The Trouble with Constrained Adjustments

Charles R. Schwarz

ABSTRACT. A constrained adfustment, in which @ new strvey is fit to existing control points, produces
resulls that are gl Jeast a3 good ag, and wsially better than, the corresponding free adjustment. However, the
proof af this property depends on the assumplion that the uncertainty of the fixed control is much smaller than
the uncerlainlies of the netw survey, When Ihis asseaplion iz not fulfilled, the wsuwal ervar-propagation equations
meeesd by extended Lo fake indo account the effects of the wncertainties of the fived control poivis. The opposite
coticlusion thin can be reached: It is possible for adfusted observations lo have yreater ervars than the observed
values, so the constrained-ndjustment procedure can indeed degrade a perfectly good survey and produce results

that are worse thar the free ndjustment.

Introduction

anstrained adjustments are quite common in

the processing of survey dala. Every lime we

adjust a new survey into an existing coordi-
nate system by using exisling control points, we are
performing a constrained adjustment.

The control network is intended to help surveyors
place their surveys into some larger coordinate sys-
tem, detect blunders in their observations, and con-
trol the build-up of the effect of observational errors
on the adjusted coordinates. However, there are cir-
cumstances under which control networks become
inadequate for their intended purpose. When this
happens, surveyors may have difficulty fitting a new
survey into the existing control network. Misclosures
may be much larger than expected, and the difference
between observed and adjusted values of observa-
tions may be much larger than can be explained by
observational ervor.

Iree and Constrained Adjustments

In the majority of least-squares adjustment problems,
the unknown parameters are the coordinates of phys-
ical points. When coordinates are used, it is usually
necessary to fix the coordinates of ong or more points
to define the coordinate system. The survey obser-
vations alone are not sufficient. Angle observations
are completely independent of any coordinate sys-
tery, and therefore cannot tell us anything about ac-
teal coordinates. Distance observations tell us only
about the scale of a coordinate system, not its ori-
critation or posilion.

In an adjustment one ean fix a coordinate by In-
cluding an appropriate equation that specifies the value
to be assigned o the coordinate, such as x; = 0, v,
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= 0. Such equations have the same form as regular
observation equations, but do nol represent actual
observations. They are sometlimes called “direct ob-
servations of coordinales™ and sometimes called
“ronstraint equations.”

Conventionally, we use the words “free adjust-
ment” to describe an adjustiment that uses jusl the
number of constraint equations necessary to define
the coordinate system, but no more. When more con-
straint equations are used, we say that we have a
“constrained adjustment.” The wording is perhaps a
bit misleading, since a free adjustment indeed can
include constraint equations (those necessary to de-
fine the coordinate system). Many authors prefer the
phrase “minimal constraint adjustment’” to denote a
free adjustment; unfortunately, the use of this more
descriptive phrase is not universal. When more than
the minimum number of constraint equations are used,
the resulting adjusted quantities are constrained not
only to be in the proper coordinate system, but also
lo fit the additional constraints.

Consider the horizontal survey shown in Figure 1.
Suppose that points | and | are pre-existing marks
and we run a traverse between them, setting the new
marks 1 and 2 in the process. We measure the dis-
tances [- 1, 1 -2, and 2 - }, as well as the angles [ -
1-2and 1-2-]. Thus we have five measurements
with which to determine the four coordinates of the
bwo new points—a redundancy of one.

There are at least bwo common ways of treating the
coordinates of the old points, In a horizontal network
that contains distance observations, we noeed theee
quantities to define the coordinate system —twa to
define the origin and one for the orentation. Thus
we might perform a free adjustment by constraining
both coordinates of paint I and one of the two coor-
dinales of point J. Allernatively, we might constrain
the two coordinates of point | and the azimuth from
[to ).

Free adjustments have the disturbing property that
things move when they should stay fixed. In a free
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Figure 1. Sample froverse.

adjustment of the example network, point ] is still
free to move in one direction. This is not good, since
the coordinates of point | have already been deter-
mined and published. It might be preferable to make
sure that the existing control stays fixed by constrain-
ing both coordinates of both point T and point ] in a
constrained adjustment.

Why a Constrained Adjustment is Good

Qur intent is that the coordinates of the old points 1
and | serve to “conlrol” the new survey. These ald
coordinates actually accomplish this in three different
ways. First, they serve to define the origin and ori-
entation of the new survey so that the coordinates of
the new points 1 and 2 are in the same coordinate
system as the old points. Second, they provide a means
of detecting blunders in the new survey. Third, the
constrained adjustment dampens the build-up of the
effect of accidental error.

