
HARBOR SEAL (*Phoca vitulina richardsi*): Oregon/Washington Coast Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Harbor seals inhabit coastal and estuarine waters off Baja California, north along the western coasts of the continental U.S., British Columbia, and Southeast Alaska, west through the Gulf of Alaska and Aleutian Islands, and in the Bering Sea north to Cape Newenham and the Pribilof Islands. They haul out on rocks, reefs, beaches, and drifting glacial ice and feed in marine, estuarine, and occasionally fresh waters. Harbor seals generally are non-migratory, with local movements associated with such factors as tides, weather, season, food availability, and reproduction (Scheffer and Slipp 1944; Fisher 1952; Bigg 1969, 1981). Harbor seals do not make extensive pelagic migrations, though some long distance movement of tagged animals in Alaska (174 km) and along the U.S. west coast (up to 550 km) have been recorded (Pitcher and McAllister 1981, Brown and Mate 1983, Herder 1986). Harbor seals have also displayed strong fidelity for haulout sites (Pitcher and Calkins 1979, Pitcher and McAllister 1981).

For management purposes, differences in mean pupping date (Temte 1986), movement patterns (Jeffries 1985, Brown 1988), pollutant loads (Calambokidis et al. 1985), and fishery interactions have led to the recognition of three separate harbor seal stocks along the west coast of the continental U.S. (Boveng 1988): 1) inland waters of Washington State (including Hood Canal, Puget Sound, and the Strait of Juan de Fuca out to Cape Flattery), 2) outer coast of Oregon and Washington, and 3) California (Fig. 1). Recent genetic analyses provide additional support for this stock structure (Huber et al. 1994, Burg 1996, Lamont et al. 1996). Samples from Washington, Oregon, and California demonstrate a high level of genetic diversity and indicate that the harbor seals of Washington inland waters possess unique haplotypes not found in seals from the coasts of

Figure 1. Approximate distribution of harbor seals in the U.S. Pacific Northwest (shaded area). Stock boundaries separating the three stocks are shown.

Washington, Oregon, and California (Lamont et al. 1996). This report considers only the Oregon/Washington Coast stock. Stock assessment reports for Washington Inland Waters and California harbor seals also appear in this volume. Harbor seal stocks that occur in the inland and coastal waters of Alaska are discussed separately in the Alaska Stock Assessment Reports. Harbor seals occurring in British Columbia are not included in any of the U.S. Marine Mammal Protection Act (MMPA) stock assessment reports.

POPULATION SIZE

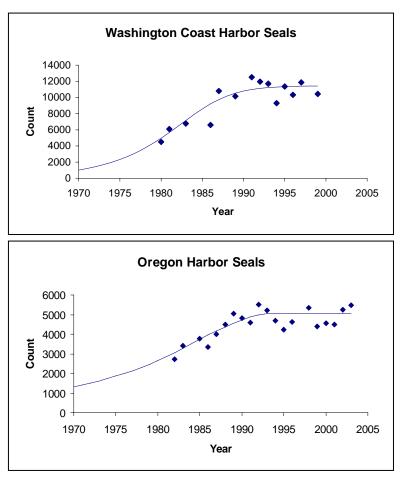
Aerial surveys of harbor seals in Oregon and Washington were conducted by personnel from the National Marine Mammal Laboratory (NMML) and the Oregon and Washington Departments of Fish and Wildlife (ODFW and WDFW) during the 1999 pupping season. Total numbers of hauled-out seals (including pups) were counted during these surveys. In 1999, the mean count of harbor seals occurring along the Washington coast was 10,430 (CV=0.14) animals (Jeffries et al. 2003). In 1999, the mean count of harbor seals occurring along the Oregon coast and in the Columbia River was 5,735 (CV=0.14) animals (Brown 1997; ODFW, unpubl. data). Combining these counts results in 16,165 (CV=0.10) harbor seals in the Oregon/Washington Coast stock.

