Q
NOAA Technical Memorandum NOS C&GS 1 ~

SELECTION OF A GENERAL
PURPOSE LANGUAGE AND A
REAL-TIME LANGUAGE SUITABLE
FOR SHIPBOARD DATA SYSTEM Il

Rockville, Md.
January 1984

U.S. DEPARTMENT OF National Oceanic and National Ocean
COMMERCE Atmospheric Administration Service

NOAA Technical Memorandum NOS C&GS 1

SELECTION OF A GENERAL
PURPOSE LANGUAGE AND A
REAL-TIME LANGUAGE SUITABLE
FOR SHIPBOARD DATA SYSTEM IIi

Rockviile, Md.
January 1984

U tional Ocea
MERCE / mosperl
aaaaaaaaaaaaaaaaaa

. ——————— ok b] - —_—— o A b T T S N A S S e S

Mention of a commercial company or product does not constitute an
endorsement by the National Oceanic and Atmospheric
Administration (NOAA), National Ocean Service (NOS}. Use for
publicity or advertising purposes of information from this
publication concerning proprietary products or the tests of such
products is not authorized.

-k kM Y N N e R NN NN N N N e A W A NN N D o

ii

CONTENTS

Abstract..alaloloool-I.IIl.polDolooool.llltollan.....oulcnnoo.ol

Introduction....cevuuian.. Ne e abeerresananitrrrtasanaranesnnun 1
SDS III Performance RequUirementS.eeeseessssssscssensarsnneanaaes?
Data Acquisition CapabilitieS.ceeenericeeseecansancnaanncacens i
Data Processing Capabilities....ccievesss teeesraseresaesrsaned
Method0T100Y s seeeseesoseseacasasunnosonssorsoonvsvossacsnnnnnansd

Quantifying The Language Fealures.....iviiveenveeveesanrsecans 4

Selection Criterid.icriciericrenninas Giesnmssearersnssssrnnnse 5
Filtering Qut the Unsuitable LanguUageSecesessesssssnsrosvsvrsvsed
General PurpOSe LANGUAGES . ciuetasusnnesnressansonrnsssanasanne 8
Real-Time LanguagesS.....ceeeeeeenceans teeveerrsessireenesnne 11
Rating the General-Purpose LanguageS.sesssessssessssvescsaasnal?
Weights, Scores, anq Figures of Merit..iieiceiiiinnnnoennennn 1?
Results....... D Y I
Rating the Real-Time LangUageS.e.ecseosrnonssssescossaannssveeld
Weights, Scores, and Figures of Merit.....covveuunnn cerrenaald
T - P -
RECOMMENdAatiONS . eseeivensrsosssusaasasacasssnnssnsascassaresld
ACKNOW] edgmeNt S .ottt tiicrsnerrnesssoanesanenansnun rerareslb
References......evvvviveuenns I
B DT TOgraPhY cereeresrionsaassnnersosnssoarnersvasoncarnassncaal?
Appendix - Overview of the Candidate LanguagesS.....eevecseneen 24
Ada..... .

CI-..lallaall‘..ooo...a.---c----loo!o4.0......-.«-a.-tt-‘n-.26

FORTRAN 7? LI L R B B NN B R N BN O N NI R 0---«-.--2?

PL/l---o....c --------------- “asE R REEEFEITCEISIESIESE ISR RAER RS n-oovoa-28

TABLES

1. Computations Of The Figures Of Merit For The General-Purpose
LaNgUAgeS . s iveerresacsasussrasanes St seet it et nensnraas 22
2. Computations Of The Figures Of Merit For The Real-Time

LaNQUAGES e veeorrasnencnnssessnsnnssas v arberaenerannn 23

iv

SELECTION OF A GENERAL-PURPOSE LANGUAGE AND A REAL-TIME
" LANGUAGE SUITABLE FOR SHIPBOARD DATA SYSTEM III

Steven R. Barnum
Nautical Charting Division
Charting and Geodetic Services
National Ocean Service, NOAA

Rockville, Md.

ABSTRACT: AlT major general-purpose languages
and all major real-time languages were

surveyed and filtered based on the

requirements of Shipboard Data System III. The
Tanguages which passed the filter were then
evaluated in depth, At this time FORTRAN 77 is
judged to be the best overall choice for
general-purpose applications software. FORTRAN
77 with the real-time extensions (FORTRAN ISA
61.1) is judged to be the best choice for
real-time applications software. When Ada
becomes widely available, it will be the best
choice for both the general applications
language and the real-time language.

INTRODUCTION

Identification and selection of the most suitable programing
language for Shipboard Data System III (SDS I11) could save the
National Ocean Service {NOS) a significant amount of money during
the implementation phase and over the operational life of the
system. The growing cost of ship operations, programers, and
software maintenance to support hydrographic surveys demands a
language that will increase the reliability of software, reduce
software development time, and reduce the cost of software]ife-
cycle maintenance, The purpose of this study is to identify the
most suitable Tanguage for $DS III based on the language's
technical advantages and disadvantages. The following three
criteria were used to evaluate the tanguages: 1) development time
and cost, 2} system effectiveness, and 3) software life-cycle
maintenance cost. To judge the languages using the above
management criteria, technical features were chosen which
reflected those criteria.

The SDS III project development staff is using the structured
design techniques of Yourdon and Constantine {1975) and De Marco
(1978) to develop physical and logical models of the Data
Acquisition Subsystem (DAS) and Data Processing Subsystem (DPS)

of SDS ITI. Structured design techniques are tools used to
manage the design of large software projects. Software, which is
designed using structured techniques, is easier to develop,
verify, and maintain., The appropriate programing language for
SDS III should support structured programing in order to gain the
maximum benefits from the resultant structured model.

Many authorities believe that when a programer solves a
problem, the programer thinks in terms of the programing
language. If the language is ill-suited to the application, the
programer will have a harder time solving the problem. A gross
example would be to use a language designed for report generation
to construct a space shuttle navigation program. A language
tuned for the application provides the programer with the proper
tools to build the program. The possible results of using an
inappropriate language can be a delayed project, cost overruns,
and increased costs of life-cycle software maintenance.

SDS IIT PERFORMANCE REQUIREMENTS

SDS III will perform more onsite (shipboard and field site)
data verification, formatting, quality control, and report
generation than is presently done., The effect of these actions
will be to decrease the period of time between the date the data
is collected and the date the data appears in various NOS
published products, To accomplish this, SDS III has been divided
into two parts: the Data Acquisition Subsystem (DAS) and the Data
Processing Subsystem (DPS}. Each part will have different
operational requirements, The DAS will perform the data
acquisition in real time, while the DPS will perform post
processing of the data coliected by the DAS. Limited data
verification and error detection will be performed by the DAS,
while full data verification, smoothing, and other data
maniputation will be performed by the DPS. Most hydrography will
be performed by survey parties that consist of a ship carrying up
to four 29-foot taunches, Each ship will have a DPS. Each
Taunch, as well as the ship, will have a DAS. Both the DAS and
the DPS will support the same general-purpose language,

To specify which Tanguages to use, the requirements of the
system must be known. The requirements are taken from the
functional specification document {(NOAA 1983). For a complete
description of the operational and technical requirements, refer
to the Operational Requirements Baseline (EG & G 1983) and the
Functional Specification Document (NOAA 1983).

Data Acquisition Capabilities

The DAS must be capable of the following functions for which
NOS-developed application programs wilil be necessary,

1} Acquire data from NOS-furnished sensor subsystems and
a contractor-supplied system control device.