The argument about constraining the effect of ac-
cidental observational errors goes like this: The co-
ordinates of the existing poinls are assumed Lo be
“correct.” If the free adjustment has a misclosure at
point 1, it must be because of errars in the new sur-
vey, If the misclosure is large, we should look for a
blunder in the observations. If it is within the toler-
ance allowed for this type of survey, we distribute
the misclosure. The resulting adjusted observations
are more accurate than the observed values, and the
adjusted coordinates from the constrained adjust-
ment are more accurate than those from the free
adjustment.

We can show this mathematically, The constraint
cquations that are used to fix the coordinates of the
control points can be treated as regular observations
whose assodiated variance is zero, Thus we have nine
observations altogether—five from the new survey

and four “observations’ of the coordinates of the bwo
old points. We also have eight unknown parameters
altogether—bwo coordinates for each of the faur points.
Let the total set of observation equations be written
in standard notation as

AX =L+ V (1)

where A is the design matrix (partial derivatives of
the observations with respect to the parameters), X
is the vector of unknown parameters (or coreections
to appmximate.values of parameters), L contains the
observed values (observed minus computed terms),
and V is the vector of residuals,

We partition these nine observation equations into
three groups, Let

AX=L+V,; be the five observation equations
arising from the new survey,

be the three observations of old co-
ordinates (or functions of old coor-
dinates) that are used in the free
adjustment to define the coordinate
systemn. Clearly these equations dao not
involve the coordinates of the new
points 1 and 2, so A, will have zeroes
in the columns corresponding to those
coordinates in X.

be the remaining observation of an
old coordinate {or function of an old

coordinate).

AX=L,+V,

AX=1;+V;

Let the covariance matrices associated with these
three sets of observations be denoted £, 2., and £,
respectively. Since the coordinates of the old control
points are to be fixed; we will use £, = G and %, =
0. However, it will not hurt to carry these quantities
symbolically.

If we perform an adjustment with only the first two
sets of observations, we obtain the free-adjusiment
estimate X~ of X, with covariance matrix T-_ If we
then sequentially add the third set, we obtain the
updated (constrained) estimate

o R
®* =X+ E-ﬁ}(z-j 1—.—&;52";12] (La —AsXT) (2]
The covartance matrix of the updated estimate is
Ir=F" —EAIE. 4 AZADCIALE - {3

This is a well-known equation. With a change of no-
tation, it is equation {4.118) in Leick (1990) or erua-
tion (13.5a) in Mikhail (1976}, The second term on the
right is a positive semidefinite matrix (whether or not
¥, = 0). Positive semidefinite matrices are analogous
to numbers that are greater than or equal 1o zero,
Since Tt is equal to - minus a positive semidefinite
matrix, we say that £+ = E-. This means that the
variance of any scaler function of X* i5 less than or
equal to the variance of the same function evaluated
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at X-. Intuttively, it means that by adding new in-
formation (the third set of equations) to an old set,
we cannot make things worse, and generally make
things better,

In principle, it is possible to make a new observa-
tion that gives no new information about the param-
eters. For instance, we could make an additional
observation of a parameter that is already fixed, such
as one of the coordinates of point [ in the example.
This is why the second term on the right of equation
(3} can be zero. In practice, this almost never hap-
pens. In practice, almost all new observations (in-
cluding redundant constraints) help. Sometimes they
help only a little, but more often they make the re-
sults much better.

Why a Constrained Adjustment
May Not Be 50 Good

The previous section seems to prove that the con-
strained adjustment is at least as good as, and may
be much better than, the free adjustment. Further-
more, the constrained adjustment uses all the infor-
mation available to us, which is intuitively preferable
to a procedure that ignores some data. Why, then,
do we hear surveyors complain that they have to
“distort” or “degrade” highly accurate GP5 surveys
to fit the existing NAD 83 control?

The answer is that the error-propagation equations
given above, and indeed all the error-propagation
equations usually associated with least-squares ad-
justments, depend en the assumption that the ad-
justment was performed with a weight matrix that is
inversely proportional to the covatriance malrix of the
observations {i.e., W = o7 £7%). This assumption does
not hold when we fix the control points, since we
then carry out the adjustment as if the variances of
the coordinates of these points were all zero, while
we know that these points are not known perfectly.