Radio-tagging studies conducted at six locations (three Washington inland waters sites and three Oregon and Washington coastal sites) collected information on haulout patterns from 63 harbor seals in 1991 and 61 harbor seals in 1992. Haulout data from coastal and inland sites were not significantly different and were thus pooled, resulting in a correction factor of 1.53 (CV=0.065) to account for animals in the water which are missed during the aerial surveys (Huber et al. 2001). Using this correction factor results in a population estimate of 24,732 (16,165 x

1.53; CV=0.12) for the Oregon/Washington Coast stock of harbor seals in 1999 (Jeffries et al. 2003; ODFW, unpubl. data).

Minimum Population Estimate

The minimum population estimate (N_{MIN}) for this stock is calculated as the lower 20th percentile of the lognormal distribution of the 1999 population estimate of 24,732, which is 22,380 harbor seals.


Current Population Trend

Historical levels of harbor seal abundance in Oregon and Washington are unknown. The population

apparently decreased during the 1940s and 1950s due to state-financed bounty programs. Approximately 17,133 harbor seals were killed in Washington by bounty hunters between 1943 and 1960 (Newby 1973). More than 3,800 harbor seals were killed in Oregon between 1925 and 1972 by bounty hunters and a statehired seal hunter (Pearson 1968). The population remained relatively low during the 1960s but, since the termination of the harbor seal bounty program and with the protection provided by the passage of the MMPA in 1972, harbor seal counts for this stock have increased from 6,389 in 1977 to 16,165 in 1999 (Jeffries et al. 2003; ODFW, unpubl. data). Based on the analyses of Jeffries et al. (2003) and Brown et al. (2005), both the Washington and Oregon portions of this stock have reached carrying capacity and are no longer increasing (Fig. 2).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

The Oregon/Washington Coast harbor seal stock increased at an annual rate of 7% from 1983 to 1992 and at 4% from 1983 to 1996 (Jeffries et al. 1997). Because the population was not at a very low level by 1983, the observed rates of increase may underestimate the maximum net productivity rate (R_{MAX}). When a logistic model was fit to the Washington portion of the 1975-1999 abundance data,

Figure 2. Generalized logistic growth curves of Washington Coast (Jeffries et al. 2003) and Oregon (Brown et al. 2005) harbor seals.

the resulting estimate of R_{MAX} was 18.5% (95% CI = 12.9-26.8%) (Jeffries et al. 2003). When a logistic model was fit to the Oregon portion of the 1977-2003 abundance data, estimates of R_{MAX} ranged from 6.4% (95% CI = 4.6-27%) for the south coast of Oregon to 10.1% (95% CI = 8.6-20%) for the north coast (Brown et al. 2005). Until a combined analysis for the entire stock is completed, the pinniped default maximum theoretical net productivity rate (R_{MAX}) of 12% will be used for this harbor seal stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population estimate (22,380) <u>times</u> one-half the default maximum net growth rate for pinnipeds ($\frac{1}{2}$ of 12%) <u>times</u> a recovery factor of 1.0 (for stocks within OSP, Wade and Angliss 1997), resulting in a PBR of 1,343 harbor seals per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fisheries Information

Fishing effort in the northern Washington marine set gillnet fishery (areas 4, 4A, 4B, and 5) is conducted within the range of both stocks of harbor seals (Oregon/Washington Coast and Washington Inland Waters) occurring in Washington State waters. Some movement of animals between Washington's coastal and inland waters is likely, although data from tagging studies have not shown movement of harbor seals between the two locations (Huber et al. 2001). For the purposes of this stock assessment report, the animals taken in waters south and west of Cape Flattery, WA (areas 4 and 4A), are assumed to have belonged to the Oregon/Washington Coast stock, and Table 1 includes data only from that portion of the fishery. NMFS observers monitored 100% of the 50 net days (1 net day equals a 100-fathom length net set for 24 hours) of fishing effort in coastal waters in 2000; no fishing effort occurred in the coastal portion of the fishery in 2001-2003; and complete records of observer coverage and fishing effort in 2004 are not available, but one vessel fished at least 60 net days in areas 4 and 4A and the vessel operator reported six harbor seal mortalities (Gearin et al. 1994, 2000; P. Gearin, unpubl. data; N. Pamplin, unpubl. data). The mean estimated mortality for this fishery in 2000-2004 is 0.8 (CV=0) harbor seals per year from observer data plus 1.2 seals per year from fisher self-reports.

