
LONGMAN'S BEAKED WHALE (Indopacetus pacificus): Hawaiian Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Longman's beaked whale is considered one of the rarest and least known cetacean species (Jefferson et al. 1993; Rice 1998; Dalebout et al 2003). Until recently, it was known only from two skulls found in Australia and Somalia (Longman 1926; Azzaroli 1968). Recent genetic studies (Dalebout N25et al. 2003) have revealed that sightings 'tropical bottlenose (Hyperoodon sp.; Pitman et al. 1999) in the Indopacific region were in fact Longman's beaked whales, providing the first description of the external appearance of this species. Although originally described as Mesoplodon pacificus (Longman 1926), it has been proposed that this species is sufficiently unique to be placed within its own genus, Indopacetus (Moore Dalebout et al. 2003). The distribution of Longman's beaked whale, as determined from stranded specimens and sighting records of 'tropical bottlenose whales', includes tropical waters from the eastern Pacific westward through the Indian Ocean to the eastern coast of

Figure 1. Sighting locations of Indopacetus pacificus (triangle), Mesoplodon densirostris (circle) and unidentified Mesoplodon beaked whales (crosses) during the 2002 shipboard cetacean survey of U.S. waters surrounding the Hawaiian Islands (Barlow 2003; see Appendix 2 for details on timing and location of survey effort). Outer line indicates approximate boundary of survey area and U.S. EEZ.

Africa. No strandings of Longman's beaked whales have been documented in Hawaiian waters, although numerous strandings of unidentified beaked whales have been reported (Nitta 1991; Maldini 2005). One sighting of Longman's beaked whale was made during a 2002 survey of waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian Islands (Figure 1; Barlow 2003). For the Marine Mammal Protection Act (MMPA) stock assessment reports, there is one Pacific stock of Longman's beaked whales, found within waters of the Hawaiian Islands EEZ.

POPULATION SIZE

A 2002 shipboard line-transect survey of the entire Hawaiian Islands EEZ resulted in an abundance estimate of 766 (CV=1.05) Longman's beaked whales (Barlow 2003). This is currently the best available abundance estimate for this stock.

Minimum Population Estimate

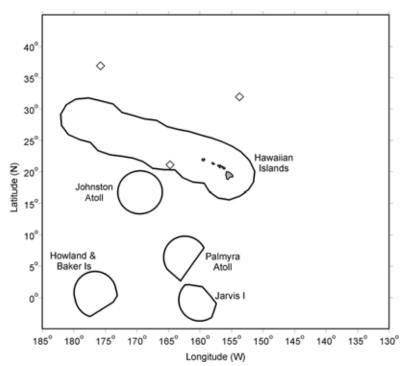
The log-normal 20th percentile of the 2002 abundance estimate is 371 Longman's beaked whales.

Current Population Trend

No data are available on current population trend.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current or maximum net productivity rate for Longman's beaked whales.


POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (371) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.50 (for a stock of unknown status with no known fishery mortality or serious injury within the Hawaiian Islands EEZ; Wade and Angliss 1997), resulting in a PBR of 3.7 Longman's beaked whales per year.

HUMAN CAUSED MORTALITY AND SERIOUS INJURYFishery Information

Information on fishery-related mortality and serious injury of cetaceans in Hawaiian waters is limited, but the gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. Gillnets appear to capture marine mammals wherever they are used, and float lines from lobster traps and longlines can be expected to occasionally entangle whales (Perrin et al. 1994).

Interactions with cetaceans have been reported for all Hawaiian pelagic fisheries (Nitta and Henderson 1993), but none of these interactions are known to have involved Longman's beaked whales. None were observed hooked or entangled in the Hawaii-based longline fishery between 1994 and 2002, with approximately 4-25% of all effort (measured as the number of sets made) observed by on-board observers (Forney 2004). However, there were two interactions with unidentified whales that may have been Longman's beaked whales (Figure 2). Since 2001, the Hawaii-based longline fishery has undergone a series of regulatory changes, primarily to protect sea turtles (NMFS

Figure 2. Locations of observed takes of possible Longman's beaked whales (open diamonds) in the Hawaii-based longline fishery 1994-2002. The solid lines represent the U.S. Exclusive Economic Zone (EEZ).

2001). Potential impacts of these regulatory changes on the rate of Longman's beaked whale interactions are unknown.

