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THE STATISTICS OF RESIDUALS AND THE DETECTION OF OUTLIERS*

Allen J. Pope
Geodetic Research and Development Laboratory
National Geodetic Survey
National Ocean Survey, NOAA
Rockville, Maryland

ABSTRACT. Insofar as possible it is desirable to base
the criteria for the detection of bad data on rigorous
statistical arguments. This report recapitulates the
statistics involved and describes the "tau" criterion
in detail. This criterion is especially suited for
use in simultaneous Teast-squares adjustments of tri-
angulation networks. Special note is taken of yet un-
solved problems involved in the rigorous derivation of
still more efficient and exact rejection criteria.

INTRODUCTION

The examination of least-squares residuals for the detection of
"bad data" is one of the most important and effective means for the
quality control of geodetic work. In order to provide some motiva-
tion for Tooking at residuals from joint least-squares adjustments at
an early stage, a general overview of the quality control problem
will be useful.

For this purpose, all large adjustment tasks can be broken down

into smaller components which are, in turn,decomposable...down to the
smallest redundant combinations of observations. It may or may not
be the case that the results of component adjustments at a given
Tevel are in fact combined sequentially into an algebraic equivalent
of a component adjustment at the next higher level. This is always
possible in theory, though not always most practical or expedient.
More commonly, rather than sequentially built up, all higher Tevel
adjustments are reinitiated from a common "data-base" level (for
example, the Tist of directions in triangulation) which is only one
step removed from the "raw" observations. For example, in triangu-
lation, one sequence of partial adjustments whose examination might
be undertaken for quality control purposes would be: station adjust-
ments, triangle adjustments, quadrilateral adjustments, project ad-
justments (several Tevels or sizes), block adjustments, and finally
datum adjustments.

However this seauence of adjustments is actually carried out,
the interest here is in the statistical evaluation of all stages.

*Presented at the XVI General Assembly of the International Union of
Geodesy and Geophysics, International Association of Geodesy, Grenoble,
France, August 1975,




The purpose of this statistical evaluation is quality control, which

may be described as the search for the answers to the following ques-
tions:

1. What does the evidence of the data say about the accuracy
of the observations? Does this evidence show that these
observations meet the requirements associated with the
specifications under which the work was done? If not,
why, and what can be done about it?

2. What does the answer to 1 imply about the accuracy of the
final products of the adjustment (e.g., positions)? Do
these accuracies meet the project specifications, if any,
or conform to standards associated with the specifica-
tions under which the work was done? If not, why, and

what can be done about it?

3. Whatever the answers to 1 and 2, is there any additional
evidence for the presence of large errors (which may be
blunders) or for subsets of poor quality data? If so,
can these anomalies be explained and can anything be
done about them?

An ideal quality control procedure would also answer the additional
questions:

4. What statistical measures of confidence can be associated
with the assertions made in 1, 2, and 3? Do these mea-
sures of confidence meet conventional statistical stand-
ards? If not, are there alternative analysis procedures
or survey designs which will enable these standards to
be met? In 3, is the geometric and repetitive redundancy
sufficient to insure (with a desired confidence) the de-
tection of large errors when they occur?

A modern approach to survey design starts with preliminary an-
swers to 1 in the form of accuracy figures of the component observa-
tions and proceeds by simulation to find the answers to 2 and 3.

One may then attempt to perturb 1 to improve the answers to 2 and 3.
This should be done in the Tight of a theory and proven methodology
for joint optimization if it is not to have the character of a
"groping in the dark." However, the finally arrived at accuracy fig-
ures still have to be proven to be operationally realizable and econ-
omic, and specifications furnished for an observational program which
will reliably reproduce them.