Least-squares estimates are often said to be optimal
estimates or, equivalently, minimum variance linear
unbiased estimates. This means that the least-squares
algorithm can be derived from the principle that the
covariance matrix of the estimated parameters maust
be smallest among all possible linear unbiased esh-
mates that satisfy the observation equations. The
principle of minimum variance really goes to the heart
of the matter—it says that we should pick the esti-
mate that is the most accurate. For this reason, many
analysts find the principle of minimum variance to
be more satisfying than the principle that simply says
to minimize the sum of squares of the residuals.
However, when the least-squares equations are de-
rived from the principle of minimum varianee, we
must explicitly use a weight matrix that is inversely
proportional to the covariance miatrix of the obser-
vations (Appendix C).
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This means that least-squares adjustments using a
weight matrix that is not inversely proportional to the
covariance matrix of the observations do not have the
minimum variance property. Since they are not op-
timal, we can say that they are suboptimal. In spite
of being less than optimal, such adjustments are done
all the time. In fact, every constrained adjustment in
which the control points are held fixed is suboptimal.

Effect of Uncertainties of the
Fixed Control

The familiar equation
Ex;{ = ﬂ'ﬁN_‘ = iT&l:ArWﬂj_] l::"]_lj

which says that the covariance matrix of the param-
eters is proportional to the inverse of the normal
equations, does not apply without modification to
constrained adjustments. The modified equation is

Eyx = ai(ATWA)-!
+ (ATWA)'ATWBE - B"WA[ATWA)-'  (5)

where B contains the partial derivatives of the five
new observations with respect to the four coordinates
of the two control points 1and |, and E.- is the cor-
rect 4xd covariance maltrix of the coordinates of the
control points. Since this equation is not well known,
a derivation is given in Appendix B.

Equation (5} says that the 4x4 covariance matrix of
the coordinates of the two new points is the sum of
two terms. The first term gives the contribution of
the variance of the five new observations, and might
be called the internal error; the second gives the can-
tribution of the real uncertainty of the fixed control,
and might be called the external error. Thus we might
write

EK}{ = Emr + E-.-.1.'r |:_'5:|

Equation (5) provides a mathematical explanation of
how control networks become inadequate. The clas-
sical cancept, of course, is that the control netwiork
is supposed to be much more accurate than the new
densification survey. Mathematically, this means that
Erc should be so small (in comparison with ) that
the second term in equation (§) is much smaller than
the frst term. As long as this is so, equation (4) can
be used as a reasonable approximation of equalion
(5],

This is Indeed how classical control networks are
developed. We expect a rough correlation between
purpese and accuracy: Primary networks should be
surveyed to first-order accuracy; secondary networks
to second-order, ete. As long as this rough correlation
halds, we can use equation (4) instead of (5),

The concept Falls apart if the accuracy of the new
survey approaches or exceeds that of the existing
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control points. For instance, if we try to fit a second-
prder traverse between two third-order points, the
result is not what is expected of second-order work.
The uncertainty of the new points must be computed
by equation (5), not equation (4). Unfortunately, this
i5 almost never done in practice, with the result that
we often do not knoew how to describe the accuracy
of such points,

We also can look at what happens to the adjusted
observations when the existing control points are held
fixed. As shown in Appendix B, the covariance ma-
trix of the adjusted observations also consists of two
terms. For example,

T = ogfATWA)'AT
+ [AATWAY-IATW — T]
¥ BEBTAATWA) -IATW — 117 ()

[f the second term in this equation vanishes, then we
are left with the conventional expression

e = oIAATWA)TIAT (8}
In this case, the difference between the covariance
matrix of the actual observations and that of the ad-
justed observalions is

T — .= — alAATWA) -'AT
= [1 — A{ATWA)"'A"W]
% T — A(ATWATATW]T ()

This is a positive semidefinite matrix. Thus we can
write

Eis=2% {10}
which says that the variance of an adjusted obser-
vation is always at least as small as the variance of
thie actual observation {i.e., the adjusted observations
are better).

If the second term in equation (7) does not vanish,
equation (10) dees not necessarily hold. In fact, it is
quite possible that the variances of the adjusted ob-
servations could be larger than the variances of the
corresponding actual observations. In other words, if
we fix the control poinls, we might cause the ad-
justed values of the observations to be worse than
the actual observed values.