2) Record all raw data on magnetic media for later
processing by the DPS.

3) Monitor data validity and notify the vessel operator of
all malfunctions.,

4) Filter raw navigation data and compute current vessel
position in real time.

5) Provide the vessel helmsman and the DAS operator with
steering guidance (distance and direction from planned

track Tine), current raw data values {depth and
navigation), bearing and distance to a point of

reference, and current pesition, course, and speed.
6) Generate graphic displays of acquired data and historical
nautical chart data.

Data Processing Capabilities

The DPS must be capable of the following functions for which
NOS-developed applications software will be necessary.

1) Manage all project data for the survey party.

2) Transfer data to and from the DAS, Marine Center, NOS
headquarters, and other computer systems.

3) Scan the raw data to assure quality and produce printed
reports.

4) Interactively edit raw data.

5) Apply correctors to the raw data.

6) ldentify data of hydrographic significance.

7} Interactively edit raw data correctors.

8) Perform geodetic and other utility computations.
9) Digitize graphic and handwritten data.

10) Generate printed data and text reports.

11) Generate graphic displays of acquired data and
historical nautical chart data,

12} Perform historical and contemporary data comparisons.

METHODOLOGY

This study involved & literature search for articles on all
major general-purpose and real-time languages, interviews with
the managers of various Automatic Data Processing (ADP) groups

within NOS, and the calculation of a figure of merit to determine
a4 quantitative measure of suitability for each language evaluated
(Anderson and Schumate 1982}. The Tanguage with the highest
figure-of-merit was defined as the most suitable for SDS III
applications.

Even though a language is standardized, variations of the
language's implementation are sometimes very large. Since the
SDS IIT computer has not been selected, no evaluations were
possible for various versions of compilers. Thus, the evaluation
of execution time, generated program size, and compile time
efficiency could not be done. To determine the best compiler,
the study of these parameters should be done when the computer is
selected. :

The first step was to set up a filter which would eliminate all
the unsuitable languages from consideration. The Tanguages which
passed through the fifter were then studied more closely. The
filter was comprised of requirements from the functional
specification document and from a list of desirable Tanguage
features, produced by the SDS III staff, which should be present
in the selected languages.

Quantifying The Language Features

In order to compare one language to another, a method was
needed to quantify each lanquage feature relative to its
importance., The method used for estimating the relative
importance of each language feature was taken from Introduction
to Operations Research (Churchman 1957). A fundamental example
Trom This book™7s quoted to illustrate the process used to assign
weights to the various technical features,

Suppose there are four pieces of wood of unequal
length and no device is available for measuring them,
Suppose further that we want to determine the relative
tength (not absolute length) of these four strips, One
possible way would be to order the strips from the
Tongest to the shortest and tabel the longest A, the
next B, the next C, and the shortest D. Give A a value
of 100% and estimate seperately B, C, and D what
percentage of A's length they represent, Suppose we get
the following results. B = 609, C = 30%, and D = 20%.
Now we can put B, C, and D end to end and compare A with
the this combined length. If our initial estimates were
correct, the result B + C + D would be equal to 110% of
A. If this comparison reveals a discrepancy, some
adjustment to the original estimates would be required.
Next we compare A to B + C, and we would expect B + C to
equal to 90% of A. This comparison would provide
another check on the original estimates. Finally we
would compare B to C + D and expect to find 8 to be
60/(30 + 20) or 120% of (C + D).

This procedure consists of a systematic check on relative
Judgments by a process of successive comparisons.

The features of each candidate language considered in this
study were scored on a scale of 0 to 1. The scores were assigned
by the author and were based on the information assimilated from

the references in this publication. The final score (figure of
merit) was calculated by summing the products of each technical
feature's relative weight and the language's score for that
technical feature, The algorithm stated algebraically is

N

Figure of Merit = E " WiSi,

i=1

where Wi is the weighting factor for the ith technical feature
and Si s the score for the ith factor. The figures of merit
produced for each language represent the relative suitability of
the language to the needs of SDS III.

Selection Criteria

The criteria by which the languages were evaluated are divided
into two areas: management and technical. The management
criteria served as a quide in selecting the features which were
then quantified. The three management criteria by which the
programing languages were evaluated are development time and
cost, system effectiveness, and life-cycle maintenance.
Development time and cost should be minimized whenever it 1s not
at the expense of 1ife-cyle maintainability. This criterion
favors technical features that facilitate software development,
make projects easier to staff, and minimize additional software
tool development {(Anderson and Schumate 1982). System
effectiveness is concerned with how well the end programs perform
Tn the user environment. Features which promote the security of
data, good algorithms, and minimize software bugs increase the
reliability and effectiveness of the system. Life-cycle
maintenance is concerned with how easy the code is to update and
modify over the life of the system. Features which promote
readability and modularity decrease Tife-cycle maintenance costs.

Technical features were then selected which reflect the
management criteria discussed above. For the two different
applications, data processing {the DPS} and real-time data
acquisition (the DAS), the various technical criteria were ranked
and weighted according to the needs of the application. For
example, the need for systems programing in the general-purpose
language is not as great as it would be for the real-time
tanguage where access to individual registers and bits is
required. The ideal language for SDS III should contain at Teast
all of the features mentioned below,

Data Type

The language should be strongly typed. A strongly typed
Tanguage has each of the following qualities:

1) Every object has its own unique type.

2) Each type defines a set of values and a set
of operations for the object,

'3) In every assignmenf operation, the type of the
assigned value and the type of the data object
assigned to it must be equivalent.

The programing languages Pascal and Ada are examples of a
strongly typed language. A program written in a strongly typed
language is better protected against such programing errors as
typographical errors which can be caught by the compiler at
compile time rather than at run time. A strongly typed language
increases program reliability and clarity (Young 1982).

The ability to assign ranges to the data types should also be
present in the language. An example would be the declaration of
the variable SECONDS, with an associated range of 0 to 59. 1If a
value of 61 or any negative value were assigned to the variable
SECONDS, the error would be caught by the compiler at compile
time. The language should also permit the use of user-defined
types. Data typing could be used in SDS III software to keep the
various data objects (depths, ranges, positions) separate and
prevent them from becoming accidentally mixed together, The type
of operations that can be performed on the objects could also be
specified; this prevents the performance of operations which are
illegal for that data object.

Data Scope

The language must have the ability to limit the scope of its
data. This feature is also a measure of reliability and program
clarity. Data scope is concerned with how availabie data is to
the whole program. The language should have a means of
controlling the availability of data between program modules.,
This prevents one module from accidentaily modifying data used in
another module,

Control Structures

The language must provide a rich set of control constructs
(WHILE, IF-THEN-ELSE, DO, CASE, etc.) for representing the
commonly occurring types of program structure. The structures
must be unambiguous so that the overall structure of the program
can be easily understood. They must allow the programer to
express ailgorithms in a straightforward and efficient manner,
The control structures should end with a closing keyword
(ENDIF,CONTINUE) and there should be only one entry and exit
point (a principte of structured programing). The real-time
languages should have the necessary constructs to build efficient
real-time programs.

Data Structure

The language should have the ability to group sets of logically

related data into single units. The language must be able to
describe data at different levels in order to design programs in

a top down manner (Young 1982). Some examples of data structures
are arrays, records, linked 1ists, trees, and sets.

Program Support Environment

The language should have a complete set of software tools to
support the development and maintenance of software, The support
tools include editors, linkers, Tibrarians, project managers, and
utility programs. The availability of software tools for a
language can have a large influence on the productivity of
programers and the quality of the software.