The use of the word "accuracy" above needs some discussion. In
the usual absence of true errors, direct estimates of accuracy are



impossible. It is likely that the total variance will have to be
broken down into an "error budget" of component variances or error
sources, each of which expresses a specific sort of internal precision.
Instances are the within-nights component and between-nights component
in astronomic work (Carroll 1975), and the station component and the
work component (the notorious "hidden error variance” visible to the
net adjustment but invisible in a station adjustment, due to horizontal
refraction and errors of centering, targeting, systematic pointing er-
rors). If an adequate components-of-variance model is used and the ob-
servational program and the physical-geometric constraints of the
adjustment make possible the estimation of the various components (this
is a generalization of the statistical model two, random effects, anal-
ysis of variance problem), then the sum of variance components in the
error model provides a way of "creeping up on" an estimate of accuracy
even when the total variance is itself not directly estimable from com-
ponent adjustments. This assumes thatall systematic, that is fixed,
effects are either corrected for, canceled out by the design of the
observational procedure, or modeled and estimated in the adjustment it-
self. Part of the value of the random effects model is that certain
error sources that are difficult or impossible to model as fixed ef-
fects in ordinary triangulation, such as the errors mentioned above as
being visible to the network adjustment but not the station adjust-
ment, can be treated as random effects to achieve an error analysis
that incorporates a statistical estimate of the influence of these er-
rors on derived quantities as expressed in their variance. However,
there does not yet seem to be any universally accepted solution for

the general random-effects analysis of variance, in contrast with the
fixed-effects analysis of variance, whose generalization is known to
every deep student of adjustment theory. It is the same as the theory
of the general linear hypothesis in the presence of singularities.

Obviously the answer to "What can be done about it?" depends on whether
one is looking at a simulation for planning, "real time" reduction of new
data, or old work from the files--Teading in turn to the redesign of the
survey, the acquisition of new data, and the acquisition of experience.

At this point one may envision a spectrum of approaches to qual-
ity control whose extremities fall on either side of the above mentioned
division into components. A thoroughgoing approach would be to
examine data in as many subsets and in as many different Tevels of
size as is economically possible. Given the practical Timitations on
the thoroughness with which this can be done, one has the yet-unsolved
problem of the selection of the sequence and coverage of the compon-
ent adjustments that will insure quality control of a desired confid-
ence. In fact the choice of components is typically an accident of
the history of the growth of the triangulation network. Truly sequen-
tial techniques, ideally incorporating "back tracking"-, partial
batching-, and localization-capabilities, are relevant here. The
other extreme consists in proceeding immediately to the joint




adjustment of all data with as little preliminary evaluation as possi-
ble and relying upon the results of this adjustment (or repetitions of
it) to point out any quality control problems.

A certain amount of "back tracking," in the general sense of mov-

ing from a larger adjustment to a smaller component, will prove useful
as a diagnostic tool in the search for the answer to the "Why?" Tisted
among the questions above. The basic statistical motivation for a
thoroughgoing quality control procedure, as just described, is the be-
lief that there are errors (or components of variance) that are only
visible in larger net adjustments incorporating all redundancy, avoid-
ing edge effects, and capturing a redundant sample of the random ef-
fects accounting for the "hidden" error variance, which varies with
atmospheric conditions, terrain, observers, instruments, specifica-
tions of work, etc. On the other hand, there is also the conviction
that the examination of the results of large joint adjustments, be-
sides being cumbersome and expensive to repeat, cannot be relied upon
to detect all errors.

Quality control, as described here, covers a great deal more than
Just the examination of residuals. It involves estimation of variances,
various tests of significance on variances, and possibly other checks
on closures of various types or on alternative measures of random var-
iation other than the variance or its square root. This paper aims to
describe one of the statistics involved in the examination of resid-
uals, excluding other aspects of quality control.

Now it has to be confessed that there is still a fifth class of
question involved in quality control. In any problem involving a suf-
ficiently large mass of heterogeneous data and complex systems of pro-
grams for their reduction, the importance of this aspect grows even to
overshadow the other four. That is:

5. Have any mispunches, operator's errors, programming blunders,
etc., made nonsense of the results of the program just run?
If the answer is "No," how are you sure? (Here one already
knows the answers to "Why?" and "What can be done?" -- human
error, and "go through your program again and again.")