The WA/OR/CA groundfish trawl fishery (Pacific hake at-sea processing component) was monitored for incidental take during 2000-2004 (Perez 2003; J. Cusick, unpubl. data), and harbor seal mortalities occurred in 2000 and 2004. The mean estimated mortality for this fishery in 2000-2004 is 0.6 (CV=0.35) harbor seals per year.

Table 1. Summary of available information on the incidental mortality and serious injury of harbor seals (Oregon/Washington Coast stock) in commercial and tribal fisheries that might take this species and calculation of the mean annual mortality rate; n/a indicates that data are not available. Mean annual takes are based on 2000-2004 data unless otherwise noted.

Fishery name	Years	Data type	Percent observer coverage	Observed mortality	Estimated mortality	Mean annual takes (CV in parentheses)
Northern WA marine set gillnet (tribal fishery in coastal waters: areas 4 and 4A)	2000 2001 2002 2003 2004 2004	observer data fisher self- reports	100% no fishery no fishery no fishery unknown ²	3 0 0 n/a 6	3 (0) 0 (0) 0 (0) 0 (0) n/a	0.8 (0) ¹ ≥1.2 (n/a)
WA/OR/CA groundfish trawl (Pacific hake at-sea processing component)	2000 2001 2002 2003 2004	observer data	$80.6\%^{3}$ $96.2\%^{3}$ $100\%^{4}$ $100\%^{4}$ $100\%^{4}$	2 0 0 0 1	2 (0.21) 0 (0) 0 (0) 0 (0) 1 (0)	0.6 (0.35)
WA Grays Harbor salmon drift gillnet	1991-1993	observer data	4-5%	0, 1, 1	0, 10, 10	6.7 (0.50)
WA Willapa Bay drift gillnet	1991-1993	observer data	1-3%	0, 0, 0	0, 0, 0	0
WA Willapa Bay drift gillnet	1990-1993	fisher self- reports	n/a	0, 0, 6, 8	n/a	\geq 3.5 (n/a) see text
Unknown west coast fisheries	2000-2004	stranding data	n/a	0, 0, 0, 4, 0	n/a	≥0.8 (n/a)
Minimum total annual takes						≥13.6 (0.41)

¹2000-2003 mortality estimates are included in the average.

²Complete records of observer coverage in 2004 are not available.

³Percent observer coverage equals percent of observed catch; observers were present on 100% of the vessels.

⁴Percent observer coverage equals percent of vessels with observers.

The Washington and Oregon Lower Columbia River drift gillnet fishery was monitored during the entire vear in 1991-1993 (Brown and Jeffries 1993, Matteson et al. 1993c, Matteson and Langton 1994a). Harbor seal mortalities, incidental to the fishery, were observed only in the winter season and were extrapolated to estimate total harbor seal mortality. However, the structure of the fishery has changed substantially since the 1991-1992 fishing seasons, and this level of take no longer applies to the current fishery (see Appendix 1). The Oregon Department of Fish and Wildlife (ODFW) conducted test fisheries in the lower Columbia River in 2000-2002 to evaluate the use of small-mesh (3¹/₂"-6") tangle (tooth) nets in commercial, spring chinook fisheries to effectively harvest target stocks, while allowing the live release of non-target stocks and species (G. Whisler, pers. comm.). An experimental commercial permit fishery and a full-fleet commercial demonstration fishery were also conducted in 2001 and 2002, respectively, to test the small-mesh gear. Due to high steelhead bycatch in the 2002 fishery, harvest managers used in-season test fishing during the 2003 and 2004 fishing seasons to determine the optimum timing and gear requirements for each subsequent full-fleet commercial fishing period. Both large-mesh (8-9.75") and small-mesh tangle net (<4.25") fishing periods were adopted in each year, although the 2003 season was severely curtailed to limit the catch of spring chinook stocks listed under the Endangered Species Act (ESA). With the focus on greater selectivity in winter/spring commercial salmon fisheries, levels of observer coverage were much higher in 2002-2004 than in previous years. To meet management needs, this increased level of observer coverage in test fisheries and full-fleet commercial fisheries is expected to continue into the foreseeable future (J. North and G. Whisler, pers. comm.). Data on marine mammal interactions (predation, entanglement) recorded by observers during the permit and demonstration commercial fisheries in 2001-2002 and the full-fleet commercial fisheries in 2003-2004 have not yet been summarized; however, no marine mammal mortalities or serious injuries were reported to NMFS by vessel operators.

