
HARBOR PORPOISE (Phocoena phocoena): Monterey Bay Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the Pacific, harbor porpoise are found in coastal and inland waters from Point Conception, California to Alaska and across to Kamchatka and Japan (Gaskin 1984). Harbor porpoise appear to have more restricted movements along the western coast of the continental U.S. than along the eastern coast. Regional differences in pollutant residues in harbor porpoise indicate that they do not move extensively between California, Oregon, and Washington (Calambokidis and Barlow 1991). That study also showed some regional differences within California (although the sample size was small). This pattern stands as a sharp contrast to the eastern coast of the U.S. and Canada where harbor porpoise are believed to migrate seasonally from as far south as the Carolinas to the Gulf of Maine and Bay of Fundy (Polacheck et al. 1995). A phylogeographic analysis of genetic data from northeast Pacific harbor porpoise did not show complete concordance between DNA sequence types and geographic location (Rosel 1992). However, an analysis of molecular variance (AMOVA) of the same data with additional samples found significant genetic differences for four of the six pair-wise comparisons between the four areas investigated: California, Washington, British Columbia, and Alaska (Rosel et al. 1995). These results demonstrate that harbor porpoise along the west coast of North America are not panmictic or migratory, and movement is sufficiently restricted that genetic differences have evolved. Recent preliminary genetic analyses of samples ranging from Monterey Bay, California to Vancouver Island, British Columbia indicate that there is small-scale subdivision within the U.S. portion of this range (Chivers et al., 2002).

In their assessment of harbor porpoise, Barlow and

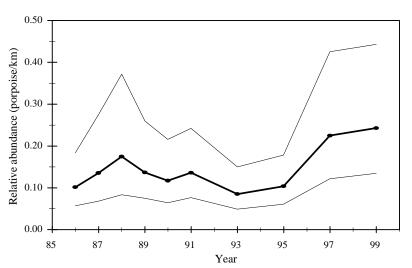
Figure 1. Stock boundaries and distributional range of harbor porpoise along the California/southern Oregon coast. Shaded area represents harbor porpoise habitat (0-200 m) along the U.S. west coast.

Hanan (1995) recommended that the animals inhabiting central California (defined to be from Point Conception to the Russian River) be treated as a separate stock. Their justifications for this were: 1) fishery mortality of harbor porpoise is limited to central California, 2) movement of individual animals appears to be restricted within California, and consequently 3) fishery mortality could cause the local depletion of harbor porpoise if central California is not managed separately. Although geographic structure exists along an almost continuous distribution of harbor porpoise from California to Alaska, stock boundaries are difficult to draw because any rigid line is (to a greater or lesser extent) arbitrary from a biological perspective. Nonetheless, failure to recognize geographic structure by defining management stocks can lead to depletion of local populations. Based on recent genetic findings (Chivers, et al. 2002), California coast stocks were re-evaluated and significant genetic differences were found among 4 identified sampling sites. Revised stock boundaries are presented here based on these genetic data and density discontinuities identified from aerial surveys, resulting in six California/Oregon/Washington stocks where previously there had been four (Carretta et al. 2001a). The stock boundaries for animals that occur in California/southern Oregon waters are shown in Figure 1. For the 2002 Marine Mammal Protection Act (MMPA) Stock Assessment Reports, other Pacific coast harbor porpoise stocks include: 1) a Morro Bay stock, 2) a San Francisco-Russian River stock, 3) a northern California/southern Oregon stock, 4) an Oregon/Washington coast stock, 5) a Washington Inland waters stock, 6) a Southeast Alaska stock, 7) a Gulf of Alaska stock, and 8) a Bering Sea stock. Stock assessment reports for Morro Bay, San Francisco-Russian River, northern California/southern Oregon, Oregon/Washington coast, and Inland Washington waters harbor porpoise appear

in this volume. The three Alaska harbor porpoise stocks are reported separately in the Stock Assessment Reports for the Alaska Region.

POPULATION SIZE

Previous estimates of abundance for California harbor porpoise were based on aerial surveys conducted between the coast and the 50-fm isobath during 1988-95 (Barlow and Forney 1994, Forney 1999a). These estimates did not include an unknown number of animals found in deeper waters. Barlow (1988) found that the vast majority of harbor porpoise in California were within the 0-50-fm depth range; however, Green et al. (1992) found that 24% of harbor porpoise seen during aerial surveys of Oregon and Washington were between the 100m and 200m isobaths (55 to 109 fathoms). A systematic ship survey of depth strata out to 90 m in northern California showed that porpoise abundance declined significantly in waters deeper than 60 m (Carretta et al. 2001b). A recent analysis of harbor porpoise trends including oceanographic data suggests that the proportion of California harbor porpoise in deeper waters may vary between years (Forney 1999b). In 1999, aerial surveys extended farther offshore (to the 200m depth contour or 15 nmi distance, whichever is farther) to provide a more complete abundance estimate. Based on aerial surveys from 1997-99 under good survey conditions (Beaufort ≤ 2 , cloud cover $\leq 25\%$) the estimate of abundance for this stock is 1,603 animals (CV = 0.42).