Though not a statistical question, this too is part of the motivation
for looking at residuals.

STATISTICS OF RESIDUALS, I

Unfortunately, residuals are not true errors. From the least-

squares solution of full rank observation equations AX + L = V,_one
has the Teast squares residuals and their covariance matrix (using an
estimate of the variance of an observation of unit weight, 5;5);
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Introducing the true error e = L - E(L), with the assumption that the
model of the observations is unbiased, E(L) + AX = 0, equation (1) be-
comes

V=Me,* (3)

where M denotes the matrix in brackets in equation (1). By the substi-
tution V = SV, € = Se, A = SA, where P = StS, these equations take the
form

(4)

=|
m

y =

Bo=Mal. (5)

Note that M = I - ﬁ(ﬁtﬁ)*lﬁt is an idempotent matrix. That is,
MM=M In the ordinary case of a diagonal weight matrix P, vV =Sy

means V% = /by vy- With P = 2;1 oo’ s V} = Vi/0;, o, being the a priori

3
standard error of the error on the <th observation, €5 Also note that

- = 2 s =M a2
EE I gys 1IN contrast to EV M oy -

With these preliminaries, it is already possible to make several
points about the distinction between V's and ¢'s.

Besides being idempotent, M is the projector onto the orthogonal

complement of the model space (the column space of A). Thus for any
Y =AX, V'Y = 0. The situation is depicted in figure 1.

*In a more precise notation, the least-squares residuals given by
equation (1) should be distinguished from other values of V by writing,
for example, V... Here we follow common adjustment theory usage by omit-
ting the LS. Alternate possibilities, V or &, are rejected in this
discussion, the latter since we wish to emphasize the shortcomings of V,q
as an estimate of e, and the former as imprecise.




Figure 1.--Least-squares adjustment as an orthogonal projection
in the space of the observables.

The projection of the true error vector onto the model space, U,
orthogonal to V} is lost and irrecoverable. Now picture many similar
configurations, such as the one indicated by dotted lines. ¢ varies
randomly with a scatter described by Z= but such that always L+e-= ﬁxtrue.
Averaging over all random occurrences of the true error, that is, taking
expected values, one obtains E{ete ) = n o E (Eﬂtﬁj =u 063, and

(GWZV) = (n - u)o 0 , where n and u are the dimensions of L and X. Here
we have used E(e te €)= tr zz and a similar formula for U and V, and the

fact that tr M = rank M for any idempotent matrix M.

Thus E(Qﬁtﬁd = E_%_E E(Etg) = (n - uo?, a familiar result that is the
N t —
basis for the unbiased estimator of c&’; g&f: x_ﬁv. (Note: vipy = vtv.)

The point is that we cannot know the "invisible" component U in any
given instance, and it is only possible to circumvent this Timitation in
the average. The average square Tength of the invisible component is
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EUutu) = %*E(EJ:E) = u 062. Obviously, for n >> u; V ~ ¢ . This,

when applicable, simplifies the statistical argument. Unfortunately it is a
distinctive characteristic of geodetic networks that u/n does not become
arbitrarily small, but remains remarkably constant over wide variations

in the extent of the net. For triangulation (putting the residual in

the net adjustment on the single mean direction to each remote station)

the value of u/n is about 0.5, for leveling 0.33. In summary, residuals
are but the visible components of true errors.

Another difference between V and ¢ is that they possess different
covariance structures, as noted above. Returning to iv in equation (2),
we see that the first term P‘lcoi2 is just the covariance matrix of the
true error (a priori or a posteriori, depending upon whether of or 35
is used). The second term, which it is useful to call the "geometric"
term because it reflects the geometry of the network through the design
matrix A, happens to be in its own right the covariance matrix of the
adjusted observables. The geometric term is generally full even if P
is diagonal. A practical hurdle in computing EV is the computation of
this second term which entirely accounts for the inequality of ZV and
Z.. No theoretical or algorithmic difficulty is involved; it is
solely a matter of time and expense for large triangulation adjust-
ments (still a consideration even with today's computers). Even the
computation of the diagonal terms alone is suspected to be already
past the point of diminishing returns at which the small improvement
in rejection procedures thus gained may not justify the expense.
Hopefully, it will be possible to resolve this issue in the light of

further investigation and experience.