Readability

The ability to easily read and understand the code is required
for maintenance and enhancements. The basic quality of
readability is the ability to absorb the main concepts of a
program by reading the program text only, without having to
resort to flowcharts and written descriptions. The language's
keywords and program structure affect the readability of a
program. The person responsible for maintaining the program is
frequently not the one who wrote the program, and the former must
be able to understand it in order to modify the code efficiently.

Learnability

The language should be relatively easy to learn, or else the
productivity of the programers may be decreased in the beginning
of the project.

Simplicity

The Tanguage must be easily mastered, If the Tanguage is too
large to master, the programer may resort to using only a subset
of the Tanguage without utilizing its full potential. The
language must be free of hidden restrictions and conditions. The
basic rules of a language are usually easy to learn, but the
associated Tists of restrictions and conditions can be hard to
remember (Young 1982).

Flexibility

The language should be flexible enough to allow the programer
to express all the operations in a program without having to
resort to machine code,

Systems Programing

Systems programing has to do with the maintenance, control, and
supervision of computers. Systems programing requires the
ability to handie interrupts and to manipulate words, bits, and
registers with minimum use of assembly language. This feature
is especially important for the real-time language.

Multitasking

The ability to run concurrent programs is reguired in both the
DAS and DPS. The coding process and the effectiveness of the
system can be improved when the language supports multitasking.

Extent of Use

The Tanguage should be in wide commercial use. A widely used
language that is available on many different computers provides
NOS with a large array of computers from which to choose.

Previous Programer Proficiency

A large number of programers already proficient in the selected
tanguage will Tower development time and cost. If the programers

are not familiar with the selected language, then the programers
will need training and time to become proficient in the new
Tanguage.
FILTERING OUT THE UNSUITABLE LANGUAGES
General-Purpose languages

The following is a Tist of features SDS III requires of a
general-purpose language. They were used to filter Tanguages
under consideration down to a candidate set, The language must:

1) follow a standard,

2) have the ability to call routines written in other
languages (FORTRAN, COBOL, assembly),

3) have 14 decimal places of precision,

4} possess the ability to read sequential data files
written in assembly and other Tanguages,

5) be able to reach all peripheral devices,

6) have integer formats of 16 and 32 bits,

7) be in widespread use by the computer industry,
8) be clearly suitable for the application, and

9) have the ability to separately compile program
moduTes,

The requirement that the language be standardized ensures that
the completed software will be portable from one computer to the
next. (This of course relies on how widely a lanquage is
implemented on different computers,) The requirement will save
the cost of rewriting most of the software if it becomes

necessary to move to a different computer. An example within SDS
11T is that code written for the DAS should run on the DPS with
few changes. The ability to call routines written in other
languages is required so that existing software such as geodetic
routines written by National Geodetic Survey (NGS} in the
programing Tanguage PL/1, and Bathymetric Swath Survey System
(BSSS) software written in FORTRAN 66 can be utilized. Since
accuracy is very important to surveying, 14 decimal ptaces of
precision and integer formats of 16 and 32 bits have been
specified, The requirements of precision and integer formats
have been found to be necessary based on NOS experience. The
ability to read files written in assembly and other languages is
required so files written by the NOS Automated Information System
(AIS) and the DAS real-time language can be read by the DPS.
Since SDS III is concerned with the input and output of data, the
language must be able to reach all of the input/output devices
efficiently. To ensure a full range of candidate computers, the
language must be in widespread use. The language must be clearly
suitable for the application. A language designed for report
generation is clearly not suitable. The language must support
separate compilation of program modules to speed the software
development process and to increase maintainabilty of the
software. Software projects are often broken into subtasks with
several programers responsible for different subtasks. If a
language supports the separate compilation of program modules,
then the programers can compile and test modules independently of
the rest of the program. If the tanguage does not support
separate compilation of program modules, then all the program
modules have to be completed before the program can be compiled
and tested.

The following is the initial list of languages under
consideration before the filter was applied.

1} Ada
2) ALGOL 68 (ALGOrithmic Language)
3} APL (A Programing Language)

4) Basic (Beginner's All-purpose Symbolic Instruction
Code)

5) €

6) COBOL {Commor Buisness Oriented Language)
7) FORTH

8) FORTRAN 77 (FORmula TRANs1ation)

9) HAL/S

10) JOVIAL (Jule's Own Version of the International
Algebraic Language)

11) MODULA II (MODULAr programing II)
12) Pascal

13) PL/1 (Programing Language 1)

14) LISP (LISt Processing language)

The reguirement that the language be clearly suitable to the
the applications of SDS III was applied first. Basic, COBOL,
APL, and LISP failed this criterion.

BASIC was conceived at Dartmouth College to teach nonscience
majors about computers, BASIC was eliminated because it does not
support structured programing and was not designed for scientific
applications. COBOL was eliminated because it is a problem-
oriented business data processing lTanguage and is not well
equipped to handle the applications of SDS III which are
computationally oriented. APL, a language which is criticized by
many as being difficult to learn because of its extremely terse
syntax, has not won favor with many people outside the
engineering and scientific community. APL is also not well
suited to the problem domain of SDS ITI, and for these reasons it
was eliminated, LISP, heavily used in artificial intelligence
applications, was deleted from the list because it is not well
suited to applications other than list processing and general
symbol manipulation., While it may be possible to construct
applications software using these tanguages, the algorithms would
probably be implemented in an awkward fashion and the resulting
software would be difficult to maintain.

Next, the requirement that the languages be in widespread use
was applied. Algol 68, HAL/S, JOVIAL, and MODULA II failed the
criterion.

ALGOL 68 1s popular language in the European computer industry.
Because it has a very small following in the United States, it
was eliminated from the list. The Tanguage HAL/S, developed by
the National Aeronautical and Space Administration (NASA), is
used for the space shuttie mission. HAL/S was eliminated
because of its limited use outside of NASA., JOVIAL's use is
Vimited primarily to the U.S. Air Force, and it is presently
being replaced by the Department of Defense's (DOD) new language
Ada. For these two reasons JOVIAL was eliminated, MODULA II is
relatively new and is only implemented on smaller computers such
as the DEC PDP-11, Sage, IBM personal computer, and Apple
computer,

The requirement that the Tanguage be standardized was appiied
to results of the previous operation. FORTH was eliminated
because there are no significant standardized versions of the
language. The supporters of FORTH are divided into several
groups, each having its own version of the language.

Next, the requirement that the language support separate
compilation of program modules was applied to the results of the
last operation. Pascal was eliminated because it does not
support the separate compilation of program modules in its
standard form,

10

The remaining languages, Ada, C,.FORTRAN 77, and PL/1 were
Judged to meet all remaining requirements. An overview of these

languages is included the appendix.

Real-Time Languages

The following is a Tist of features used to filter languages
for the real-time application. They must

1) follow a standard,

2) have the ability to call routines written in ather
lTanguages (FORTRAN, COBOL, assembly),

3} have the ability to randomly access mass storage
files,

4) be able to reach all peripheral devices
and have the ability to manipulate individual
words, bytes, and bits,

5) be in widespread use by the computer industry,
6) be clearly suitable for the application, and

7} provide the ability to separately compile the
program modules,

Characteristics 1, 2, 5, 6, and 7 are included in the real-
time filter for the same reasons they were included in the
general -purpose language filter. The Tanguage must have the
ability of systems programing. A programer using a Tanguage with
systems programing ability will not have to resort to the use of
assembly language as often as a programer using a language that
Tacks this ability. The software written for BSSS, a real-time
data aquisition and processing system, is composed of
approximately 12,000 lines of FORTRAN code and 10,000 lines of
assembly Tanguage code. Assembly Tanguage is machine dependent,
and is difficylt to develop, maintain, and debug. A langquage
which can significantly reduce the use of assembly Tanguage is
definitely preferred over a language which does not. These
requirements were used to filter all the major real-time
Tanguages to a set which could be evaluated.

