BOTTLENOSE DOLPHIN (Tursiops truncatus): Hawaiian Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins are widely distributed throughout the world in tropical and warmtemperate waters. The species is primarily coastal in much of its range, but there are populations in some offshore deepwater areas as well. Separate offshore and coastal forms have been identified along continental coasts in several areas (Ross and Cockcroft 1990; Van Waerebeek et al. 1990), and similar onshore-offshore forms may exist in Hawaiian waters.

Although only three strandings have been reported (Nitta 1991), bottlenose dolphins are common throughout the Hawaiian Islands, from the island of Hawaii to Kure Atoll (Shallenberger 1981). Recent sighting locations for systematic aerial surveys within about 25nmi of the main Hawaiian Islands in 1993-98 are shown in Figure 1. In the Northwestern Hawaiian Islands, they are found primarily in relatively shallow inshore waters (Rice 1960). In the main Hawaiian Islands, they are found in both shallow inshore waters and deep channels between islands.

Figure 1. Bottlenose dolphin sighting locations during 1993-98 aerial surveys within about 25 nmi of the main Hawaiian Islands (see Appendix 2 for details on timing and location of survey effort). Outer line indicates approximate boundary of survey area.

In their analysis of sightings of bottlenose

dolphins in the eastern tropical Pacific (ETP), Scott and Chivers (1990) noted that there was a large hiatus between the westernmost sightings and the Hawaiian Islands. These data suggest that the bottlenose dolphins in Hawaiian waters belong to a separate stock from those in the ETP. For the Marine Mammal Protection Act (MMPA) stock assessment reports, bottlenose dolphins within the Pacific U.S. Exclusive Economic Zone are divided into three stocks: 1) Hawaiian stock (this report), 2) California, Oregon and Washington offshore stock, and 3) California coastal stock.

POPULATION SIZE

Population estimates have been made in Japanese waters (Miyashita 1993) and the eastern tropical Pacific (Wade and Gerrodette 1993), but it is not known whether these animals are part of the same population that occurs around the Hawaiian Islands. As part of the Marine Mammal Research Program of the Acoustic Thermometry of Ocean Climate (ATOC) study, a total of twelve aerial surveys were conducted within about 25 nmi of the main Hawaiian Islands in 1993, 1995 and 1998. An abundance estimate of 743 (CV=0.56) bottlenose dolphins was recently calculated from the combined survey data (Mobley et al. 2000). This abundance underestimates the total number of bottlenose dolphins within the U.S. EEZ off Hawaii, because areas around the Northwest Hawaiian Islands (NWHI) and beyond 25 nautical miles from the main islands were not surveyed.

Minimum Population Estimate

The log-normal 20th percentile of the combined 1993-98 abundance estimate is 479 bottlenose dolphins. As with the best abundance estimate above, this includes only areas within about 25 nmi of the main Hawaiian Islands and is therefore an underestimate.

Current Population Trend

No data are available on current population trend.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current or maximum net productivity rate for this species in Hawaiian waters.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (479) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 0.50 (for a species of unknown status with no estimated fishery mortality; Wade and Angliss 1997), resulting in a PBR of 4.8 bottlenose dolphins per year.

HUMAN CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Although some mortality of bottlenose dolphins has been observed in inshore gillnets, no estimate of annual human-caused mortality and serious injury is available. The gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. Gillnets are used in Hawaiian waters and appear to capture marine mammals wherever they are used, and float lines from lobster traps and longlines can be expected to occasionally entangle whales (Perrin et al. 1994).

Interactions with cetaceans have been reported for all Hawaiian pelagic fisheries, and many of these interactions involved bottlenose dolphins (Nitta and Henderson 1993). One bottlenose dolphin was observed hooked in the Hawaiian longline fishery between 1994 and 1998 in waters outside the U.S. EEZ (Figure 2), with approximately 4.4% of all effort (measured as the number of hooks fished) observed. This interaction rate extrapolates to a total 5-year

Figure 2. Locations of observed cetacean interactions in the Hawaiian longline fishery, 1994-98 (modified from Kleiber 1999). Dashed line is the U.S. Exclusive Economic Zone (EEZ); TT = bottlenose dolphin.

estimate of 23 (95% CI = 1-108) bottlenose dolphins, or an average of 4.6 interactions per year (Kleiber 1999). The single observed bottlenose dolphin was reported to have ingested the hook. Following the guidelines of a 1997 Serious Injury Workshop (Angliss and DeMaster 1998), this animal has been considered seriously injured (defined under the MMPA as likely to result in mortality). Reports for other odontocetes indicate they may also become hooked in the mouth or other part of their body, and that they may occasionally become entangled in the fishing line.