The same arguments apply when we try to fit GPS
vectors accurate to 1:1,000,000 into the existing NAD
83 nebwork, accurate to about 1:300,000. We can in-
deed adjust these vectors while holding the existing
control Axed, but the covariance matrix of the new
points must then be computed by equation (5), not
equation (4). The covariance matrix of the adjusted
observations must be computed by equation (7), and
equation (10} may not hold.

Effects on Free Adjustments

Equation (5) also holds for a free adjustment. We might
perform a free adjustment by fixing only those co-
ordinates necessary to define the coordinate system.
Follewing the normal least-squares algorithm, we
would compute the covariance matrix in eguation (4).
However, this only gives us the uncertainty in the
adjusted coordinates that is due to the uncertainties
of the new observations. It tells us how well the co-
ordinates of the new points are known relative to the
fixed control, but not how well they are known rel-
ative to the datum as a whole. The second term in
equation (3) accounts for the contribution of the un-
certainty of the fixed control.

A free adjustment can be shown te have the prop-
erty that the columns of matrix B are linear combi-
nations of the columns of matrix A, say B = AH for
some matrix H. Then ;

(ATWA)TATWB = (ATWA)TATWAH = H
and equaticn (5) becomes

Tex = 0HATWA)~! + HEHT (11)

Even more interesting, we then have

[AATWA)-'ATW — 1B
= [A(ATWA)'ATWAH — AH] =0

50 that the second term in equation (7) vanishes. This
means that equation (10) holds for all free adjust-
ments, irrespective of how the coordinate system is
defined and of the uncertainty of the fixed contral.
The coordinates obtained in a free adjustment may
be affected by the ervors in the fixed contral, but the
adjusted observations are not. This is the sense in
which these adjustments are “'free.”

Practical Implications

Many surveyors have an intuitive grasp of these
mathematical results. They say that the constrained
adjustment “distorts” their observations. This does
not mean that the ebserved values are actually
changed; it means that the adjusted values of the
observations are more uncertain, and could, there-
fore, have greater errors than the cbserved wvalues.
They rebel against this possibility; no one wants his
or her work to be “degraded” by putting it through
a process that can produce worse resulls than one
started with.

Thus many surveyars processing GPS vectors are
rejecting constrained adjustments in favor of free ad-
justments, for which equation {10) holds. Others are
required by contract to fit their GPS surveys into the
existing control network, but are uncomfortable with
this requirement to do so.
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The problems described here mathematically are
indeed the trouble with constrained adjustments, and
the trouble with the entire concept of a hierarchy of
control networks in which the more accurate net-
works control the lower-order surveys. From time to
lime, new tEEhnnlog}f COMEes a]nng that allows new
surveys to be performed with higher accuracy than
the existing contral network. When this happens, the
extended error-propagation equations developed in
this article must be used, with the unhappy result
that equation (10) may not held.

This situation has arisen twice in this century, In
the 1960s, the introduction of eleclironic distance
measurement equipment allowed new surveys to be
performed with greater accuracy than the existing NAD
27. This eventually led to the creation of NAD 83.
MNow the same situation is occurring again. GFS sur-
veys can be performed with greater accuracy than
MAD 83, It is likely that this situation sooner or later
will lead to the computation of a new continental
datum,
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Appendix A: Linear Error Propagation
Let X be a vector of random variables and let Y =
f(X) be a vector of functions of X. Assume that the
covariance matrix X is known, Then the covarianee
matrix of Y is

5Y ay\'
B = () 2 (5) (12

With a change of notation, this is equation (4.34) of
Leick (1990) and equation (4.40) of Mikhail (1974).

Appendix B: Effect of Unestimated
Parameters

In the example traverse shown in Figure 1, we have
four points and eight coordinates altogether. Let us
partition these into two sets. Let X be the four co-
ordinates of the two new points 1 and 2, and let X
be the four coordinates of the two existing control
points Fand [,

Mathematical Development
The five observations in the traverse shown in Figure
1 invelve all eight unknowns. This set of five obser-

vation equations can be written
AX, + BX. =L+ V (13)

where the covariance matrix associated with these
five observations is X.