Minimum Population Estimate

The minimum population estimate for the Monterey Bay harbor porpoise stock is taken as the lower 20th percentile of the log-normal distribution of the abundance estimated from the 1997-99 aerial surveys, or 1,143 animals.

Current Population Trend

Analyses of a 1986-95 time series of aerial surveys have been conducted to examine trends in harbor porpoise abundance in central California (Forney, 1995; 1999b). After controlling for the effects of sea state, cloud cover, and area on sighting rates, Forney (1995) found a negative trend in population size; however, that trend was no longer significant when sea surface temperature (a proxy measure of oceanographic conditions) was included in an updated non-linear trend analysis (Forney 1999b). The negative correlation between harbor porpoise sighting rates and sea surface temperatures indicates that apparent trends could be caused by changing oceanographic conditions and

movement of animals into and out of the study area. Encounter rates for the 1997 survey, however, were very high (Forney 1999a) despite the warmer sea surface temperatures caused by strong El Niño conditions. These observations suggest that patterns of harbor porpoise movement are not directly related to sea surface temperature, but rather to the more complex distribution of potential prey species in this area. Although encounter rates during the 1999 aerial survey were again higher than in past years, the trend in relative abundance (following methods of Forney 1995) is not statistically significant (p=0.12, Figure 2). More detailed studies of encounter rate patterns in relation to satellite-derived sea surface temperature during 1993-99 are planned to shed light on potential oceanography-related movement

Figure 2. Relative abundance (+/- one standard error) of central California harbor porpoise, 1986-99, adjusted for sea state and cloud cover (following methods of Forney 1995). The trend shown includes the range of three California stocks (Morro Bay, Monterey Bay, and San Francisco-Russian River)

patterns of harbor porpoise in this region.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Based on what are argued to be biological limits of the species (i.e. females give birth first at age 4 and produce one calf per year until death), the theoretical, maximum-conceivable growth rate of a closed harbor porpoise population was estimated as 9.4% per year (Barlow and Boveng 1991). This maximum theoretical rate may not be achievable for any real population. [Woodley and Read (1991) calculate a maximum growth rate of approximately 5% per year, but their argument for this being a maximum (i.e. that porpoise survival rates cannot exceed those of Himalayan thar) is not well justified.] Population growth rates have not actually been measured for any harbor porpoise population. Because a reliable estimate of the maximum net productivity rate is not available for Monterey Bay harbor porpoise, we use the default maximum net productivity rate (R_{MAX}) of 4% for cetaceans (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (1,143) <u>times</u> one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) <u>times</u> a recovery factor of 0.5 (for a species of unknown status; Wade and Angliss 1997), resulting in a PBR of 11.

HUMAN-CAUSED MORTALITY

Fishery Information

The incidental capture of harbor porpoise is largely limited to the halibut angel shark set gillnet fishery in Monterey Bay in central California (coastal setnets are not allowed in northern California, and harbor porpoise do not occur in southern California). Detailed information on this fishery is provided in Appendix 1. A summary of estimated fishery mortality and injury for this stock of harbor porpoise is given in Table 1. Mortality estimates for 1996-98 are based on total estimated fishing effort and prior-year entanglement rate data (Julian and Beeson 1998), because no observer program was in place during those years. Mortality estimates for 1999-2000 are based on a National Marine Fisheries Service monitoring program in Monterey Bay (Cameron and Forney 2000, Carretta 2001). Although mortality estimates for the most recent five years (1996-2000) are presented in Table 1, average annual takes in the setnet fishery are calculated using only 1999-2000 data, because these are the only recent years for which concurrent data on fishing effort and observed mortality from this region are available. An average of 79 harbor porpoise (CV= 0.29) were killed annually in this fishery in Monterey Bay during the years 1999-2000. Fishing effort in the Monterey fishery declined from 781 days fished in 1999 to 249 days in 2000. The lower effort in 2000 is attributable to an emergency closure issued in September 2000. Through the first three quarters of 2001, there were only 6 effort days recorded in the Monterey Bay fishery.