Bottlenose dolphins are one of the species commonly reported to take bait and catch from several Hawaiian sport and commercial fisheries (Nitta and Henderson 1993; Schlais 1984). Observations of bottlenose dolphins taking bait or catch have also been made in the day handline fishery (palu-ahi) for tuna, the handline fishery for mackerel scad, the troll fishery for billfish and tuna, and the inshore set gillnet fishery (Nitta and Henderson 1993). Nitta and Henderson (1993) indicated that bottlenose dolphins remove bait and catch from handlines used to catch bottomfish off the island of Hawaii and Kaula Island and on several banks of the Northwestern Hawaiian Islands. Fishermen claim interactions with dolphins who steal bait and catch are increasing. Interaction rates between dolphins and the NWHI bottomfish fishery have been estimated based on studies conducted in 1990-1993, indicating that an average of 2.67 dolphin interactions, most likely involving bottlenose and rough-toothed dolphins, occurred for every 1000 fish brought on board (Kobayashi and Kawamoto 1995). It is not known whether these interactions result in serious injury or mortality of dolphins. Beginning in the early 1970s the National Marine Fisheries Service received reports of fishermen shooting at bottlenose dolphins to deter them from taking fish catches (Nitta and Henderson 1993). Nitta and Henderson (1993) also reported that one bottlenose dolphin calf was removed from small-mesh set gill nets in Hawaii," considering that they so often remove fish from fishing lines.

Other Removals

At least 36 bottlenose dolphins were live-captured in Hawaiian waters between 1963 and 1981 (Shallenberger 1981). The main capture area was around Oahu. One juvenile bottlenose dolphin was entangled in a mooring line and

stranded dead along the coast of Maui in 1998 (H. Bernard, pers. comm.).

STATUS OF STOCK

The status of bottlenose dolphins in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. Although information on bottlenose dolphins in Hawaiian waters is limited, this stock would not be considered strategic under the 1994 amendments to the MMPA given the absence of reported fisheries related mortality within the U.S. EEZ. However, there is no systematic monitoring of gillnet fisheries that may take this species, and the potential effects of interactions with the Hawaiian longline fishery in international waters or the bottomfish fishery in the NWHI are not known. Insufficient information is available to determine whether the total fishery mortality and serious injury for bottlenose dolphins is insignificant and approaching zero mortality and serious injury rate.

REFERENCES

Bernard, H. Hawai'i Wildlife Fund, P.O. Box 637, Paia, HI 96779.

- Kleiber, P. 1999. Estimates of marine mammal takes in the Hawaiian longline fishery. (Unpublished). Southwest Fisheries Science Center, NMFS, 2570 Dole St, Honolulu, HI, 96822-2396.
- Kobayashi, D. R. and K. E. Kawamoto. 1995. Evaluation of shark, dolphin, and monk seal interactions with Northwestern Hawaiian Island bottomfishing activity: a comparison of two time periods and an estimate of economic impacts. Fisheries Research 23: 11-22.
- Miyashita, T. 1993. Abundance of dolphin stocks in the western North Pacific taken by the Japanese drive fishery. Rep. Int. Whal. Commn. 43:417-437.
- Mobley, J. R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp.
- Nitta, E. 1991. The marine mammal stranding network for Hawaii: an overview. *In*: J.E. Reynolds III, D.K. Odell (eds.), Marine Mammal Strandings in the United States, pp.56-62. NOAA Tech. Rep. NMFS 98, 157 pp.
- Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92.
- Perrin, W.F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp.
- Rice, D. W. 1960. Distribution of the bottle-nosed dolphin in the leeward Hawaiian Islands. J. Mamm. 41:407-408.
- Ross, G.J.B. and V. G. Cockcroft. 1990. Comments on Australian bottlenose dolphins and the taxonomic status of *Tursiops aduncus* (Ehrenberg, 1832). *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. Reeves). pp. 101-128. Academic Press, 653pp.
- Schlais, J.F. 1984. Thieving dolphins: A growing problem in Hawaii's fisheries. Sea Front. 30(5):293-298.
- Scott, M. D. and S. J. Chivers. 1990. Distribution and herd structure of bottlenose dolphins in the eastern tropical Pacific Ocean. *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. Reeves). pp. 387-402. Academic Press, 653pp.
- Shallenberger, E.W. 1981. The status of Hawaiian cetaceans. Final report to U.S. Marine Mammal Commission. MMC-77/23, 79pp.
- Van Waerebeek, K., J. C. Reyes, A. J. Read, and J. S. McKinnon. 1990. Preliminary observations of bottlenose dolphins from the Pacific coast of South America. *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. Reeves). pp. 143-154. Academic Press, 653 pp.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.
- Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rep. Int. Whal. Commn. 43:477-493.