
CUVIER'S BEAKED WHALE (Ziphius cavirostris): California/Oregon/Washington Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Cuvier's beaked whales are distributed widely throughout deep waters of all oceans (Heyning 1989). Off the U.S. west coast, this species is the most commonly encountered beaked whale (Figure 1). No seasonal changes in distribution are apparent from stranding records, and morphological evidence is consistent with the existence of a single eastern North Pacific population from Alaska to Baja California, Mexico (Mitchell 1968). However, there are currently no international agreements for cooperative management of this species. For the Marine Mammal Protection Act (MMPA) stock assessment reports, Cuvier's beaked whales within the Pacific U.S. Exclusive Economic Zone are divided into three discrete, noncontiguous areas: 1) waters off California, Oregon and Washington (this report), 2) Alaskan waters, and 3) Hawaiian waters.

POPULATION SIZE

Although Cuvier's beaked whales have been sighted along the U.S. west coast on several line transect surveys utilizing both aerial and shipboard platforms, sightings have generally been too rare to produce reliable population estimates. Previous abundance estimates have been imprecise and biased downward by an unknown amount because of the large proportion of time this species spends submerged, and because the ship surveys on which they were based covered only California waters, and thus could not observe animals off Oregon/Washington. Furthermore, there were a large number of unidentified beaked whale sightings, which were probably either *Mesoplodon* sp. or Cuvier's beaked whales (*Ziphius cavirostris*). Recent analyses (Barlow and Gerrodette 1996, Barlow and Sexton 1996) have resulted in improved estimates of abundance by 1) combining data from three surveys conducted within 300 nmi of the

Figure 1. Cuvier's beaked whale sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991-96 (see Appendix 2, Figures 1-5, for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thick line indicates the outer boundary of all surveys combined.

coasts of California (in 1991 and 1993; Barlow and Gerrodette 1996) and California, Oregon and Washington (in 1996; Barlow 1997), 2) whenever possible, assigning unidentified beaked whale sightings to *Mesoplodon* spp. or *Ziphius cavirostris* based on written descriptions, size estimates, and 'most probable identifications' made by the observers at the time of the sightings, and 3) estimating a correction factor for animals missed because they are submerged, based on dive-interval data collected for Cuvier's beaked whales in 1993-95 (an estimated 13% of all groups are estimated to be seen). Because animals probably spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 1991-96 weighted average abundance estimate for California, Oregon and Washington waters based on the above analyses is 5,870 (CV=0.38) Cuvier's beaked whales (Barlow 1997, with corrected CV).

Minimum Population Estimate

Based on the above abundance estimate and CV, the minimum population estimate (defined as the log-normal 20th percentile of the abundance estimate) for Cuvier's beaked whales in California, Oregon, and Washington is 4,309 animals.

Current Population Trend

Due to the rarity of sightings of this species on surveys along the U.S. West coast, no information exists regarding trends in abundance of this population.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No information on current or maximum net productivity rates is available for this species.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (4,309) <u>times</u> one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) <u>times</u> a recovery factor of 0.50 (for a species of unknown status with no known recent fishery mortality; Wade and Angliss 1997), resulting in a PBR of 43 Cuvier's beaked whales per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

A summary of recent fishery mortality and injury for Cuvier's beaked whales in this region is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 1994-98 (Julian and Beeson 1998; Julian 1997; Cameron and Forney 1999). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 1999). However, because of interannual variability in entanglement rates and the relative rarity of Cuvier's beaked whale entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Because of the changes in this fishery after implementation of the Take Reduction Plan, mean annual takes in Table 1 are based only on 1997-98 data. This results in an average estimated annual mortality of zero Cuvier's beaked whales.

Table 1. Summary of available information on the incidental mortality and injury of Cuvier's beaked whales (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. One Cuvier's beaked whale was released alive in the driftnet fishery in 1995; all other entanglements resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses. Annual mortality estimates for 1995 are shown both including and excluding the animal released alive. Mean annual takes are based on 1994-98 data unless noted otherwise.

Fishery Name	Data Type	Year(s)	Percent Observer Coverage	Observed Mortality + ReleasedAlive	Estimated Annual Mortality / Mortality + Entanglements	Mean Annual Takes (CV in parentheses)
CA/OR thresher shark/swordfish drift gillnet fishery	observer data	1994 1995 1996 1997 1998	17.9% 15.6% 12.4% 23.0% 20.0%	6 5+1 0 0 0	34 (0.36) 32 (0.40) / 39 (0.36) 0 0 0	01
Minimum total annual takes						0

¹ Only 1997-98 mortality estimates are included in the average because of gear modifications implemented within the fishery as part of a 1997 Take Reduction Plan. Gear modifications included the use of net extenders and acoustic warning devices (pingers).

Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from the same population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. There are currently efforts underway to convert the Mexican swordfish driftnet fishery to a longline fishery (D. Holts, pers. comm.).

STATUS OF STOCK

The status of Cuvier's beaked whales in California, Oregon and Washington waters relative to OSP is not

known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species, but in recent years questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species, such as Cuvier's beaked whales (Richardson et al. 1995). In particular, Low Frequency Active Sonar (LFAS) has been implicated in the mass stranding of beaked whales in the Mediterranean Sea (Frantzis 1998) and more recently in the Caribbean. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Including driftnet mortality only for years after implementation of the Take Reduction Plan (1997-98), the average annual human-caused mortality in 1994-98 is zero. Because recent mortality is zero, Cuvier's beaked whales are not classified as a "strategic" stock under the MMPA, and the total fishery mortality and serious injury for this stock can be considered to be insignificant and approaching zero.

REFERENCES

- Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p.
- Barlow, J. and G. A. Cameron. 1999. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Paper SC/51/SM2 presented to the International Whaling Commission, May 1998 (unpublished). 20pp.
- Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-233.
- Barlow, J. and S. Sexton. 1996. The effect of diving and searching behavior on the probability of detecting track-line groups, g₀, of long-diving whales during line transect surveys. Administrative Report LJ-96-14. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038, USA. 21 p.
- Cameron, G., and K. A. Forney. 1999. Estimates of cetacean mortality in the California gillnet fisheries for 1997 and 1998. Paper SC/51/O4 presented to the International Whaling Commission, 1998 (unpublished). 14pp.
- Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392(5):29.
- Heyning, J. E. 1989. Cuvier's beaked whale *Ziphius cavirostris* G. Cuvier, 1823. pp. 289-308 *In:* Ridgway, S. H. and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4. Academic Press.
- Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038.
- Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*:
 I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p.
- Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, 1997 (unpublished). 13 pp.
- Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284.
- Mitchell, E. 1968. Northeast Pacific stranding distribution and seasonality of Cuvier's beaked whale, Ziphius cavirostris. Can. J. Zool. 46:265-279.
- Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p.
- Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.