
KILLER WHALE (*Orcinus orca*):

Eastern North Pacific Offshore Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Killer whales have been observed in all oceans and seas of the world (Leatherwood and Dahlheim 1978). Although reported from tropical and offshore waters, killer whales prefer the colder waters of both hemispheres, with greatest abundances found within 800 km of major continents (Mitchell 1975). Along the west coast of North America, killer whales occur along the entire Alaskan coast (Braham and Dahlheim 1982), in British Columbia and Washington inland waterways (Bigg et al. 1990), and along the outer coasts of Washington, Oregon and California (Green et al. 1992; Barlow 1995, 1997; Forney et al. 1995). Seasonal and year-round occurrence has been noted for killer whales throughout Alaska (Braham and Dahlheim 1982) and in the intracoastal waterways of British Columbia and Washington State, where pods have been labeled as 'resident', 'transient' and 'offshore' (Bigg et al. 1990, Ford et al. 1994) based on aspects of morphology, ecology, genetics and behavior (Ford and Fisher 1982; Baird and Stacey 1988; Baird et al. 1992, Hoelzel et al. 1998). Through examination of photographs of recognizable individuals and pods, movements of whales between geographical areas have been documented. For example, whales identified in Prince William Sound have been observed near Kodiak Island (Heise et al. 1991) and whales identified in Southeast Alaska have been observed in Prince William Sound, British Columbia, and Puget Sound (Leatherwood et al. 1990, Dahlheim et al. 1997). Movements of killer whales between the waters of Southeast Alaska and central California have also been documented (Goley and Straley 1994).

Offshore killer whales have more recently also been identified off the coasts of California, Oregon, and rarely, in Southeast Alaska (Ford et al. 1994, Black et al. 1997, Dahlheim et al. 1997). They apparently do not mix with the transient and resident killer whale stocks found in these regions (Ford et al. 1994, Black et al. 1997). Studies indicate the 'offshore' type, although distinct from the other types ('resident' and 'transient'), appears to be more closely related genetically,

Figure 1. Killer whale sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1989-96. Sightings include killer whales from all stocks found in this region. Dashed line represents the U.S. EEZ, thick line indicates the outer boundary of all surveys combined. Greater effort was conducted off California (south of 42/N) and in the inshore half of the U.S. EEZ. See Appendix 2 of Barlow et al. (1997) and Barlow (1997) for data sources and information on timing and location of survey effort.

morphologically, behaviorally, and vocally to the 'resident' type killer whales (Black et al. 1997, Hoelzel et al. 1998; J. Ford, pers. comm.; L. Barrett-Lennard, pers. comm.). Based on data regarding association patterns, acoustics, movements, genetic differences, and potential fishery interactions, five killer whale stocks are recognized within the Pacific U.S. EEZ 1) the Eastern North Pacific Northern Resident stock - occurring from British Columbia through Alaska, 2) the Eastern North Pacific Southern Resident stock - occurring within the inland waters of Washington State and southern British Columbia, 3) the Eastern North Pacific Transient stock - occurring from Alaska through California, 4) the Eastern North Pacific Offshore stock - occurring from Southeast Alaska through California (this report), and 5) the Hawaiian stock. 'Offshore' whales in Canadian waters are considered part of the Eastern North Pacific Offshore stock. The Stock Assessment Reports for the Alaska Region contain assessments of the Eastern North Pacific Northern Resident stock, and the most recent assessment for the Hawaii Stock can be found in Barlow et al. (1997).