The relative importance of the two terms can be roughly assessed by the
measure tr(x P)/n, or what is the same thing, (tr £)/n applied to the two
terms of EV" This gives s% and (u/n)o%, respectively, for the two terms.

The fact that M (and also the second term of M) are jdempotent
and non-negative definite makes it possible to say quite a lot about
the magnitude of their elements without actually computing any. The
following equalities and bounds are easily proved.

(1) (average diagonal term of M) =(n - u)/n
(2) 0 = (any diagonal term of M ) =1

(3) d = (r.m.s. variation about their mean of the diagonal terms
i n-u u_
of M) s;‘/(——ﬁ—) (ﬁ)
(4) r = (r.m.s. value of the off-diagonal terms of j ) =

SRICIEHE

In fact d? + (n-1) r2 = (Hﬁg- %— - Also note that if any diagonal
term of M is either 0 or 1, thed all the off-diagonal terms in that
row and column must also be zero. The bound in (4) can be misleading.
The number of off-diagonal terms increases with n?, whereas the number
of significantly nonzero off-diagonal terms probably increases lin-

early.

That 0 < 0%. < oé/pi, a restatement of (2), is obvious from equation
(2). This is somewhat paradoxical at first sight, since one might
think that by manipulation of the weights and/or geometry the variances

of residuals and adjusted observables could be varied arbitrarily.




Again note the important role played by the ratio u/n. For example,
the bound in d is largest for (u/n) = 0.5, the triangulation value.
The consequences of the large size and constancy of u/n hark back to
the traditional objections to least-squares adjustments of triangu-
lation:; that they cannot be relied upon to localize the error and
instead "spread it around," introduce spurious correlation, and
the like.

STATISTICS OF RESIDUALS, II

The discussion thus far has been purely algebraic. Turning now
to the distribution of the residuals, the standard assumption of nor-
mality of the true errors is made. That is, e is distributed as
9g1tivariate normal, N(O, £_). This gives & ~ N(D,IUJZ), and
V ~ N(O’EV'); therefore n(O,cViZ) is the marginal distribution of the
7th residual Vi where (in the case of diagonal weights):

The story does not end here, however, for two reasons. First, this re-
sult still requires the assumption that the true value of 563 is known,
whereas real data frequently give evidence that this is not the case
by significant differences (as measured by x?) between the posterior
estimate and the assumed prior value of o§ . Second, this result ap-
plies to a single particular residual but there is as yet no provision
for control of the significance level when examining groups of resid-
uals. In this case one does not look at only one residual selected in
advance, but instead examines the residuals in order of decreasing
magnitude. Thus, complete statistical control of the test will require
the distribution of the Zlargest residual rather than of a particular
residual.
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The procedure which we have called the r (tau) criterion for re-

Jjection of residuals incorporates these extensions, in the first case,
rigorously, in the second case, incorporating some anproximations. To
discuss these features of tau it will be necessary to review briefly
some background on Studentization and tests of hypothesis. Before
this, however, a short digression on the operational meaning of sta-

‘tistical statements about residuals.

What does it mean to assert that Vi o~ n(0, oy 2)? One way to test
one's understanding of such an assert10n is to construct a thought-
experiment in which its implied statements of probability can be real-
ized as the large sample limit of frequencies. Conceive of m = 100
(say) repetitions of a geodetic survey involving n observables, that
is, identical configuration, instrumentation, etc., differing only in
the errors affecting the observations. These errors are assumed to
come from a random normal population described by N(O,EE). Each sur-
very is then adjusted using P = 2;1. These 100 adjustments produce