The Washington Grays Harbor salmon drift gillnet fishery was also monitored in 1991-1993 (Herczeg et al. 1992a; Matteson and Molinaar 1992; Matteson et al. 1993a; Matteson and Langton 1994b, 1994c). During the 3-year period, 98, 307, and 241 sets were monitored, representing approximately 4-5% observer coverage in each year. No mortalities were recorded in 1991. In 1992, observers recorded one harbor seal mortality incidental to the fishery, resulting in an extrapolated estimated total kill of 10 seals (CV=1.0). In 1993, observers recorded one harbor seal mortality incidental to the fishery, though a total kill was not extrapolated. Similar observer coverage in 1992 and 1993 (4.2% and 4.4%, respectively) suggests that 10 is also a reasonable estimate of the total kill in 1993. Thus, the mean estimated mortality for this fishery in 1991-1993 is 6.7 (CV=0.50) harbor seals per year (Table 1). No observer data are available for this fishery after 1993, however, harbor seal takes are unlikely to have increased since the fishery was last observed, due to reductions in the number of participating vessels and available fishing time (see details in Appendix 1). Fishing effort and catch have declined throughout all salmon fisheries in the region due to management efforts to recover ESA-listed salmonids.

The Washington Willapa Bay drift gillnet fishery was also monitored at low levels of observer coverage in 1991-1993 (Herczeg et al. 1992a, 1992b; Matteson and Molinaar 1992; Matteson et al. 1993b; Matteson and Langton 1994c, 1994d). In those years, 752, 576, and 452 sets were observed, representing approximately 2.5%, 1.4%, and 3.1% observer coverage, respectively. No harbor seal mortalities were reported by observers. However, because mortalities were self-reported by fishers in 1992 and 1993, the low level of observer coverage failed to document harbor seal mortalities that had apparently occurred. Due to the low level of observer coverage for this fishery, the self-reported fishery mortalities have been included in Table 1 and represent a minimum mortality estimate resulting from that fishery (3.5 harbor seals per year). Harbor seal takes are unlikely to have increased since the fishery was last observed in 1993, due to reductions in the number of participating vessels and available fishing time (see details in Appendix 1).

Combining the estimates from the northern Washington marine set gillnet (0.8 from observer data + 1.2 from fisher self-reports), WA/OR/CA groundfish trawl (0.6), Washington Grays Harbor salmon drift gillnet (6.7), and Washington Willapa Bay drift gillnet (3.5 from fisher self-reports) fisheries results in an estimated mean mortality rate of 12.8 harbor seals per year from these fisheries.

The Marine Mammal Authorization Program (MMAP) fisher self-reports, required of commercial vessel operators by the MMPA, are an additional source of information on the number of harbor seals killed or seriously injured incidental to commercial fishery operations. Between 2000 and 2004, there were no fisher self-reports of harbor seal mortalities from any MMAP-listed fishery operating in waters off the coasts of Oregon or Washington. Although these reports are considered incomplete (see details in Appendix 1), they represent a minimum mortality. In 2002 one harbor seal from this stock was reported incidentally taken in an in-river gillnet test fishery in southern Oregon, and one harbor seal mortality was reported in a Washington coastal river gillnet fishery in 2003.