The following is the initial list of lanquages under study
before applying the filter.

1) Ada

2) ¢

3} Edison
4) FORTH

5) FORTRAN ISA 61.1 (real-time extension)

11

6) Micro Concurrent Pascal
7) MODULA (MODULAr programing language)
8) MODULA Il (MODULAr programing language 1I)

9) PEARL (Process and Experiment Automation
Real-time Language)

10) DP
11) CSp

12) GYPSY
13) Path Pascal

The requirement that the language have the ability to
separately compile program modules was applied first to the
initial list. The languages that failed were Edison, Micro
Concurrent Pascal, MODULA, DP, CSP, GYPSY, and Path Pascal,

The requirement that the Tanguage be in widespread use was
applied next to the results of the previous operation. PEARL, a
relatively popular real-time language in Europe, was eliminated
because it is implemented on very few computers in the United
States,

The requirement that the language be standardized was applied
next to the results of the Tast operation. FORTH was e@liminated
because it is not standardized to any extent.

The requirement that the languace be able to call routines
written in other languages was applied next. Modula II is only
capable of calling routines written in MODULA II, assembly, and
Pascal; therefore, MODULA 1! was eliminated.

The remaining languages, Ada, C, and FORTRAN ISA 61.1 passed
all remaining tests. An overview of each Tanguage is provided in
the appendix.

RATING THE GENERAL-PURPOSE LANGUAGES

Weights, Scores, and Figures of Merit

The following procedure was used to assign weights to the
technical features, The technical features were initially ranked
according to their estimated importance. In order to provide an
arbitrary reference for comparison, one feature, the so-called
standard outcome (Fs), was selected at random from the set. The
features were randomly subdivided into equal-sized groups of no
more than four. The standard outcome was added to each group.
The features of each group were assigned initial values of
importance (Vi) in relation to the standard outcome (Vs = 1)
based on the author's perception of SDS III requirements. The
features of each group were then evaluated against each other by
comparing the feature with the largest Vi, say V1, against the

12

combined importance of the remainder of the set: F1 versus (F2
AND F3 AND F4 AND Fs), If F1 was found to be more important than
{(F2 AND F3 and F4 and Fs), then V1 was adjusted so that V1 > V2 +
V3 + V4 + vs. If F1 was not judged more important than the sum
of the others in the group, then the values in the group were
adjusted, if necessary, to reflect that fact. The top ranking
feature of each group was then eliminated from consideration, and
the process of comparisen was repeated for each group using the
next most highly rated feature against the remainder: F2 versus
(F3 AND F4 AND Fs). The process was iterated one more time in
simitar fashion.

The values obtained for all features were then compared to the
original order of importance. If the computed values conflicted
with the original ranking, and the original order was judged
incorrect, the order of importance was modified to reflect the
computed values and the procedure was repeated, If the order was
judged to be correct, then the values were adjusted in their
respective groups. This process was repeated until consistent
resutts were obtained. In order to obtain a set of weights for
the calculation of a figure of merit, the values were normalized
to sum to a value of 1,000 by dividing each value by the sum of
all values and multiplying by 1,000,

The features were weighted in the following order.

FEATURE WEIGHT
1) Data type......'.. llllllll .’.'.I....-.-...164.6

2) Control structuresS..vieeeecesecvsesssassss146,3
3) Program support environment.....eeeeseses..134.1
4) Readability........ fesernaas censanssnsaneel09.7
5) Data SEruUCtUrEiueeessnsaasovssacnnnsnrsnsssdle
6) Data SCOPE.evivennrrasessennanenan ceereeeas 73.2
7) Extent of USesuivavivvssnsnseensosesnsansosbla0
B) Learnabilityiieeasivsereeeannnnsnnssnecasasd8.8
9) Previous programer experienCe.......... ven 42,7
10) STIMPYIC Ity eereeeusseornosscnsncansonsnnanead2?
11} FlexibiTityueeeeeeeeeeneesnnnssssnssansennns3Bbeb
12) Systems programing........ vesessesessaaasas30.5

13} MU‘ItitaSk‘ingtl.lI‘l....lttt‘-.......0.-‘.-.18.2

Each language feature was then assigned a score in the range of

0 to 1 according to how well it fulfilled the ideal language
requirements discussed under Selection Criteria. The scores were

13

references and the bibliography. Table 1 shows the individual
scores and figures of merit,

Results

Table 1 indicates Ada with 710 points is the ¢lear winner.
This is not surprising since Ada was designed from the beginning
to embrace all three management criteria. Second, at 546 points,
s FORTRAN 77 which scored very strongly in program support
environment, extent of use, and previous programer proficiency,
Third, at 483 points, is PL/1 which scored sTightly better than
FORTRAN 77 in the areas of data typing, control structures, and
data structure. PL/1 lost points in other areas such as program
support environment, simplicity, and readahility. Last, with 472
points, was C which had mostly average scores except for data
type (score of 0.3) and systems programing (score of 0.9).

The process of weighting and scoring the features was iterated
Several times to confirm the results. Ada consistently came out
on top by at least a margin of 125 points. The other languages
remained relatively close together, usually within 75 points of
each other. Some place changes occurred among the three
according to how the weights were applied, but the most common
ranking was 1) Ada, 2) FORTRAN 77, 3) PL/1, and 4) C.

RATING THE REAL-TIME LANGUAGES
Weights, Scores, and Figures of Merit
A new set of weights for technical features was composed for
reai-time requirements., The weighting process was executed in
the same manner as for the general-purpose languages, The

features were weighted in the following order.

FEATURE WE IGHT

1) Systems programing.....cseeesssesecesneses.158.8

2) DAta LYPEuuiseeerineeensssnsseosanneeraesal23.5

3) Control structures.......... Creesecniennes 117.6
4) Program support environment......veeesesss111.8
5) Previous programer experience.............. 88.2
6) MuTtitasking...... berees teetetennnana evvass 7005
7) Data StructUree.essineerseeusesaonsnsosssss58,8
8) Extent Of USBiuvvenerrvveereaeannns teeraaes 58.8
9) Data SCOPE.uivvveeereeeneneeeanns cneesraeaeb2.9

10) Lear‘nab'i]'ity....-....-.....-....---.......-47.7

14

10) Learnabilityesuesnoseonenrrsonnnenccennnssdle?
11} Readability....... Cetersecanana Creeens veee dl.7
12) Flexibilityueeeseveesnosnsrnoranesnasnssensadl,?
13) SimPTlicTtyeereesenrressnsosonsnsossnsnsenss?3e5

The languages were scored on a scale of 0 to 1 according to how
well they fulfilled the ideal language requirements discussed
under Selection Criteria, Table 2 shows the individual scores
and figures of merit,

Results

Ada was the superior language, scoring 685 points. Again, this
was not surprising because Ada was designed to be a manageable
real-time Tanguage. FORTRAN 77 with the ISA real-time extensions
was rated second with a figure of merit of 566 points: it scored
highly in the areas of extent of use, program support
envirenment, and previous programer experience. The language C
placed third with a figure of merit of 468 points. It lost some
points because of its poor data typing ability, lack of real-time
constructs, and lack of previous programer experience.