100 residuals on each of the n observables. If these 100 residuals on
observable i (say) are then used to plot a histogram, this histogram
will approximate n(0,c 2) and the approximation will improve as m (the
number of repetitions of the survey, not the number of observables

in the survey) increases. This assertion is true for i = 1, ..., n,
and in qenera] this will involve h different distributions with n
different Uv 2's. This is because the geometric part of z, is not, in
general, constant along the main diagonal even if P is. ThTS in turn
is due to the variable geometry of the net. Whereas a uniform network

2'5, one fact of Tife in dealing

will produce relatively uniform Gv
with the triangulation as it ex1sts in North America is that the geom-
etry, instrumentation, and specifications of the component work are

often far from uniform, particularly in municipal surveys.
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0f course, this thought experiment is never carried out in reality
for we have only one survey with only one residual on each of the
n observations. Pooling, then histogramming these residuals produces
a mixture with no claim to normality, asymptotic or otherwise. It is

an interesting statistical exercise to derive the theoretical shape of
the resulting probability density function, but this can be done only
if the o, ?'s are known, or if some distribution of the sz is assumed,
in which éase the mixture can be approximated by a compound distribu-
tion. One finds the characteristic departures from normality--more

peaked, Tower shoulders, higher tails. If the ¢,2 are known, then

the residuals can be standardized to v1 = v, /0V1V1 Then 61;u n(0,1),
and the V1 can be pooled without producing a mixture since pooling of
n{0,1)'s produces another n(0,1). Any attempt to reason backward from
residuals to deduce characteristics of the true errors, difficult in
any case, must take account of the varying cV 's. In the absence of

Oy:'S > which have to be computed from the relat1ve1v expensive for-
mula (2), one frequently sees partially standardized residuals (Vifdi)‘

Thus we see that histograms of residuals have to be interpreted
with some care. Tau, the distribution of an internally Studentized
residual, is impossible to realize as a histogram from one survey for
the reason that there is only one value of the random variable 302
per survey, and the tau distribution incorporates a random variation
of 802 that can be realized as a frequency only by the sort of
thought experiment described above.

The term "Studentization" refers to the design of a statistic
that is independent of the (unknown) true value of one or more popula-

tion parameters. For example, if y ~ n(u,o2), then Xg = (y-u)/o ~ n(0,1).

The distribution of X, 1s independent of the parameter values, but the
statistic x, is not, since it requires knowledge of u and 0. One way to




12

avoid this requirement is to "randomize" the parameter by replacing its
unknown true value with a statistic, itself a random variable, which is
in some sense an estimate of the parameter in question. (In the modern
approach to Studentization expressed in the first sentence of this para-
graph, the choice of alternative statistics is somewhat wider than this
statement would imply.) The distribution of the new statistic must be
known so that it can be used to make statements about probability.

In the example, the unknown parameter u is easily eliminated (in

fact, so easily that it is not usually thought of as an instance of
Studentization) by use of

X, =(y"yWG~'”(Oanﬁl)

where y is the sample mean. o can be eliminated by use of

x, = (y ~u)on~t

2 n-1

. Z(yi-y)* e
where ¢ = —ho7 - and t s Student's t distribution with n-1
degrees of freedom. (Alternately one could vary this by Studentizing
the departure of the sample mean from the true mean or by using n in-

stead of n-1 in the definition of 6. These are standard cases

considered in many statistics books.) For the elimination of both u
and o, three alternatives present themselves: external, internal, or
mixed Studentization of o.

External Studentization of o means that the estimates of ¢ and y

are formed from independent samples. This gives

_ — A n-1
R
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where the subscripts 1 and 2 on the sample mean and variance estimate
indicate that they are to be computed using independent samples of y.

Internal Studentization means, then, the use of the same sample

to compute the sample mean and variance estimate. This gives

(v vy see el
X, =y -y )/GAJ\[_n Th-1

where the new random variable T, is related to Student's t by
Nt

Moo= 1 + t2
V-1

V=1

T
v

This formula suffices to compute the distribution of t. Because
of the use of the same sample in computing y and ¢, the numerator
and denominator in the statistic x, are not independent as is
required for a t distribution.