POPULATION SIZE

Off British Columbia, approximately 200 offshore killer whales were identified between 1989 and 1993 (Ford et al. 1994), and 20 of these individuals have also been seen off California (Black et al. 1997). Using only good quality photographs that clearly show characteristics of the dorsal fin and saddle patch region, an additional 11 offshore killer whales that were not previously known have been identified off the California coast, bringing the total number of known individuals in this population to 211. This is certainly an underestimate of the total population size, because not all animals in this population have been photographed. In the future, it may be possible estimate the total abundance of this transboundary stock using mark-recapture analyses based on individual photographs. Based on summer/fall shipboard line-transect surveys in 1991, 1993 and 1996 (Barlow 1997), the total number of killer whales within 300 nmi of the coasts of California, Oregon and Washington was recently estimated to be 819 animals (CV=0.38). There is currently no way to reliably distinguish the different stocks of killer whales from sightings at sea, but photographs of individual animals can provide a rough estimate of the proportion of whales in each stock. A total of 161 individual killer whales photographed off California and Oregon have been determined to belong to the transient (105 whales) and offshore (56 whales) stocks (Black et al. 1997). Using these proportions to prorate the line transect abundance estimate yields an estimate of 56/161 * 819 = 285 offshore killer whales along the U.S. west coast. This is expected to be a conservative estimate of the number of offshore killer whales, because offshore whales apparently are less frequently seen near the coast (Black et al. 1997), and therefore photographic sampling may be biased towards transient whales. For stock assessment purposes, this combined value is currently the best available estimate of abundance for offshore killer whales off the coasts of California, Oregon and Washington.

Minimum Population Estimate

The total number of known offshore killer whales along the U.S. West coast, Canada and Alaska is 211 animals, but it is not known what proportion of time this transboundary stock spends in U.S. waters, and therefore this number is difficult to work with for PBR calculations. A minimum abundance estimate for all killer whales along the coasts of California, Oregon and Washington can be estimated from the 1991-1996 line-transect surveys as the 20^{th} percentile of the abundance estimate, or 601 killer whales. Using the same prorating as above, a minimum of 56/161 * 601 = 209 offshore killer whales are estimated to be in U.S. waters off California, Oregon and Washington.

Current Population Trend

No information is available regarding trends in abundance of Eastern North Pacific offshore killer whales.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No information on current or maximum net productivity rates is available for killer whales in this region.

POTENTIAL BIOLOGICAL REMOVAL

Based on this stock's unknown status and growth rate and the lack of observed fishery mortality, the recovery factor (F_r) is 0.5. $\frac{1}{2}R_{max}$ is the default value of 0.02. Multiplying these two values times the minimum population estimate of 209 yields a potential biological removal (PBR) of 2.1 animals per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

A summary of recent fishery mortality and injury for this killer whale stock is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1 of Barlow et al. (1997). In the California drift gillnet fishery, no offshore killer whales have been observed entangled (Julian and Beeson 1998, Julian 1997, Cameron 1998), but one killer whale from the Eastern North Pacific Transient Stock was observed taken in 1995, and offshore killer whales may also occasionally be entangled.

Additional potential sources of killer whale mortality are set gillnets and longlines. In California, an observation program between July 1990 and December 1994 monitored 5-15% of all sets in the large mesh (>3.5") set gillnet fishery for halibut and angel sharks, and no killer whales were observed taken. Based on observations for longline fisheries in other regions (i.e. Alaska; Yano and Dahlheim 1995), fishery interactions may also occur with U.S. West coast pelagic longline fisheries, but no such interactions have been documented to date.

Set and drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from the same population. Quantitative data are available only for the Mexican swordfish

drift gillnet fishery, which increased from two vessels in 1986 to 29 vessels in 1992 (Sosa-Nishizaki et al. 1993). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, in press), but species-specific information is not available for the Mexican fisheries.

Table 1. Summary of available information on the incidental mortality and injury of killer whales (Eastern North Pacific Offshore Stock) in commercial fisheries that might take this species.

Fishery Name	Data Type	Year(s)	Percent Observer Coverage	Observed Mortality	Estimated Annual Mortality	Mean Annual Takes 1993-97
CA/OR thresher shark/swordfish drift gillnet fishery	observer data	1993 1994 1995 1996 1997	13.4% 17.9% 15.6% 12.4% 26.6%	0 0 0 0	0 0 0 0	0
Minimum total annual takes 1993-97						0

Historical mortality

California coastal whaling operations killed five killer whales between 1962 and 1967 (Rice 1974). An additional killer whale was taken by whalers in British Columbian waters (Hoyt 1981). It is unknown whether any of these animals belonged to the Eastern North Pacific Offshore stock.

STATUS OF STOCK

The status of killer whales in California in relation to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. There has been no documented human-caused mortality of this stock, and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for offshore killer whales is zero and can be considered to be insignificant and approaching zero mortality and serious injury rate.