Strandings of harbor seals entangled in fishing gear or with serious injuries caused by interactions with gear are a final source of fishery-related mortality information. A fishery-related stranding, in which four harbor seals

were entangled in derelict gillnet gear in the Columbia River, was reported in 2003 (B. Norberg, pers. comm.). Since the gear could not be attributed to a particular fishery, these mortalities are listed in Table 1 as occurring in an unknown west coast fishery. Fishery-related strandings during 2000-2004 resulted in an estimated annual mortality of 0.8 harbor seals from this stock. This estimate is considered a minimum because not all stranded animals are found, reported, or examined for cause of death (via necropsy by trained personnel).

Other Mortality

According to Northwest Marine Mammal Stranding Network records, maintained by the NMFS Northwest Region, a total of eight human-caused harbor seal mortalities or serious injuries were reported from non-fisheries sources in 2000-2004. Seven animals were shot (one each in 2000 and 2004, two in 2001, and three in 2002) and one animal was struck by a boat in 2004, resulting in an estimated mortality of 1.6 harbor seals per year from this stock. This estimate is considered a minimum because not all stranded animals are found, reported, or examined for cause of death (via necropsy by trained personnel).

Subsistence Harvests by Northwest Treaty Indian Tribes

Pacific Northwest treaty Indian tribes may have tribal regulations allowing tribal members to exercise treaty rights for subsistence harvest of harbor seals. There have been only a few reported takes of harbor seals from directed tribal subsistence hunts. It is possible that very few seals have been taken in directed hunts because tribal fishers use seals caught incidentally to fishing operations for their subsistence needs before undertaking a ceremonial or subsistence hunt.

STATUS OF STOCK

Harbor seals are not considered to be "depleted" under the MMPA or listed as "threatened" or "endangered" under the ESA. Based on currently available data, the level of human-caused mortality and serious injury (13.6 + 1.6 = 15.2) is not known to exceed the PBR (1,343). Therefore, the Oregon/Washington Coast stock of harbor seals is not classified as a "strategic" stock. The minimum total fishery mortality and serious injury for this stock (13.6: based on observer data (8.1) and self-reported fisheries information (4.7) or stranding data (0.8) where observer data were not available or failed to detect harbor seal mortalities) is less than 10% of the calculated PBR and, therefore, appears to be insignificant and approaching zero mortality and serious injury rate. The stock is within its Optimum Sustainable Population (OSP) level (Jeffries et al. 2003, Brown et al. 2005).

REFERENCES

Bigg, M. A. 1969. The harbour seal in British Columbia. Fish. Res. Bd. Can. Bull. 172. 33 pp.

- Bigg, M. A. 1981. Harbour seal, *Phoca vitulina*, Linnaeus, 1758 and *Phoca largha*, Pallas, 1811. Pp. 1-27, *In:* Ridgway, S. H., and R. J. Harrison (eds.), Handbook of Marine Mammals. Vol. 2: Seals. Academic Press, New York. 359 pp.
- Boveng, P. 1988. Status of the Pacific harbor seal population on the U.S. west coast. Admin. Report LJ-88-06. Southwest Fisheries Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 43 pp.
- Brown, R. F. 1988. Assessment of pinniped populations in Oregon: April 1984 to April 1985. NWAFC Processed Report 88-05. 44 pp. Available at National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115.
- Brown, R. F. 1997. Abundance of Pacific harbor seals (*Phoca vitulina richardsi*) in Oregon: 1977-1996. Oregon Dept. Fish and Wildlife, Wildlife Diversity Program, Tech. Report No. 97-6-04. 12 pp.
- Brown, R. F., and S. J. Jeffries. 1993. Preliminary report on estimated marine mammal mortality in Columbia River fall and winter salmon gillnet fisheries, 1991-1992. Unpubl. Report. Columbia River Area Gillnet Fishery Observer Program. 13 pp. Available at Oregon Dept. Fish and Wildlife, 2040 SE Marine Science Dr., Newport, OR 97365.
- Brown, R. F., and B. R. Mate. 1983. Abundance, movements, and feeding habits of the harbor seal, *Phoca vitulina*, at Netarts and Tillamook Bays, Oregon. Fish. Bull. 81:291-301.
- Brown, R. F., B. E. Wright, S. D. Riemer, and J. Laake. 2005. Trends in abundance and current status of harbor seals in Oregon: 1977-2003. Mar. Mammal Sci. 21(4):657-670.
- Burg, T. M. 1996. Genetic analysis of eastern Pacific harbour seals (*Phoca vitulina richardsi*) from British Columbia and parts of Alaska using mitochondrial DNA and microsatellites. MS Thesis, Univ. of British Columbia, Vancouver, BC. 77 pp.