By mixed (internal and external) Studentization it is meant that
whereas y is computed from sample one (say), & is arrived at by a
pooling of the variance estimates from sample one and another independ-
ent sample two. In adjustment terminology, g is an estimate of variance
formed by pooling a priori and a posteridri estimates of variance. By
"booling" is meant the minimum variance combination of variance esti-
mates of the form &% = (V15§ + vz&i)/(ul + vz) with v, and v, the
associated degree of freedom. This also leads to a tau distribution
(Quesenberry and David 1961). This case is considered no further here since
part of the motivation for using tau in triangulation is to provide a
data-adaptive criterion that is uninfluenced by prior estimates. The
pooling of variance estimates is justified only on the assumption that
the variances of the populations from which the two samples are drawn
are in fact the same.
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The tau distribution was first published by W. R. Thompson (1935).
The designation "tau" is not universal and the distribution has to
be recognized by the occurrence of formula (6), or its inverse
giving t in terms of T, in which guise it is quite frequently en-
countered in obscure statistical references. Tn-; 1s tabled in
Rainsford (1957), following Logan (1955). The generalization to
arbitrary degrees of freedom needed in applications to geodetic
adjustments has begun to appear only quite recently (Ellenberg
1973). Because of its relative unfamiliarity, a brief sketch of a
derivation of tau is now given.

M can be factored as §7= U Ut, where UtU = I, and U is dimensioned
n by v. v = rank M=n-u-= the degrees of freedom associated with
6,2 . Now denote U = {ur}, u? being the <th row of U, and « = b .
k is a v dimensional vector and x ~ N(O,Ic&z). Consider the gquantity

(v-1) <t A |</c502

a =
(1) «* B /a2

with A = {ui(uf ui)‘1 ug} idempotent of rank 1, and

B ={I - A}, idempotent of rank v - 1. Note that AB = 0.
Consulting Graybill's (1961) theorems 4.6, 4.15, and the definition

of F, page 31, one concludes that a ~ Fl,v_1 = ti_l-
Therefore
t
Vv oa 1/—'\; (U.i K)
b = = ~ T (7)

jwel
~
5
3
—da
<
—d
1
<|
1l
o
8
A
I
1}
-
-
1
=
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(Vi/&v_)NT t (8)

i v
, T vipy
where ¢ = (-——T) -—f;-f) has been used.

Note that equation (7) implies that [t| < /5 (ysing = to denote
both the statistic and the distribution, as commonly done), a sur-
prising result on first sight. It can be shown that t = /v r, r
being the sample correlation coefficient when the true value is zero.

The second distinctive feature of the tau criterion for detection

of outliers is the control of the probability of type I error, the
error of rejecting a true hypothesis. The rejection procedure is
thought of as a test of the hypothesis that v, ~ n(0, o, ) for all i, where

o, = k(&v_/éo) = k(ﬁ%i/pi) for some unspecified k, by use of the test
i i

accept H, if max (Vi/&V1) <c

reject Hy if max (v./5,.) = c,
i

where ¢ is a critical value, selected in advance so that the probability
of rejecting a true hypothesis is a, a number selected in advance, say
0.05. The probability of accepting a true hypothesis is the signifi-
cance of the test, 1 - a. The probabilities of accepting the hypothe-
sis when false, 8, and rejecting a false hypothesis, 1 - 8, are called

the probability of type II error and the power of the test, respectively.
The computation of ¢ requires the distribution of max t under the null
hypothesis. This distribution is extremely difficult to compute exactly
(Stefansky 1972), and various approximations have been suggested
(Halperin et al. 1955), including Thompson's original one (eq. 9 below).
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A simplified derivation that evades many of the subtleties in-
volved in a more thorough approach goes as follows. Note that

=]
1]

P{max = > c} = P{(one or more of ;) > ¢} = 1 - P{al] T, =cl

1 - P{(r; =c) and (t, sc) and ...} .