The process of weighting and scoring the features was repeated
several times to verify the results. Ada consistently came out
ahead, followed by FORTRAN, and C.

RECOMENDATIONS

From the results of the rating processes, Ada is the most
suitable language for both the general-purpose and the real-time
applications software. Howaver, as stated in the Introduction,
Ada is not readily available. It was included in the study to
keep this report from becoming outdated immediately. It is
expected that many more compilers and software tools will become
available for Ada as the date set by the DOD approaches (DOD has
specified that all advanced work will use Ada by January 1984 and
all full-scale engineering work will use Ada by July 1984},
Programing for the SDS III project is expected to begin somewhere
in the summer of 1984. There is certainly not much time for the
industry to test the capabilities of the language, but Ada is
also said to be the most carefully designed and implemented
language to date. The U.S. Air Force and the Intellimac
Corporation have already begun using Ada to take advantage of the
Tong-range benefits of portable, effective, and maintainable
software. Soon Ada should be the language of choice for SDS III
applications software,

If, however, Ada is not ready and available, then FORTRAN 77 is
the next best choice for general-purpose applications software.
Care must be taken with FORTRAN because there are many features
present in the language that go against the philosophies of
structured programing (arithmetic IF, GOTO, and COMMON). There
are also many features which can keep the software from being

15

portable. An excellent article by Larmouth (1981) describes the
features within FORTRAN that should be avoided to keep the
software portable. FORTRAN 77 with the standard real-time
extension (FORTRAN ISA 61.1) is recommended as the real-time
applications language if Ada is not ready. When FORTRAN is used
to develop the real-time software, the same precautions must be
made to avoid the nonportable FORTRAN 77 features.

To produce effective, maintainable software, a set of rules for
controlling software development should be created and enforced.
The book, Managing The Structured Techniques by Yourdon (197%),
presents some ways of managing soffware development. Some
examples of what the rules should include are:

1) The use of COMMON, arithmetic IF statements, and the GOTO

statement should be restricted from use (the GOTO
statement may be necessary in some instances, but should
be used only as a last resort).

2) Every variable should be explicitly declared, and all
constants should be declared to be of type parameter.

3) A1l values passed into a subroutine should be explicitly
declared.

4) A section should be provided at the head of each routine
that explains what the routine does.

5) Each variable, constant, array, etc., should be
accompanied by a definition as to what it represents,

These ars just some of the rules that must be implemented to
ensure that the resulting FORTRAN code will be portable,
effective, and easy to maintain.,

ACKNOWLEDNGMENTS

I wish to express thanks to Gary Guenther, David Enabnit, and
the entire Applied Technology Group for their support in
reviewing this paper.

16

REFERENCES

Anderson, G. E., and Schumate, K, ., 1982: Selecting a

Programming Language, Compiler, and Support Environment.
Computer, August,

Churchman, C. West., Ackoff, Russell L., and Arnoff, Teonard E.,
1957: Introduction to Operations Research. John Wiley &
Sons, New “VYork., —_

De Marco, Tom., 1978: Structured Analysis and System
Specifacation. PrentiCe Hall, Englewoods CIi7f, Nd.

Eg & G Washington Anatytical Services, 1983: Operational
Requirements Baseline for Shipboard Data System 111,
Rockville, MD., May 27.

Kernighan, B, W., and Ritchie, D. M., 1978: The € Programming
Language, Prentice Hall, Englewoods Cliff, Nd.

Larmouth, J., 1981: Fortran 77 Portability. Software Practice
and Experience, 11,

NOAA., 1983: Functional Specification Document. Nautical Chart
Branch, NOS. Request For Proposals, NA-84-RFP-00002.

Yourdon, Edward,, 1976: Managing The Structured Techniques.
Prentice Hall, Englewood Ciiffs, NJ.

Yourdon, Edward., and Constantine, larry L., 1975: Structured

Design: A Discipline of Computer Design. Prentice Hall,
Engfewoods CTiff, NJ.

Young, Stephen J., 1982: Real-Time Languages: Design and
Development. ET11is Harwood, Halstead Press {John WiTey &

Sons}, MNew York.

BIBLIOGRAPHY

Abbott, R. J., and Moorhead, D. K., 1982: Software Requirements
and Specifications: A Survey of Needs and Languages. The
Journal of Systems and Software, 2.

Alford, Mark W., 1977: A Requirements Engineering Methodolagy
for Real-Time Requirements, IEEE Trans. on Software
Engineering, VOL. SF-3, NO. T.

Babich, Wayne., Simpson, Richard., and Thall, Richard., 1981:
The Ada Language System. Computer, June,

Barron, D. W., 1981: PASCAL - The Language and its
Implementation., John Wiley & Sons, Chicester,

17

Boom, H. J., and De Jong, E.,, 1980: A Critical Comparison of
Several Programming Language Implementations. Software -
Practice and Experience, 10.

Brender, Ronald F., and Nassi, Issac R., 1981: What is Ada?.
Computer, June,

Brooks, Frederick P., 1975: The Mythical Man-Month:
Essays on Software Engineering. Addison-Wesley.

Bulman, David M., 1982: Is Ada the Answer?. The Yourdon
Report, 6-6, 7-1.

Carlson, WilliamE., 1981: Ada: A Promising Beginning.
Computer, June.

Carlson, William E., 1980: Introducing Ada. ACM Proceedings,

Cherry, George W., 1982: Developing Software With Ada. Seminar
notebook, The U. S. Professional Development Institute,

1982.

Dickson, Christinre E., 1980: FORTRAN-80 Mixes With Other

Languages to Strengthen its Real-Time Powers. Electronic
Design, dJanuary 4,

Dickson, Christine E., 1979: Modernized FORTRAN Combines
Powerful 1/0 With A Structure Tailored for Engineering.
Electronic Design, September 13.

Dickson, Christine E., 1979: Solve Number Crunching Problems
With Modernized FORTRAN Programs. Electronic Design,
November 22,

Dijkstra, E. W., and Hoare, C. A, R., 1972: Structured
Programming., Academic, New York.

Evanczuck, Stephen., 1983: Real-Time Operating Systems.
Electronics, March 24.

Fawcette, James E. (Editor), 1982: Ada Goes To Work.
Defense Electronics, June,

Feldman, Jerome., 1979: Programming Languages. Scientific
American, December,

Fever, Alan., and Gehanni, Marain H., 1982: A Comparison of the
Programming Languages C and Pascal. ACM Computing Surveys,
14, 1, March, o

Freitas, Robert A., and Carlson, Patricia A., {editors}, 1983:
Computer Science: Key To A Space Program Renaissance, -
Institutional Needs, Status, and Recomendations, 1.

18

Fulton, Cynthia., and Whiffen, Richard,, 1980: High-Level
Languages Take on Most of Real-Time System Software.

Electronics, December 4,

Geller, Dennis., 1983: Coding in Two Languages Boosts Program
Reliability. Electronics Design, March 31.

Ghezzi, Carlo., and Jazayeri, Mehdi., 1983: Languages: Which One
For You?. Software News, April.

Ghezzi, Carlo., and Jazayeri, Mehdi., 1983: Languages: Which Ones
(and how many) For You?. Software News, May.

Ghezzi, Carlo., and Jazayeri, Mehdi., 1983: Languages: Which Ones
(and how many) For You. Software News, July.