- Calambokidis, J., S. Speich, J. Peard, G. Steiger, D. M. Fry, J. Lowenstine, and J. Cubbage. 1985. Biology of Puget Sound marine mammals and marine birds: Population health and evidence of pollution effects. U.S. Dep. Commer., NOAA Tech. Memo. NOS-OMA-18. 159 pp.
- Cusick, J. West Coast Groundfish Observer Program, Fishery Resource Analysis and Monitoring Division, NWFSC, NMFS, 2725 Montlake Blvd. E, Seattle, WA 98112.
- Fisher, H. D. 1952. The status of the harbour seal in British Columbia, with particular reference to the Skeena River. Fish. Res. Bd. Can. Bull. 93. 58 pp.
- Gearin, P. J. National Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.
- Gearin, P. J., S. R. Melin, R. L. DeLong, H. Kajimura, and M. A. Johnson. 1994. Harbor porpoise interactions with a chinook salmon set-net fishery in Washington State. Rep. Int. Whal. Commn. Special Issue 15:427-438.
- Gearin, P. J., M. E. Gosho, J. L. Laake, L. Cooke, R. L. DeLong, and K. M. Hughes. 2000. Experimental testing of acoustic alarms (pingers) to reduce bycatch of harbour porpoise, *Phocoena phocoena*, in the state of Washington. J. Cetacean Res. Manage. 2(1):1-9.
- Herczeg, K. M., A. A. Abajian, and V. M. C. Molinaar. 1992a. Summary report on the 1991 summer dip-in salmon gillnet fisheries in Willapa Bay and Grays Harbor. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 10 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Herczeg, K. M., V. M. C. Molinaar, and A. A. Abajian. 1992b. Summary report on the 1991 fall Willapa Bay salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 10 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Herder, M. J. 1986. Seasonal movements and hauling site fidelity of harbor seals, *Phoca vitulina richardsi*, tagged at the Klamath River, California. MA Thesis, Humboldt State Univ., Arcata, CA. 52 pp.
- Huber, H., S. Jeffries, R. Brown, and R. DeLong. 1994. Harbor seal, *Phoca vitulina richardsi*, stock assessment in Washington and Oregon, 1993. 1993 Annual Report to the MMPA Assessment Program, Office of Protected Resources, NMFS, NOAA, 1335 East-West Highway, Silver Spring, MD 20910. Available at National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115.
- Huber, H. R., S. J. Jeffries, R. F. Brown, R. L. DeLong, and G. VanBlaricom. 2001. Correcting aerial survey counts of harbor seals (*Phoca vitulina richardsi*) in Washington and Oregon. Mar. Mammal Sci. 17(2):276-293.
- Jeffries, S. J. 1985. Occurrence and distribution patterns of marine mammals in the Columbia River and adjacent coastal waters of northern Oregon and Washington. Pp. 15-50, *In:* Beach, R. J., A. C. Geiger, S. J. Jeffries, S. D. Treacy, and B. L. Troutman, Marine mammals and their interactions with fisheries of the Columbia River and adjacent waters, 1980-1982. NWAFC Processed Report 85-04. 316 pp. Available at National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115.
- Jeffries, S. J., R. F. Brown, H. R. Huber, and R. L. DeLong. 1997. Assessment of harbor seals in Washington and Oregon, 1996. Pp. 83-94, *In:* Hill, P. S., and D. P. DeMaster (eds.), MMPA and ESA Implementation Program, 1996. AFSC Processed Report 97-10. 255 pp. Available at National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115.
- Jeffries, S., H. Huber, J. Calambokidis, and J. Laake. 2003. Trends and status of harbor seals in Washington State: 1978-1999. J. Wildl. Manage. 67(1):208-219.
- Lamont, M. M., J. T. Vida, J. T. Harvey, S. Jeffries, R. Brown, H. H. Huber, R. DeLong, and W. K. Thomas. 1996. Genetic substructure of the Pacific harbor seal (*Phoca vitulina richardsi*) off Washington, Oregon, and California. Mar. Mammal Sci. 12(3):402-413.
- Matteson, K. M., and J. A. Langton. 1994a. Summary report on the 1993 fall Columbia River salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 19 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Matteson, K. M., and J. A. Langton. 1994b. Summary report on the 1993 fall Grays Harbor salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 18 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Matteson, K. M., and J. A. Langton. 1994c. Summary report on the 1993 summer dip-in salmon gillnet fisheries in Willapa Bay and Grays Harbor. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 22 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Matteson, K. M., and J. A. Langton. 1994d. Summary report on the 1993 fall Willapa Bay salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 18 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.