In September 2000, the California Department of Fish and Game (CDFG) issued emergency regulations which restricted fishing in the central California halibut set gillnet fishery to waters deeper than 60 fathoms, citing concerns over the continued mortality of common murres and decline of the southern sea otter population. The closure area extended from Point Reyes (N38) to Yankee Point (N36.5) in Monterey County and from Point Arguello (N34.6) to Point Sal (N34.9) in Santa Barbara County (the area from Yankee Point to Point Sal remained open to fishing outside of 30 fathoms). In April 2001, CDFG proposed permanent year-round regulations to eliminate set gillnet fishing inshore of 60 fathoms from Point Reyes to Point Arguello. The emergency closure inside of 60 fathoms has since lapsed and at least one vessel has resumed fishing outside of 30 fathoms in Monterey Bay. CDFG intends to make permanent a 60-fathom closure for the set gillnet fishery from Point Reyes to Point Arguello by May 2002.

Two harbor porpoise mortalities were inaccurately reported in Marine Mammal Authorization Permit (MMAP) fisher self-reports for the California drift gillnet fishery during 1996-98. Both of the mortalities occurred on an observed fishing trip and were actually short-beaked common dolphins (NMFS, Southwest Fisheries Science Center, unpublished data). This fishery has not previously been known to take harbor porpoise.

One fishery-related mortality stranding was reported in 1999 near Seaside, in Monterey Bay and two were reported in 2000, one from Ano Nuevo State Reserve and the other from Santa Cruz. These mortalities probably originate from the halibut set gillnet fishery in Monterey Bay. Based on experience with other fisheries (e.g. the set gillnet fishery), the proportion of incidentally killed animals that strand is generally only a fraction of the total mortality, and therefore these unidentified fisheries are likely to have taken more than the three observed harbor porpoise.

STATUS OF STOCK

Harbor porpoise in California are not listed as threatened or endangered under the Endangered Species Act nor as depleted under the Marine Mammal Protection Act. Barlow and Hanan (1995) calculate the status of harbor porpoise relative to historic carrying capacity (K) using a technique called back-projection. They calculate that the central California population could have been reduced to between 30% and 97% of K by incidental fishing mortality, depending on the choice of input parameters. They conclude that there is no practical way to reduce the range of this estimate. New information does not change this conclusion, and the status of harbor porpoise relative to their Optimum Sustainable Population (OSP) levels in central California must be treated as unknown. The average annual mortality for 1999-2000 (80 harbor porpoise) is greater than the calculated PBR (11) for Monterey Bay harbor porpoise; therefore, the Monterey Bay harbor porpoise population is "strategic" under the MMPA. The average gillnet mortality for 1999-2000 (79 porpoise per year) is greater than the calculated PBR; therefore, the fishery mortality cannot be considered insignificant and approaching zero mortality and serious injury rate. A 60 fathom emergency closure in this stocks range was in effect until May 2001, but these regulations have expired and have not as yet been renewed or made permanent. The CDFG intends on making a 60 fathom closure permanent by May 2002 from Point Reyes to Point Arguello. At least one vessel has resumed set gillnet fishing inside Monterey Bay inshore of 60 fathoms and others have relocated to Morro Bay (see Morro Bay stock assessment). The PBR for the Monterey Bay stock is only 11 animals, which is unlikely to be exceeded by one vessel, however, the potential for other vessels to return to the Monterey fishery remains and is cause for concern. Research activities will continue to monitor the population size and to investigate population trends. There are no known habitat issues that are of particular concern for this stock.

Table 1. Summary of available information on incidental mortality and injury of harbor porpoise (central CA stock 1996-98; Monterey Bay stock 1999-2000) in commercial fisheries that might take this species (Cameron and Forney 2000, Carretta 2001, Forney et al., 2001; NMFS/SWFSC, unpublished data). Mean annual takes are based on 1999-2000 data unless noted otherwise. n/a indicates that data are not available.

Fishery Name	Year(s)	Data Type	Percent Observer Coverage	Observed Mortality	Kill/Day	Estimated Mortality (CV in parentheses)	Mean Annual Takes (CV in parentheses)
CA angel shark / halibut and other species large mesh (>3.5") set gillnet fishery	1996 1997 1998 1999 2000	1990-94 observer data observer data	0% 0% 0% 23.0% 27.0%	- - - 28 ² 7	- - 0.17 0.10	$ \begin{array}{r} 48 (0.19) \\ 80 (0.19) \\ 57 (0.19) \\ 133 (0.23)^2 \\ 26 (0.50) \end{array} $	79 (0.29) ¹
Unknown fishery	1996- 2000	Strandings	-	1 (in 1999) 2 (in 2000)		n/a	≥ 0.6 (n/a)
Minimum total annual takes							80 (0.29)

¹Only 1999-2000 mortality estimates are included in the average because these are the only recent years for which concurrent fishing effort and observed mortality data are available from this region (see text). Through the first 3 quarters of 2001, there were only 6 days of fishing effort reported by CDFG.