Gitbreath, Jim,, 1981: A High-lLevel Language Benchmark. BYTE,
September. _

Gligor, Virgil D., 1983: Basic Technologies for Real-Time System,
Final Report, NOAA Contract No. NA-82-SAC-00648,
International Software Systems 1Inc., College Park, MD.

Hall, Edwin., 1981: Extended Pascal Adds Real-Time Multitasking
to LSI-11 Family. Electronic Design, November 26.

Hancock, Les., and Kreiger, Morris., 1982: The C Primer,
McGraw-Hill, New York. -

Hanson, D. K., 1981: Is Block Structure Necessary ?. Software
- Practice and Experience, August.

Hartrich, Ford., 1981: FORTRAN Can Beat Pascal in Control
Applications. Electronic Design, July 23.

Hecht, Herbert., 1981: Final Report: A Survey Of Software Tool
Usage. Computer Science and Technology, NBS publication
500-82, Washington D. C.

Hinden, Harvey J., and Wendy J., 1983: Real-Time Systems,
Electronic Design, January 6.

Hogan, Thom., 1982: Discover FORTH: Learning and Programming
The Forth Language, Mcgraw-Ri11, Berkeley, CA.

Houghton, Raymond C., 1983: Software Development Tools: A
Profile, Computer, May.

Hunt, James W., 1982: Programming lLanguages. Computer,
April.

Jensen., K., and Wirth, N., 1975: Pascal User Manual and
Report. Springer Verlag, New York, New York.

19

Johnson, R, Colin., 1981: Special Report: Ada, The Ultimate
Language. Electronics, February 10.

Lamie, Edward L., 1982: PL/1 Programming: A Structured Approach.
Wadsworth Publishing Co., Belmont, CA.

Levanthal, Lance A., 1978: Introduction to Microprocessors:
Software, Hardware, Programming. Prentice Hall, Englewoods

CTiff, NJ.

Linhart, Jason., 1983: Managing Software Development With C.
BYTE, August,

Macdonald, George., (Canadian Hydrographic Service, Burlington,

Ontario, Canada) 1983: Automation Today - Scratching The
Twenty-One Year Itch. (unpublished manuscript).

Martin, Thomas., 1978: Real-Time Programming Language PEARL -
Concept and Characteristics, IEEE Cat. No. CH 1338-3/78/0000-
0301,

Martin, Thomas., 1979: "PEARL at the Age of Three." proceedings
of the International Conference on Software Engineering,
IEEE Cat. No. CH 1479-5/79/000-0100.

Merchant, Michael J., and Sturgal, John R., 1977: Applied
FORTRAN Programming With Standard FORTRAN, WATFOR, WATFIV,
and Structured WATFIV,

Metzger, Philip W., 1973: Managing A Software Project.
Prentice Hall, Englewoods Cliff, NJ.

Mills, Harlar D., 1982: The Calculus of Computer Programming,
Allyn & Bacon Inc., Boston, WA,

Madia, Andrew., 1983: To Pascal Interpeter, uC's on-chip ROM
is Home. Electronics, July 21.

Montgomery, Charles., 1983: Pascal System Plugs Holes in uC
Programming. Electronics Design, July 21.

Perrot, R. H., and Dhillon, D. S., 1981: An Experiment With
FORTRAN and Pascal., Software = Practice and Experience, 1l.

Samnet, Jean F,, 1969: Programming Languages. Prentice Hall,
Englewcod CT1iffs, NJ.

Department of Defense, 1980: Reference Manual for the Ada
Programming Language ~ Proposed Standard Document,

Rifkin, Edward M., And Williams, Steve., 1983: The C Language:
Key to Portability. Computer Design, August,

Ripps, David L., 1983: Multitasking 0S Manages A Team of
Processors. Electronic Design, July 21.

20

Roberts, Bruce., 1983: The ¢ Language. BYTE, August,

Ross, Douglas T., and Schoman, Kenneth E., 1977: Structured
Analysis for Requirements Definition. IEELC Transactions
on Software Engineering, Vol. SF-3, No. I, Jahuary.

Ross, Douglas T., 1977: Reflections on Requirements. IEEE

—_—

Transactions on Software Engineering, Vol. SF-3, No. 1,

Schindler, Max., 1983: Real-Time Languages Speak to Control
Applications. Electronic Design, July 21.

Shaw, Mary., Alme, Guy T., Newcomer, Joseph M., Reid, Brian K.,
and Wuif, Wm. A., 1981: A Comparison of Programming Languages
for Software Engineering. Software - Practice and
Experience, 11, B

Spector, David., (Prime Computer, Framingham, MA.): Ambiguities
and Insecurities in Modula II. (unpublished manuscript).

Spencer, Bill., 1983: C's Pointer Mechanism Raises System
Throughput. Electronic Design, July 7.

Stenning, Vic., Froggart, Terry., Gilbert, Roger., and Thomas,
Ellis., 1980: The Ada Environment: A Perspective,

Stotts, Paul David., (Department of Applied Mathematics and
Computer Science, University of virginia, VA,): A Comparitive
Study of Concurrent Programming Languages. Z2lpp.

(unpublished manuscript).

Sumner, Roger 7., and Gleaves, R. E., (Volition Systems, P,0.

Box 1236, Del Mar, CA. 92014): Modula II - A Solution to
Pascal's Problems. (unpublished manuscript).

Thomas, Rebecca., 1983: What is a Software Tool. BYTE, August.

Welsh, J., Sneeringer, M, J., and Hoare, C. A. R., 1977:
Ambiguities and Insecurities in Pascal. Software
Practice and Experience, 11, 6.

White, James Wm,, 1983: Real-Time FORTRAN. Real-Time,
Mellichamp, Van Nostrand.

Whitney, Al., and Conrad, Marvin C., 1983: Call FORTH For
Real-Time Control Programming. Computer Design, April 21.

Wills, J., 1980: Computer Languages In Perspective. Electronic
Engineering, May. :

Zeigler, Stephen., Allegre, Nicole., Johnson, Robert., and
Morris, James,, 1981: Ada for the Intel 432 Microcomputer,
Computer, June,

Zvegintzov, Nicholas., 1983: Nanotrends. Datamation, August.

21

ElE A= B6 "Lt
F i [ZRT

Rk A v- o
‘a1 e NS
18l 0e e ek
vSUE =" et IRy

¥ YT g e
v - &b
A G BI "6
=0 b9 £ ? gy
58" b5 a5 Gi 9L
Pt 0OR 5 BT "L
BL/83 7" 5 TRG
BY "o o T
 wos saoos wod
17

3

[S

oA
L4 M L

W4

84038
aJ

=1V

Wi

3_long
epy

Iraay 40 sa.mbir.g o eiop

Z Bl Burtseyry
[Butwe aBoay SWa3sAg
Sogu) AzTrigINard
P - Ajptorrdurg
LTl “azdra aawedboud shotaaay
8 681 AjLriqeudaesn
19 B[N 40 JUBIXTI
O RL adoos eyer
516 SANJIINLIS eqeq
£0B0T AjTirtepeEay
I"¢o7 FUIWUOLdTAUE Faoddns weiBouy
S ETRyl S3ANIIUIS 04D
A -l Y adA] ¥3eq
3ubram o ij#mmMEMMMMMMwM-H

24035 x IUBtam = L4

= FLJ8p +0 aunbry

sabenbuey @sodand (edauab ayy 404 Jraow jo 524101} BU3 jo suorieyndwog--T aiqQe)