- Matteson, K. M., and V. M. C. Molinaar. 1992. Summary report on the 1992 summer dip-in salmon gillnet fisheries in Willapa Bay and Grays Harbor. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 13 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Matteson, K. M., W. B. Barnett, and J. A. Langton. 1993a. Summary report on the 1992 fall Grays Harbor salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 17 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Matteson, K. M., W. B. Barnett, and J. A. Langton. 1993b. Summary report on the 1992 fall Willapa Bay salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 17 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Matteson, K. M., J. A. Langton, and R. L. Hadley. 1993c. Summary report on the 1993 winter Columbia River salmon gillnet fishery. Unpubl. Report. Pacific States Marine Fisheries Commission, Astoria, OR. 29 pp. Available at PSMFC, 205 SE Spokane Street, Suite 100, Portland, OR 97202.
- Newby, T. C. 1973. Changes in Washington State harbor seal population, 1942-1972. Murrelet 54:5-6.
- Norberg, B. National Marine Fisheries Service, Northwest Region, 7600 Sand Point Way NE, Seattle, WA 98115.
- North, J. Ocean Salmon and Columbia River Program, Oregon Department of Fish and Wildlife, 17330 SE Evelyn Street, Clackamas, OR 97015.
- Oregon Department of Fish and Wildlife (ODFW), 2040 SE Marine Science Dr., Newport, OR 97365.
- Pamplin, N. Makah Fisheries Management, P.O. Box 115, Neah Bay, WA 98357.
- Pearson, J. P. 1968. The abundance and distribution of harbor seals and Steller sea lions in Oregon. MS Thesis, Oregon State Univ., Corvallis, OR. 23 pp.
- Perez, M. 2003. Compilation of marine mammal incidental take data from the domestic and joint venture groundfish fisheries in the U.S. EEZ of the North Pacific, 1989-2001. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-138. 145 pp.
- Pitcher, K. W., and D. G. Calkins. 1979. Biology of the harbor seal (*Phoca vitulina richardsi*) in the Gulf of Alaska. U.S. Dep. Commer., NOAA, OCSEAP Final Report 19(1983):231-310.
- Pitcher, K. W., and D. C. McAllister. 1981. Movements and haul out behavior of radio-tagged harbor seals, *Phoca vitulina*. Can. Field Nat. 95:292-297.
- Scheffer, V. B., and J. W. Slipp. 1944. The harbor seal in Washington State. Amer. Midl. Nat. 32:373-416.
- Temte, J. L. 1986. Photoperiod and the timing of pupping in the Pacific harbor seal (*Phoca vitulina richardsi*) with notes on reproduction in northern fur seals and Dall porpoises. MS Thesis, Oregon State Univ., Corvallis, OR. 147 pp.
- Wade, P. R., and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.
- Whisler, G. Ocean Salmon and Columbia River Program, Oregon Department of Fish and Wildlife, 17330 SE Evelyn Street, Clackamas, OR 97015.