REFERENCES

- Baird, R. W., and P. J. Stacey. 1988. Variation in saddle patch pigmentation in populations of killer whales *Orcinus orca*) from British Columbia, Alaska, and Washington State. Can. J. Zool. 66:2582-2585.
- Baird, R. W., Abrams, P. A., and L. M. Dill. 1992. Possible indirect interactions between transient and resident killer whales: implications for the evolution of foraging specializations in the genus *Orcinus*. Oecologia 89:125-132.
- Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14.
- Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p.
- Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific marine mammal stock assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-248. 223 pp.
- Barrett-Lennard, L. Univ. of British Columbia, 6270 University Blvd., Vancouver, BC V6T1Z4.
- Bigg, M. A., P. F. Olesiuk, G. M. Ellis, J. K. B. Ford, and K. C. Balcomb III. 1990. Social organization and genealogy of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Rep. int. Whal. Commn Special Issue 12:386-406.
- Black, N. A., A. Schulman-Janiger, R. L. Ternullo, and M. Guerrero-Ruiz. 1997. Killer whales of California and western

- Mexico: A Catalog of photo-identified individuals. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-247. 174p.
- Braham, H. W., and M. E. Dahlheim. 1982. Killer whales in Alaska documented in the Platforms of Opportunity Program. Rep. Int. Whal. Commn., 32:643-646.
- Cameron, G. 1998. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1997. Paper SC/50/SM02 presented to the International Whaling Commission, June 1998 (unpublished). 15 pp.
- Dahlheim, M. E., D. Ellifrit, and J. Swenson. 1997. Killer Whales of Southeast Alaska: A Catalogue of Photoidentified Individuals. Day Moon Press, Seattle, WA. 82 pp. + appendices.
- Ford, J. K. B., Vancouver Aquarium, P.O. Box 3232, Vancouver, BC V6B 3XB, Canada.
- Ford, J. K. B., G. M. Ellis, and K.C. Balcomb. 1994. Killer whales. The natural history and genealogy of *Orcinus orca* in British Columbia and Washington State. UBC Press, Vancouver, Canada
- Ford, J. K. B., and H. D. Fisher. 1982. Killer whale (*Orcinus orca*) dialects as an indicator of stocks in British Columbia. Rep. Int. Whal. Commn 32:671-679.
- Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26.
- Goley, P. D., and J. M. Straley. 1994. Attack on gray whales (*Eschrichtius robustus*) in Monterey Bay, California, by killer whales (*Orcinus orca*) previously identified in Glacier Bay, Alaska. Can. J. Zool. 72:1528-1530.
- Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California.
- Heise, K., G. Ellis, and C. Matkin. 1991. A catalogue of Prince William Sound Killer Whales. North Gulf Oceanic Society, Homer, AK. Published for the National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115.
- Hoelzel, A. R., M. E. Dahlheim, and S. J. Stern. 1998. Low genetic variation among killer whales (*Orcinus orca*) in the Eastern North Pacific, and genetic differentiation between foraging specialists. J. Heredity 89:121-128.
- Hoyt, E. 1981. The Whale Called Killer. E. P. Dutton, New York.
- Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, September 1997 (unpublished). 13 pp.
- Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fishery Bulletin 96:271-284.
- Leatherwood, J. S., and M. E. Dahlheim. 1978. Worldwide distribution of pilot whales and killer whales. Naval Ocean Systems Center, Tech. Rep. 443:1-39.
- Leatherwood, S., C. O. Matkin, J. D. Hall, and G. M. Ellis. 1990. Killer whales, *Orcinus orca*, photo-identified in Prince William Sound, Alaska 1976 to 1987. Can. Field Naturalist 104:362-371.
- Mitchell, E. D. 1975. Report on the meeting on small cetaceans, Montreal, April 1-11, 1974. J. Fish. Res. Board Canada, 32:914-916.
- Rice, D. W. 1974. Whales and whale research in eastern North Pacific. p. 170-195 *In:* W. E. Schevill (ed.), The Whale Problem A Status Report. Harvard University Press, Cambridge, MA.
- Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306.
- Yano, K. and M. E. Dahlheim. 1995. Killer whale, *Orcinus orca*, depredation on longline catches of bottomfish in the southeastern Bering Sea and adjacent waters. Fishery Bulletin 93:355-372.