FIN WHALE (Balaenoptera physalus): Hawaiian Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Fin whales are found N35 throughout all oceans and seas of the world from tropical to polar latitudes. They have been considered rare in Hawaiian waters. Balcomb (1987) observed 8-12 fin whales in a multispecies feeding assemblage on 20 May 1966 approx. 250 mi. south of Honolulu. Additional sightings were reported north of Oahu in May 1976 and in the Kauai Channel in February 1979 (Shallenberger 1981). More recently, a single fin whale was observed north of Kauai in February 1994 (Mobley et al. 1996), and five sightings were made during a 2002 survey of waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian Islands (Barlow 2003; Figure 1). A single stranding has been reported on Maui (Shallenberger 1981). Thompson and Friedl (1982; and see Northrop et al. 1968) suggested that fin whales migrate into Hawaiian waters mainly in fall and winter, based on acoustic recordings off Oahu and **Figure 1.** Fin whale sighting locations during the 2002 shipboard survey of U.S. EEZ waters surrounding the Hawaiian Islands (Barlow 2003; see Appendix 2 for details on timing and location of survey effort). Outer line represents approximate boundary of survey area and U.S. EEZ. Midway Islands. Although the exact positions of the whales producing the sounds could not be determined, at least some of them were almost certainly within the U.S. EEZ. More recently, McDonald and Fox (1999) reported an average of 0.027 calling fin whales per 1000^2 km (grouped by 8-hr periods) based on passive acoustic recordings within about 16 km of the north shore of Oahu. The International Whaling Commission (IWC) recognized two stocks of fin whales in the North Pacific: the East China Sea and the rest of the North Pacific (Donovan 1991). Mizroch et al. (1984) cites evidence for additional fin whale subpopulations in the North Pacific. There is still insufficient information to accurately determine population structure, but from a conservation perspective it may be risky to assume panmixia in the entire North Pacific. In the North Atlantic, fin whales were locally depleted in some feeding areas by commercial whaling (Mizroch et al. 1984), in part because subpopulations were not recognized. The Marine Mammal Protection Act (MMPA) stock assessment reports recognize three stocks of fin whales in the North Pacific: 1) the Hawaii stock (this report), 2) the California/Oregon/Washington stock, and 3) the Alaska stock. #### POPULATION SIZE As part of the Marine Mammal Research Program of the Acoustic Thermometry of Ocean Climate (ATOC) study, a total of twelve aerial surveys were conducted within about 25 nmi of the main Hawaiian Islands in 1993-98 (Mobley et al. 2000). Only one sighting of a single fin whale was made (Mobley et al. 1996), and no abundance estimate was calculated. Using passive acoustic detections from a hydrophone north of Oahu, MacDonald and Fox (1999) estimate an average density of 0.027 calling fin whales per 1000 km² within about 16 km from shore. However, the relationship between the number of whales present and the number of calls detected is not known, and therefore this acoustic method does not provide an estimate of absolute abundance for fin whales. A 2002 shipboard line-transect survey of the entire Hawaiian Islands EEZ resulted in an abundance estimate of 174 (CV=0.72) fin whales (Barlow 2003). This is currently the best available abundance estimate for this stock. ## **Minimum Population Estimate** The log-normal 20th percentile of the 2002 abundance estimate is 101 fin whales. #### **Current Population Trend** No data are available on current population trend. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No data are available on current or maximum net productivity rate. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (101) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.1 (the default value for an endangered species; Wade and Angliss 1997), resulting in a PBR of 0.2 fin whales per year. # **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information** Information on fishery-related mortality of cetaceans in Hawaiian waters is limited, but the gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. Gillnets appear to capture marine mammals wherever they are used, and float lines from lobster traps and longlines can be expected to occasionally entangle whales (Perrin et al. 1994). Interactions with cetaceans are reported for all pelagic fisheries, and large whales have been entangled in longline gear off the Hawaiian Islands (Nitta and Henderson 1993, Forney 2004). Between 1994 and 2002, no interactions with fin whales were observed in the Hawaii-based longline fishery, with approximately 4-25% of all effort observed (Forney 2004). ## **Historical Mortality** Large numbers of fin whales were taken by commercial whalers throughout the North Pacific from the early 20th century until the 1970s (Tønnessen and Johnsen 1982). Approximately 46,000 fin whales were taken from the North Pacific by commercial whalers between 1947 and 1987 (C. Allison, IWC, pers. comm.). Some of the whales taken may have been from a population or populations that migrate seasonally into the Hawaiian EEZ. The species has been protected in the North Pacific by the IWC since 1976. ## STATUS OF STOCK The status of fin whales in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. Fin whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently the Hawaiian stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. Insufficient information is available to determine whether the total fishery mortality and serious injury for fin whales is insignificant and approaching zero mortality and serious injury rate. The increasing levels of anthropogenic noise in the world's oceans has been suggested to be a habitat concern for whales (Richardson et al. 1995). #### REFERENCES - Allison, C. International Whaling Commission. The Red House, 135 Station Road, Impington, Cambridge, UK CB4 9NP. - Balcomb, K. C., III. 1987. The Whales of Hawaii. Marine Mammal Fund, 99 pp. - Barlow, J. 2003. Cetacean abundance in Hawaiian waters during summer/fall 2002. Admin. Rep. LJ-03-13. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68. - Forney, K.A. 2004. Estimates of cetacean mortality and injury in two U.S. Pacific longline fisheries, 1994-2002. Admin. Rep. LJ-04-07. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 17 pp. - McDonald, M. A., and C. G. Fox. 1999. Passive acoustic methods applied to fin whale population density estimation. J. Acoust. Soc. Am. 105: 2643-2651. - Mizroch, S. A., D. W. Rice, and J. M. Breiwick. 1984. The fin whale, *Balaenoptera physalus* Mar. Fish. Rev. 46(4):20-24. - Mobley, J. R., Jr., M. Smultea, T. Norris, and D. Weller. 1996. Fin whale sighting north of Kaua'i, Hawai'i. Pacific Science 50:230-233. - Mobley, J. R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp. - Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92. - Northrop, J., W. C. Cummings, and P. O. Thompson. 1968. 20-Hz signals observed in the central Pacific. J. Acoust. Soc. Am. 43:383-384. - Perrin, W.F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp. - Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Shallenberger, E.W. 1981. The status of Hawaiian cetaceans. Final report to U.S. Marine Mammal Commission. MMC-77/23, 79pp. - Thompson, P. O. and W. A. Friedl. 1982. A long term study of low frequency sound from several species of whales off Oahu, Hawaii. Cetology 45:1-19. - Tønnessen, J. N. and A. O. Johnsen. 1982. The History of Modern Whaling. Hurst, 789 pp. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.