We also wish to add four constraingt equations for
the coordinates of the existing control points. We write

Xeg=Le+ Vi (14)

where the covariance martrix assoriated with these
four constraint equations is £y
The total set of all nine equations is now

o D6 -(E) () e

with covariance matrix

T 0
(& = s

The most correct way to treat all these data is to
perform the minimum-variance adjustment, which is
an adjustment of the complete system (15) using a
9x9 weight matrix that is inversely proportional to
(16). Of course, this is almost never done, since it
might result in changes to the coordinates of the ex-
isting conlrol points.

To perform a constrained adjustment, we arbitrar-
ily (i.e., without mathematical justification) set the
residuals Ve in (14) to zera. The result Xe = Lo s
substituted into equation (13), which is rearranged to
read

AXy =L — BL-+ V (17)

This system of five observation equations in faur un-
knowns is adjusted with a weight matrix W that is
inversely proportional to E, yielding the estimate

Xy = (ATWA)-'ATW(L — BL) (18)

Since the coordinates of the existing control points
X should have been carried as unknowns but were
not, they are called “unestimated parameters.” Even
though these cnordinates are not estimated in the
constrained adjustment, we can still take account of
their effect when we perform error propagation.

The estimate in (18) has two sources of error—the
errors in the five traverse observations L and the er-
rors in the coordinates af the existing control Lo, Since
these two groups of quantities were determined by
different people at different tirmes, we can reasonably
assume Lhat they are independent, Thus the total set
of independent variables is
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and the covariance matrix of this vector is given by
(16). The partial derivatives are

aL  ALc
= ((ATWA)-'ATW

—(ATWA)IATWEB)  (19)

Thus the covariance matrix ., of the estimate in (18}
is

Tyx = ((ATWA)'ATW — (ATWA)-*ATWE)
<[ 0 WAATWA) !
0 T/ |\ —BWAATWA)-!
= (ATWA)TAT W WA(ATWA)-?

+ (ATWA)-TATWBE, . BTWA(ATWA)-!

= af{ATWA)?

+ (ATWA)'ATWBE BTWA(ATWA)-! (20)
Similarly, the adjusted value of the five traverse ob-
servations is

L* = AX, + BL.
A(ATWA)TATWL
— [AATWA)TATW — []BL.

It

]

(21)

and the covariance matrix of the adjusted observa-
tions is
T = cZA(ATWAY-IAT
+ [AATWAYTATW — 1)
X BE LB AATWAY-IATW - )7 (22

A Numerical Example

To keep the numerical example small, we reinterpret
Figure 1 to be a drawing of a leveling network, Points
G and ] are now assumed to be benchmarks in the
national vertical network. The object of the new sur-
vey is o determine the elevations of the new points
1 and 2. Observed elevation differences are accu-
mulated, setup by setup, between the marked points,
resulting in the following observations:

Obs. Model Value (m) Distance {(km)
-[| Hl e ]"ir; 5.':'13 ]DD
1.z Ho —H; ~17.062 200
1y H; —~ H, 42.771 100

The published elevations of points G and ] are H- =
123.113 meter and H, = 153.805 meter. From the ad-
justment of the national network, we have

o = 0,010 m?
of = 0.010
o, = DO075
or, in matrix form,
w _ 0010 0.0075
TEE T hon7s 0.014

The leveling is done to specifications that vesult in an
uncertainty of elevation difference of 0.004F me-
ters, where K is the length of the line in kilomsaters.

Of course, in practice we are not usually given for-
mal standard errors of the elevations of points in the
national network. It would be even mare unusual
{almost unheard of) were we actually to be given a
formial covariance between two elevations. Neverthe.
less, such numbers do exist in principle; and the
numbers given here are reasonable estimates of what
might be obtained in a real network. Note that the
elevation errors at points G and | have a significant
positive correlation (0.75). This says that points clase
together share some of the same error sources.

We select a value of the reference variance af oy =
0.0016 and compute the weights as

Obs. Model Value (m) Distance (km) o? w
1, H,—H. 5013 100 0.0016 1
1, Hy—H, =17.063 200 0.0032 1%
1, H-H, 4277 100 0.0015 1

The observation equations are then

( 1 [})(Hr)
=z 1 H
0 -1 &
; 5.013 -1 0 123113 iy
= | —17.062 | - 0D o 153.805) * | v
42,771 0 1/ Ve by

This iz in the form of equation (17), so that we im-
mediately identify
1 0 5.013
(—1 I) L= (—1?.%2)
-1 42771
-1 0
) _ (123113
S ( J ”) b= (153.5&5)
g 1
The weight matrix is