22

& 695 RO - Ty vE9 349l 40 sa.nbiy 1eio)

LT gy ZIT %1 G- oL " TRTEE AFIoirdwg
CLTYD g° =T B" Q6 TS g" A] AJETIqQINS I
G tEL £ WH.¢ﬁ =" T 8% 8" FAA AJTtiqepeay
B4 EY [Z? 88 2" T 1 Pl P AJrirgeuaea)
0 Tl v 2112 ' 197 /% & &5 adoas ejeq
U1t FA it A Nt e 215 T f I B 85 FBN $2 Jualzxg
SRTED tr FENS 4 £* (=TSN =8° 8 845 aunyanals gieg
s " = B 94 Pl =1 - = ¥ butysegry 1N
Tttt [Q 0 O Ci =B raadxa Jgaweaboud SNOTAS AL
1Z°%071 [=r- &85 5 by a8 8- B 1171 IHwUDAtAue juaddns weabody
FECGOL e B "o v PLTLL ol B LI SFUANFINAJIS [ALJuUOn
L'ea ol SOTLT e STTITT &’ nreTT adAy ejeg
sl o 26T &" tOTLET 8" 8851 Butwe . Do.ud sSWa3sAS
wod saoss woa sseas wod moss Jubram auread 1eatugoal
Led=R R T SRS TR E e 2Py

aao35 x 3YBtam = w4
WO4 = 3Ysa 40 sanbig

wabenbue | sawiy—-[ead ayy) 404 Fraaw jo saunbty ayy 40 sugrieIncwol--7 arqelr

23

APPENDIX
Overview 0Of The Candidate Ltanguages

This appendix provides a brief overview of each language that
met the selection criteria described under METHODOLOGY. In
addition, an example program accompanys each discussion. The
programs are an implementation of the Sieve of Eratosthenes
algorithm, which computes all of the prime numbers from 3 to
16,000. This algorithm, taken from the September 1981 issue of
BYTE, can be used as a benchmark for comparing programing
languages,

Ada

Ada was developed by the DOD in response to the growing cost of
software maintanence. The preliminary work on Ada began in 1975
with a serfes of competitions in which Honeywell Bull CTI was the
final winner. DOD has set out to standardize the language before
its official release. This is quite a different route from that
taken by other languages. In the past, languages were introduced
to the market and would become standardized several years later,
DOD has trademarked the name “Ada" so that no vendor may sell a
compiler using the Ada name unless the compiler has passed the
validation test, This ensures that Ada code will remain portable
by keeping nonstandard Ada compilers off the market.

Ada was originally targeted for real-time, embedded systems
(systems dedicated to one particular purpose, e,g., fire and
guidance control for tanks, missles, and airplanes), but it has
grown during development to include all programing environments -
business, scientific, and systems programing. As a result, Ada
has been critized as being much too targe for an individual
programer to handle., Ada supports striuctured programing and
provides many checks to help prevent “bad" programing practices.
The Tanguage is said to make programers code "the Ada way".

Ada provides built-in data types, and the precision of numeric
data can be controlled by the programer. Ada is designed to be a
very secure language (less prone to programing errors) in that
certain operations are declared to he associated with certain
data types in the header of the program. For instance, the
variables HEIGHT and WIDTH can be declared to be of type INCHES,

whereas variable AREA is declared to be of type SQUARE INCHES.
Then:

function"*"(height:INCHES;width:INCHES)
return SQUARE INCHES:

requires that all multiplication of inches times inches have
results in square inches. The compiler will check to make sure
that this rule is adhered to. This is in strong contrast to most
Tanguages which do not allow user-defined types. Ada provides
control structures similar to Pascal, a specialized exit
statement to break Toops, and the GOTO statement. The Tanguage
provides a rich set of unit-level control structures such as
procedures, function calls, exceptions, and concurrent

24

activations. Ada, like PL/1, has the ability to recover from
execution-time errors., Whenever an error is encountered, an
exception is raised. Several such as CONSTRAINT ERROR AND
NUMERIC ERROR are predefined. To prevent program execution from
stopping when the exception is raised, a "handler" can be
attached by the user to recover from the error.

Ada is still in its infant stages. Some authorities say that
Ada will become "the" Tanguage, and others say that it will find
its niche and remain there. Only two compilers at present have
been validated with many others in waiting. Almost every major
computer manufacturer is working on an Ada compiler or Ada
software tools,

The following is an implementation of the Sieve of Eratosthenes
in Ada:

-- A "Sieve of Eratosthenes" program written in Ada.
with TEXT 10;
procedure SIEVE_OF ERATOSTHENES is

-- Declaration of objects

SIZE : constant INTEGER := 8 190;

type PRIME ARRAY is array (U .. SIZE) of BOOLEAN;
COUNT, PRIME : INTEGER OF INTEREST,

--Procedure body
begin
package INT IQ is new TEXT I0. INTEGER IO
(INTEGER OF 'INTEREST); - -
TEXT_IO.PUT_LINE (“10 iterations");
for ITER in 1 .. 10 Toop
count := 0;
FLAGS := (0 .. SIZE => TRUE);
for iter in 1 .. 10 loop
if Flags(I} then
PRIME := 1 + I + 3;
K := K + PRIMF;
while K <= SIZF loop
FLAGS(K) :="FALSE;
K := K + PRIME;
end loop;
count := count + 1;
-- INT 10.PUT (PRIME}; -- For debugging
-- TEXT IQ.NEW LINE (SPACING =) 1); -- For debugging
end if; -
end loop;
INT T0.PUT {COUNT};
TEXT_I0.PUT_LINE ("primes");
end SIEVE OF ERATOSTHENES;

25

"

The programing language C was developed by D.M. Ritchie and B.
Kernighan at Bell Labrotories in 1972 on a PDP-11 computer,
Though no formal standard exists, C does follow a "de facto"
standard as defined in the book, "The € Programming Language"
{(Ritchie and Kernighan 1978). The Tanguage contains Doth high-
lTevel and low-level features and has been termed a mid-level
language. It is supported by a full set of development tools
under the UNIX operating system,

The largest application of C has been in systems programing
(writing compilers, editors, and operating systems) where it is
necessary to specify particular addresses or registers. Its
popularity has increased in the past few years, especially with
software vendors, because of its portability, efficiency, and
ease of use. A strong feature of C is its use of primitive
elements to construct powerful functions, With this feature it
is possible to construct functions which are not present in the
language itself, These functions can then be stored in a library
as a standard for use by all programers. An example would be
functions which would overcome the primitive input/output
abilities of C. Instead of giving the programer every special
feature, C provides the basic building blocks which can be
assembled to perform many varied tasks.

C can specify the precision of integers and real numbers; data
types can be aggregated by arrays, structures, and unions; and
type conversions are appliied freely and automatically. The
control structures REPEAT, WHILE, and FOR are provided with the
possibility of exit from a Toop with the use of the BREAK
statement. A Timited form of the CASE statement is provided, and
the general GOTO statement is available. Functions and procedure
calls are the only unit-level control structures, Readability
can be a problem because of the existence of many different ways
pf stating the same concept and the possibility of producing
extremely terse code. Unlike Ada, automatic type conversions are
allowed in C.