If we ignore the dependence of the t's that is present because of the
nonzero off-diagonal terms in ZV that arise from geometric part, this
last probability can be written as I P(Ti <c) = {P(r =¢)}", since

i

all t are identically distributed. Denote a = P(x >c).
Then
1T-(1 - a)n

o]
1]

1
or a=1-(1-ant% %-. (9)

Equation (9) is referred to as the transformation for control of
type I error. Here n is the total number of observations in the group

for which control of type I error is desired and is conventionally,
although not necessarily, taken to be the number of (nonspur)
observations in the adjustment producing the residuals in question.
By a "spur" observation (the term is sugaested by leveling) is meant
one for which oy, and v; are identically zero. This happens if there
are some parameters that are only exactly (not redundantly) determined.
A similar transformation was supposedly used by Logan (and quoted by
Rainsford) but our programs do not check Logan's tables.
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COMPUTATION OF THE TAU CRITERION

The tau rejection criterion is implemented by a subroutine
TAURE which may be called from a FORTRAN program by:

CALL TAURE (NT, NU, ALPH, CRTAU)

where NT is the number of (nonspur) observations

NU is the degrees of freedom

ALPH is the desired probability of type I error

and  CRTAU is the critical value produced by the subroutine

(called c in the above discussion).
It is assumed that the variance of unit weight has been estimated from
the same least-squares adjustment that produces the residuals to be
tested. Then all residuals for which

Ivilévil =c

are flagged for rejection. ("Blind" rejection without any effort at
further diagnosis is never recommended, even though the statistical
design of tau makes it possible if necessary.)

In leveling adjustments and station adjustments , SV is, in fact,

computed for every Vi For large triangulation network adjustments

in which the computation of Sv_ is still impractical, the following
i

expedient compromise is recommended. Approximate 9y, by

;
‘[h - u g,
U = —
V. /p—‘

and proceed as before. This approximation is based on the average
value of E&i' It is particularly important to have good prior weights

when corputing either the exact or approximate GV
.]
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The subroutine first computes "a" by the equa]iﬁy in (9). An
approximate critical value c, such that a = P(r €c), is computed
with the aid of an approximate inverse t given in Abramowitz and
Stegun (1965, p. 949). This is then refined by a Newton-Raphson
iteration. Subroutine TAURE and a table of values of tau computed
with it are included as appendices 1 and 2.

Limited experience thus far has shown tau to be a reasonable way
of answering the old question, "How big is too big?" when looking
at residuals from trianqulation. The critical values of tau are
quite different from those based on the normal Taw.

POSSIBLE EXTENSIONS AND REFINEMENTS OF TAU

The tau as described above represents a certain plateau in the
search for a statistically rigorous rejection criterion for use
in quality control. It is by no means the ultimate in this res-
pect, however. A brief list of remaining problem areas in the
search for statistical rigor follows.

1. A feasible implementation of Stefansky's methods for the
computation of the exact distribution of max T can perhaps be
found and applied to simulations and special studies at Teast,
if not routinely.

2. Computation and control of the probability of type II
error, the error of retaining bad data, are particularly desira-
ble in trianqulation adjustments, which are subject to distortion
from bad data remaining in. The control of type II error is
somewhat more difficult than that of type I, requiring as it does
formulation of definite alternative hypotheses, Teading to non-
central distributions and other complications.

3. The context here has been batch adjustments. Sequential
adjustments have, from the statjstical point of view, both advan-
tages and disadvantages. The subject deserves more study.

4. The effect of rejection procedure on the re-estimation of
the variance of unit weight is amenable to study.

5. Iterated rejection procedures have to be better understood.
Tau at Teast is sensitive to changes in size and degrees of
freedom, which a fixed rejection level is not. °




6. The question of the optimum size adjustment for rejection
purposes remains open, and

7. The rejection of bad data in satellite geodesy is quite
a different problem, since u/n is small and the main problem is
the unmodeled systematic errors, not the random part, which is
typically a small part of the error budget. What, if anything,
does tau have to offer in this situation, and are there statis-
tically rigorous alternatives?
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A Note regarding the scan of NOS65 NGS1