Other Mortality

In recent years, there has been increasing concern that loud underwater sounds, such as active sonar and seismic operations, may be harmful to beaked whales (Malakoff 2002). The use of active sonar from military vessels has been implicated in mass strandings of beaked whales in the Mediterranean Sea during 1996 (Frantzis 1998), the Bahamas during 2000 (U.S. Dept. of Commerce and Secretary of the Navy 2001), and the Canary Islands 2002 (Martel, 2002). Similar military active sonar operations occur around the Hawaiian islands. No estimates of potential mortality or serious injury are available for U.S. waters.

STATUS OF STOCK

The status of Longman's beaked whales in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. They are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. The Hawaiian stock of Longman's beaked whales is not considered strategic under the 1994 amendments to the MMPA, because there has been no reported fisheries related mortality or serious injury within the Hawaiian Islands EEZ. However, the effect of potential interactions of unidentified beaked whales (which may have been Longman's beaked whales) with the Hawaii-based

longline fishery in U.S. and international waters is not known. Insufficient information is available to determine whether the total fishery mortality and serious injury for Longman's beaked whales is insignificant and approaching zero mortality and serious injury rate. The increasing levels of anthropogenic noise in the world's oceans has been suggested to be a habitat concern for whales (Richardson et al. 1995), particularly for deep-diving whales like Longman's beaked whales that feed in the oceans' "sound channel".

REFERENCES

- Azzaroli, M. L. 1968. Second specimen of *Mesoplodon pacificus*, the rarest living beaked whale. Monitore Zoologico Italiano (N.S.) 2:67-79.
- Barlow, J. 2003. Cetacean abundance in Hawaiian waters during summer/fall 2002. Admin. Rep. LJ-03-13. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92038.
- Dalebout, M. L., G. J. B. Ross, C. S. Baker, R. C. Anderson, P. B. Best, V. G. Cockcroft, H. L. Hinsz, V. Peddemors and R. L. Pitman. 2003. Appearance, distribution and genetic distinctiveness of Longman's beaked whale, *Indopacetus pacificus*. Marine Mammal Science 19:421-461.
- Forney, K.A. 2004. Estimates of cetacean mortality and injury in two U.S. Pacific longline fisheries, 1994-2002. Admin. Rep. LJ-04-07. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 17 pp.
- Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392(5):29.
- Jefferson, T. A., S. Leatherwood, and M. A. Webber. 1993. FAO species identification guide: marine mammals of the world. United States Environment Programme; Food and Agriculture Organization of the United Nations (FAO), Rome. 320p.
- Longman, H.A. 1926. New records of Cetacea, with a list of Queensland species. Memoirs of the Queensland Museum 8:266-278.
- Malakoff, D. 2002. Suit ties whale deaths to research cruise. Science 298:722-723
- Maldini, D., L. Mazzuca, and S. Atkinson. 2005. Odontocete stranding patterns in the Main Hawaiian Islands (1937-2002): How do they compare with live animal surveys? Pacific Science 59(1):55-67.
- Martel, V. M. 2002. Summary of the report on the atypical mass stranding of beaked whales in the Canary Islands in September 2002 during naval exercises. Society for the Study of the Cetaceans in the Canary Archipelago (SECAC). Unpublished report. 11p.
- Moore J. C. 1968. Relationships among the living genera of beaked whales. Fieldiana Zoology 53:209-298.
- NMFS 2001. Western Pacific Pelagic Fisheries Biological Opinion. Available from Pacific Islands Region, 1602 Kapiolani Blvd, Suite 1110, Honolulu, HI 96814 (http://swr.nmfs.noaa.gov/pir).
- Nitta, E. 1991. The marine mammal stranding network for Hawaii: an overview. *In*: J.E. Reynolds III, D.K. Odell (eds.), Marine Mammal Strandings in the United States, pp.56-62. NOAA Tech. Rep. NMFS 98, 157 pp.
- Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92.
- Perrin, W. F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp.
- Pitman, R. L., D. M. Palacios, P. L Brennan, K.C. III. Balcomb, and T. Miyashita. 1999. Sightings and possible identity of a bottlenose whale in the tropical Indo-Pacific: *Indopacetus pacificus?* Marine Mammal Science 15:531-549.
- Rice, D. W. 1998. Marine Mammals of the world: systematics and distribution. Special Publication 4. The Society for Marine Mammalogy, Lawrence, KS, USA.
- Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p.
- U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.