The following is an implementation of the Sieve of Eratosthenes
in C:

/*Eratosthenes Sieve Prime Number Program in C */
#define true 1

#define false 0

#define size 8190

#define sizepl 8191

char flags[sizepl];

main() [
int i, prime, count, iter;

printf("10 iterations/n");

for (iter = 1; iter <= 10; iter ++) [
count = 0;
for {i = 0; 1 <= size; i ++)

26

flags{i]} = true;
for (i = 0; 1 <=size; 1 +4) [
if (flags[i]} [
prime =1 + 1 + 3;
k =1 + prime;
while (k <= size) [
flags{k] = false;

K += prime;
]
count = count + 1;
]
printf (“/n%d primes", count);

]

FORTRAN 77

FORTRAN 1s the oldest language evaluated in this report, and is
probably the best known, FORTRAN was developed by IBM in 1954 to
satisfy the needs of the scientific community, It has been
through several standardizations, the latest one called FORTRAN
77. This latest version incorporates some of the structured
design principles developed after its previous standardization in
1966,

The most notable change for FORTRAN 77 is the addition of the
IF, THEN, ELSE structure otherwise known as the "block if". This
eliminates the need for the arithmetic IF and reduces the need
for the use of the GOTO statement with the IF statement. In
addition, the ability to handle character strings and to open and
close files easily has been added.

FORTRAN has a very large support environment. This is due to
FORTRAN being the oldest and most popular language among the
scientific community., (Because NOS has been using FORTRAN for
its applications in such areas as AIS, BSSS , Marine Center data
processing programs, and Sea Beam for many years, there exists
within NOS a large pool of programers familiar with FORTRAN.)

FORTRAN is not a secure language, and it allows programers to
write confusing programs, especially with the use of the
EQUIVALENCE and COMMON features. Automatic conversion of
variable types is performed by FORTRAN., Type checking between
subroutines is not performed, In keeping with the ANSI standard,
all new versions must encompass the old versions. This ensures
that existing FORTRAN software will work with the new version.
A1l the Tanguage features which are now considered "bad" are kept
in the latest version. Existing NOS FORTRAN programs could be
transferred to the new SDS III computers if the code did not
utilize any language extensions or calls to the operating system.
Much of this software, however, uses nonstandard extensions and
calls to the operating system. A significant amount of work
would be required to revise the software before it could run on a
different computer.

FORTRAN can be extended to take on real-time tasks with the use
of the extension FORTRAN ISA 61.1. The standards were developed

27

by a Purdue workshop to standardize a set of real-time subroutine
interfaces, The subroutines include the ability to manipulate
bits, schedule tasks with the operating system, and provide
access to the clock.

The following is an implementation of the Sieve of Eratosthenes
written in FORTRAN.

* Eratosthenes Sieve Prime Number Frogram in FORTRAN

LOGICAL FLAGS (8191)
INTEGER I, PRIME, K, COUNT, ITER

*

* PERFORM 10 ITERATIONS OF THE SIEVE

*

DD 92 ITER = 1, 10
COUNT = 0

¥

INITIALIZE THE ARRAY TO TRUE

D0 10 I = 0, 8190
FLAGS = .TRUE.
10 CONTINUE
*

* FIND ALL THE PRIME NUMBERS FROM 0 TO 8190
*
DO 91 I = 0, 8190
IF FLAGS(I) THEN
PRIME = [+ 1 + 3
¥ =1+ PRIME

20 IF K .LE. 8190 THEN
FLAGS(K) = .FALSE.
K = K + PRIME
GO TO 20
ENDIF
ENDIF

COUNT = COUNT + 1

91 CONTINUE
92 CONTINUE

WRITE (1, 200) COUNT
200 FORMAT (1X, I6, ' PRIME')
*

STGP
END

PL/1

PL/1 was introduced by IBM in 1965 as “the" programing
language, It was designed for a wide variety of applications
(business, scientific, etc.). PL/1 represents an attempt to
incorporate the best features of FORTRAN, COBOL, and Algol 60
into a unique multipurpose languace.

28

IBM put considerable effort into making this language a success
much Tike DOD is doing with Ada, although the situation is
slightly different since DOD is the one buying, not selling.
Acceptance of PL/1 was not as great as IBM would have liked
because few companies were willing to change languages. It has
not made any great inroads into the business (COBOL) or
scientific (FORTRAN) communities, The full PL/1 language is very
large and has been scaled down to a subset known as PL/1 subset
G. This subset was standardized in 1981 by ANSI and has been
implemented on a number of different computers, IBM of course
offers the most implementations of PL/1 on its own computers.

PL/1 provides built-in data types for which a variety of
attributes may be specified (base, precision, bit, and picture).
Aggregate constructors include structures (record), arrays, and
pointers. The language also provides the control structures IF,
THEN, ELSE, WHILE, and the GOTO statement. As far as supporting
structured programing, PL/1 is one of the better languages
available in the industry today.

PL/1 seems to be "holding on" but is not making any great gains
in industry acceptance, especially with the advent of Ada. The
following is an implementation of the Sieve of Eratosthenes
program written in PL/1.

/* Eratosthenes Prime Number Program in PL/1%/
prime:
proc options(main};
#replace
size by 8190,
false by '0'b,
true by '1'b;
dcl
flags (0:8191) bit(1),
(i, prime, k, count, iter) fixed;

put Tist('l0 iterations');
do iter = 1 to 10
count = 0;
do i = 0to size;
flags(i) = true;
end;
do i = 0to size;
if flags{i) then
do;
prime =i + i + 3;
K =1 + prime;
do while (k <= size);
flags(k) = false;
k = k + prime;

end;
count = count + 1;
end;
end;
end;
put skip Tist(count, 'primes');
end prime;

29

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of
Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact
of natural and technological changes in the environment and to monitor and predict the state of the solid
Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical informa-

tion in the following kinds of publications:

PROFESSIONAL PAPERS—Important defini-
tive research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS—Reports
prepared by econtractors or grantees under NOAA

sponsorship.

ATLAS—Presentation of analyzed dats generally
in the form of maps showing distribution of rain-
fall, chemical and physical conditions of oceeans and
atmosphere, distribution of fishea and marine
mammals, ionospheric conditions, ete,

TECHNICAL SERVICE PUBLICATIONS—Re-
ports containing data, observations, instructiens,
ete. A partial listing includes data serials; predic-
tion and outlook periodicals; technical manuals,
training papers, planning reports, and information
serials; and miscellaneous technical publications.

TECHENICAL REPORTS—Journal quality with
extensive details, mathematical developments, or
data listings.

TECHNICAL MEMORANDUMS—Reports of
preliminary, partial, or negative research or tech-
nology results, interim instructions, and the like.

Intormation on availability of NOAA publications can be obtained from:

PUBLICATION SERVICES BRANCH (E/Al13)
NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE

Washington, DC 20235

	NOAA Technical Memorandum NOS C & GS 1
	CONTENTS
	Abstract
	Introduction
	SDS III Performance Requirements
	Data Acquisition Capabilities
	Data Processing Capabilities

	Methodology
	Quantifying The Language Features
	Selection Criteria

	Filtering Out the Unsuitable Languages
	General Purpose Languages
	Real-Time Languages

	Rating the General-Purpose Languages
	Weights, Scores, and Figures of Merit
	Results

	Rating the Real-Time Languages
	Weights, Scores, and Figures of Merit
	Results

	Recommendations
	Acknowledgments
	References
	Bibliography
	Appendix - Overview of the Candidate Languages
	Ada
	C
	Fortran 77
	PL/1

	TABLES
	Computations of the Figures of Merit for the General-Purpose Languages
	Computations of the Figures of Merit for the Real-Time Languages