 2 This includes one unidentified cetacean that was almost certainly a harbor porpoise; without this animal the mortality estimate would be 128 (CV=0.23).

REFERENCES

- Barlow, J. 1988. Harbor porpoise (*Phocoena phocoena*) abundance estimation in California, Oregon and Washington: I. Ship surveys. Fish. Bull. 86:417-432.
- Barlow, J. and P. Boveng. 1991. Modeling age-specific mortality for marine mammal populations. Mar. Mamm. Sci. 7(1):84-119.
- Barlow, J. and K. A. Forney. 1994. An assessment of the 1994 status of harbor porpoise in California. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-205. 17 pp.

- Barlow, J. and D. Hanan. 1995. An assessment of the status of harbor porpoise in central California. Rept. Int. Whal., Special Issue 16:123-140.
- Calambokidis, J. and J. Barlow. 1991. Chlorinated hydrocarbon concentrations and their use for describing population discreteness in harbor porpoises from Washington, Oregon, and California. pp. 101-110 In: J. E. Reynolds III and D. K. Odell (eds.) Marine mammal strandings in the United States. NOAA Tech. Rep. NMFS 98.
- Carretta, J.V. 2001. Preliminary estimates of cetacean mortality in California gillnet fisheries for 2000. Paper SC/53/SM9 presented to the International Whaling Commission (unpublished). 21pp.
- Carretta, J.V., Barlow, J., K.A. Forney, M.M. Muto, and J. Baker. 2001a. U.S. Pacific Marine Mammal Stock Assessments: 2001. U.S. Dep. Commer. NOAA Technical Memorandum NMFS-SWFSC-317. 280pp.
- Carretta, J.V., B.L. Taylor, and S.J. Chivers. 2001b. Abundance and depth distribution of harbor porpoise (*Phocoena phocoena*) in northern California determined from a 1995 ship survey. U.S. Fishery Bulletin 99:29-39.
- Chivers, S.J., A.E. Dizon, P.J. Gearin, and K.M. Robertson. 2002. Small-scale population structure of eastern North Pacific harbour porpoises, (Phocoena phocoena), indicated by molecular genetic analyses. Journal of Cetacean Research and Management 4(2):111-122.
- Forney, K. A. 1999a. The abundance of California harbor porpoise estimated from 1993-97 aerial line-transect surveys. Admin. Rep. LJ-99-02. Southwest Fisheries Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 16 pp.
- Forney, K. A. 1999b. Trends in harbor porpoise abundance off central California, 1986-95: Evidence for interannual changes in distribution? J. Cetacean Res. Manage. 1:73-80.
- Gaskin, D. E. 1984. The harbour porpoise (*Phocoena phocoena* L.): regional populations, status, and information on direct and indirect catches. Rep. int. Whal. Commn 34:569-586.
- Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 In: J. J. Brueggeman (ed.). <u>Oregon and Washington Marine Mammal and Seabird Surveys</u>. Minerals Management Service Contract Report 14-12-0001-30426 prepared for the Pacific OCS Region.
- Laake, J. L., J. C. Calambokidis, S. D. Osmek, and D. J. Rugh. 1997. Probability of detecting harbor porpoise from aerial surveys: estimating g(0). J. Wildl. Manag. 61:63-75.
- NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038-0271
- NMFS, Southwest Region, 501 West Ocean Blvd, Long Beach, CA 90802-4213
- Polacheck, T., F. W. Wenzel, and G. Early. 1995. What do stranding data say about harbor porpoise (*Phocoena*) *phocoena*). Rep. Int. Whal. Comm., Special Issue 16:169-179.
- Rosel, P. E. 1992. Genetic population structure and systematic relationships of some small cetaceans inferred from mitochondrial DNA sequence variation. Ph.D. Dissertation, Univ. Calif. San Diego. 191pp.
- Rosel, P. E., A. E. Dizon, and M. G. Haygood. 1995. Variability of the mitochondrial control region in populations of the harbour porpoise, <u>Phocoena phocoena</u>, on inter-oceanic and regional scales. Can. J. Fish. and Aquat. Sci. 52:1210-1219.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.
- Woodley, T. H. and A. J. Read. 1991. Potential rates of increase of a harbour porpoise (*Phocoena phocoena*) population subjected to incidental mortality in commercial fisheries. Can. J. Fish. Aquat. Sci. 48:2429-2435.