1 0 0
W= (a ¥ n)
0 0 1

A=

We compute

0.75

FaalAt—1 —
(ATWA) (I}.Qﬁ

(=]
g
thiLn

e

and, by equation (18),

. = (Ha) _ (128.1185°
N AHE) T VLeds

he true covariance matrix is computed | W oeouation
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(20). We get

ATWE = (“1 “)

0 —1
and
5. = 0.0016 0.75 0.25 0.0090625 0.0084375
iy : 0.25 0.75 0.0084375  0.0090625
_ (0.0012 0.0004\  [0.0090625 0.0084375
1 0.0004 0.0012) T \0.0084375 0.0090625
_(0.0102625 0.0088375
~ \0.0088375. 0.0102625

As expected, the uncertainty of the fixed control points
dominates this expression. The uncertainties of the
elevations of the new points are much larger than
would have been expected from the accuracy with
which the new survey was performed. The elevations
of two new points are also highly correlated, since
they share the uncertainties of the control points.
The covariance matrix of the adjusted observations
can be found by evaluating equation (22). This yields

3 =2 =1 24 32
: 010

=1 =% 3 24 2
—0.0012 —D.0008 —(0.0004
= ( —0.0008  0.0016 -0.0008 )
—0.0004 -0.0008 0.0012

00025 0.0050  0.0025
0.00125 0.0025 0.00125

(U_UUEAS 0.0017 U,GDDBS)

(D.UCI]ZS 0.0025 ﬂ.ﬂﬂllﬁ)
-i-

0.0017  0.0066 0.0017
0.00083 0.0017 0.00245

The uncertainty of the fixed control peints, TESpON-
sible for the second term, also dominates this expres-
sion. Furthermore, remembering that the covariance
matrix of the observed quantities i3

0.0016 0 D
'5'2:( 0 0.0032 U )

i o 0016

we see that the second term causes the covariance
matrix of the adjusted chservations to be larger than
the covariance matrix of the actual observations.,

Appendix C: Minimum Variance
Adjustment (Gauss-Markov Theorem)

Consider the linear model

AX =L+ V (1}

in which the abservations are unbiased and have co-
variance matrix . We look for an estimate ¥ of X
thiat 13

L. Best {in the sense of minimum varianee), so thiat
T = E[(x=x)(%-%)"T] 15 a minimum

2. Linear in the observations L, so that %= BL for
some matrix B

3. Unbiased, so that E[%] = x

We must define what we mean by minimizing a
covanance matrix. Since there is no strict ordering of
matrices, we must minimize same sealer measure of
the matrix. A common choice is to minimize the trace
TrE ..

Since the observations are unbiased, E{V] = 0 and
E[L] = AX. Then

Ef#] = E[BL] = BE[L] = BAy

and by the unbiased property, we must have BAx =x.
Since this must hold irrespective of the value of X, we

must have
BA-1=10 (23)

If there are uw unknown parameters X, (23) represents
u* separate equations. Let A be a matrix of u® La-
grange mullipliers. Then

Te[(BA — TJA]

represents the sum of all u* equations in (23), each
multiplied by a Lagrange multiplier.
Furthermore, since X = E[X] = E[BL] = BE[L], we
have
X - X = BL - BE[L] = B(L - E[L]}
s0 that

3
}‘X}c

E[(X — X)X = X)7]
BE[(L — E[L])(L — E[L])"]B" = BEB"

(24)

Now the problem is to minimize the augmented cost
function

@ = Tr(BIBT) + ZTr[(BA — DIA] (245)
Thus 15 done by difTerentiating (25) with respect to B
and L, and sewting each set of partal derivatves to
zero. We get

il

-~ _ __j""—. |_ -\'l_.
o -0 =2AZ B raA) =0

(26)
and

x 0= BA L =10

= _ —_ — |
7y = B -.2-?:|
From (26) we obtain

B=ATATE"

208
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and using {27}
Ba=-ATATE tA=]
504
AT =(aTs )"
\
and |
B= (ﬁTE'l A) AT

Thus

X = (ATE-1A)TATZ-'L (28)
is the best linear unbiased estimator. As a final mod-
ification, we can write £°' = (/o) W in (28). The

two appearances of o cancel each other, yielding the
familiar form

X = (ATWA) TATWL (29)
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