Appendices 1L, III., and IV. contain tabulations of computations of tau, T, and X respectively.
In light of modern computing capabilities, as compared with those of 1976, it was felt
unnecessary to scan all pages of the appendices. Instead, the first page of each table was
scanned and included for those that might wish to test their algorithms. These excerpts are
pages 24, 61, and 98 of the original document.
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APPENDIX I. SUBROUTINE TAURE (PP. 20-22)

The purpose of subroutine TAURE is to compute the rejection level
for normalized residuals for a given number of observations, degrees
of freedom, and desired level of type I error. This subroutine may
be called from a FORTRAN program by:

CALL TAURE (NT, NU, ALPH, CRTAU)

where NT is the number of (nonspur) observations (= n)
NU is the degrees of freedom (= v)
ALPH is the desired probability of type I error (= a)
CRTAU is the critical value produced by the subroutine (= c).

The use of ¢ as a rejection critekion assumes that the variance of
unit weight 0% has been estimated from the residuals being tested.

A1l residuals for which the condition

V.
_._:L 2 C
Uv_i
holds true, are to be flagged for rejection.

If the estimates of the standard errors of the residuals.,

GVi, i=1, ..., n, are not known, they can be approximated as:
n-u g,
A
i VP

where u is the number of unknowns in the adjustment and p; is the
weight of the observation. Thus the approximate rejection criter-
ion can be written as

For further information see pages 17 and 18 of this report.
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APPENDIX II. TABLE OF CRITICAL VALUES BASED ON TAU (PP. 23-59)

The tabulated value is the critical value, CRTAU, computed by sub-
routine TAURE for corresponding values of NT, NU, and ALPH, denoted
in the table by M, NU, and ALPHA, respectively. The notations are
connected by: '

NU=n-u=wv, M=NT =n, ALPH = ALPHA = o, and CRTAU = c = Ty

The critical values are tabulated for ALPH = 0.10, 0.05, and 0.01.
For each value of ALPH NU is varied from 2 to 100 in increments of
7, 100 to 1,000 in increments of 10, and from 1,000 to 5,000 in
increments of 100 with the addition of the two extreme values 10,000
and 20,000. For each value of NU, M takes the value 1, M + 1, and
M = integer nearest NU/(1-F) where F has the values given at the top
of the page. Thus F is approximately equal to (M - NU)/M = u/n.
This sampling of M, based on (u/n) provides values of M 1ikely to be
representative and useful without a prohibitively Tengthy 1isting
for all M.

A precise interpolation can be obtained by linear interpolation
on M exp (- 2 c2/m), c being the tabulated value. The dependence
on M is due to the incorporation of the transformation for control
of type I error (see p. 16). M =1 gives the value of CRTAU without
any transformation for control of type I error. M = NU + 1 gives
the value of CRTAU for use with a simple mean (see p. 13,

Lo ™ CRTAU).

-1

This table is not intended to replace the subroutine, but is to
be used as a supplement for checking and anticipating values pro-
duced by TAURE.
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APPENDIX III, TABLE OF CRITICAL VALUES, T,
BASED ON STUDENT'S t (PP, 60-96)

This table is for use only with externally Studentized residuals;
that is, the estimate of the variance of unit weight must not have
been computed from the residuals being examined. :

The format of the table is the same as that of the tau table.
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APPENDIX IV. TABLE OF CRITICAL VALUES, X, BASED
OM THE NORMAL DISTRIBUTION (PP. 97-133)

This table is for use with a known variance of unit weight; that is,
the variance of unit weight is considered to be a known constant,
rather than a random variable. The transformation for control of
type I error introduces dependence on NT. The format of the tables
exhibits NT(= M) values dependent on NU, as described in Appendix I,
thus introducing an apparent dependence of X on NU, even though the
critical value for a given M is independent of NU, in fact represent-
ing the 1imit as NU grows large. This format is retained to facili-
tate comparison with the tau and t tables and to exhibit the normal
critical values incorporating the transformation for control of
type I error.
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