations in the
orbit of GE0S-3 were analyzed for M, tidal harmonic co-
efficient values which perturb the orbits of artificial
satellites and the Moon.

Systems for the determination of polar motion. Soren W.
Henriksen, May 1977, 55 p. Methods for determining polar
motion are described and their advantages and disadvan-
tages compared.

Control leveling. Charles T. Whalen, May 1978, 23 p.
This publication describes the history of the National
network of geodetic control from its origin in 1878 until
today and presents the latest observational and computa-
tional procedures.

Survey of the McDonald Observatory radial line scheme by
relative lateration techniques. William E. Carter and T.
Vincenty, June 1978, 33 p. This report contains the
results of experimental application of the ''ratio method"
of electromagnetic distance measurements for high resolu-
tion crustal deformation studies in the vicinity of the

McDonald Lunar Laser Ranging and Harvard Radio Astronomy
Stations.
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