
SEI WHALE (Balaenoptera borealis): Nova Scotia Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Mitchell and Chapman (1977) reviewed the sparse evidence on stock identity of northwest Atlantic sei whales, and suggested two stocks - a Nova Scotia stock and a Labrador Sea stock. The range of the Nova Scotia stock includes the

continental shelf waters of the northeastern U.S., and extends northeastward to south of Newfoundland. The Scientific Committee of the IWC, while adopting these general boundaries, noted that the stock identity of sei whales (and indeed all North Atlantic whales) was a major research problem (Donovan 1991). In the absence of evidence to the contrary, the proposed IWC stock definition is provisionally adopted, and the "Nova Scotia stock" is used here as the management unit for this stock assessment. The IWC boundaries for this stock are from the U.S. east coast to Cape Breton, Nova Scotia, thence east to longitude 42° W.

Indications are that, at least during the feeding season, a major portion of the Nova Scotia sei whale stock is centered in northerly waters, perhaps on the Scotian Shelf (Mitchell and Chapman 1977). The southern portion of the species' range during spring and summer includes the northern portions of the U.S. Atlantic Exclusive Economic Zone (EEZ) - the Gulf of Maine and Georges Bank. The period of greatest abundance there is spring, with sightings concentrated along the eastern margin of Georges Bank and into the Northeast Channel area, and along the southwestern edge of Georges Bank in the area of Hydrographer Canyon (CETAP 1982). NMFS aerial surveys in 1999, 2000 and 2001 found concentrations of sei and right whales along the Northern Edge of Georges Bank in the spring. The sei whale is often found in the deeper waters characteristic of the continental shelf edge region (Hain et al. 1985), and NMFS aerial surveys found substantial numbers of sei whales in this region, south of Nantucket, in the spring of 2001. Similarly, Mitchell (1975) reported that sei whales off Nova Scotia were often distributed closer to the 2,000 m depth contour than were fin whales.

Figure 1. Distribution of sei whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004 and 2006. Isobaths are the 100m, 1000m and 4000m depth contours.

This general offshore pattern of sei whale distribution is disrupted during episodic incursions into more shallow and inshore waters. Although known to take piscine prey, sei whales (like right whales) are largely planktivorous, feeding primarily on euphausiids and copepods (Flinn *et al.* 2002). In years of reduced predation on copepods by other predators, and thus greater abundance of this prey source, sei whales are reported in more inshore locations, such as the Great South Channel (in 1987 and 1989) and Stellwagen Bank (in 1986) areas (R.D. Kenney, pers. comm.; Payne *et al.* 1990). An influx of sei whales into the southern Gulf of Maine occurred in the summer of 1986 (Schilling et al. 1993). Such episodes, often punctuated by years or even decades of absence from an area, have been reported for sei whales from various places worldwide (Jonsgård and Darling 1977).

Based on analysis of records from the Blandford, Nova Scotia, whaling station, where 825 sei whales were taken between 1965 and 1972, Mitchell (1975) described two "runs" of sei whales, in June-July and in September-October. He speculated that the sei whale population migrates from south of Cape Cod and along the coast of eastern Canada in June and July, and returns on a southward migration again in September and October; however, such a migration remains unverified.

POPULATION SIZE

The total number of sei whales in the U.S. Atlantic EEZ is unknown. However, five abundance estimates are available for portions of the sei whale habitat: from Nova Scotia during the 1970's, in the U.S. Atlantic EEZ during the springs of 1979-1981, and in the U.S. and Canadian Atlantic EEZ during the summers of 2002, 2004, and 2006. The August 2006 abundance estimate (207) is considered the best available for the Nova Scotia stock of sei whales because it is the most recent. However, this estimate must be considered extremely conservative in view of the known range of the sei whale in the entire western North Atlantic, and the uncertainties regarding population

structure and whale movements between surveyed and unsurveyed areas. Estimates for animals identified as sei whales were generated independently from estimates of animals identified as either fin or sei whale. The final estimate of sei whales was the sum of the estimate of animals identified as sei whales and a portion of the estimate of animals identified as fin or sei whales, where the portion was defined as the percent of sei whales out of the total number of positively identified fin whales and sei whales.

Earlier abundance estimates

Mitchell and Chapman (1977), based on tag-recapture data, estimated the Nova Scotia, Canada, stock to contain between 1,393 and 2,248 sei whales. Based on census data, they estimated a minimum Nova Scotian population of 870 sei whales

An abundance estimate of 280 sei whales was generated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). The estimate is based on data collected during the spring when the greatest proportion of the population off the northeast U.S. coast appeared in the study area. This estimate does not include a correction for dive-time or for g(0), the probability of detecting an animal group on the track line. The CETAP report suggested, however, that correcting the estimated abundance for dive time would increase the estimate to approximately the same as Mitchell and Chapman's (1977) tagrecapture estimate. This estimate is more than 20 years out of date and thus almost certainly does not reflect the current true population size; in addition, the estimate has a high degree of uncertainty (i.e., it has a large CV), and it was estimated just after cessation of extensive foreign fishing operations in the region. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

Recent surveys and abundance estimates

An abundance estimate of 71 (CV=1.01) sei whales was obtained from an aerial survey conducted in August 2002 which covered 7,465 km of trackline over waters from the 1000 m depth contour on the southern edge of Georges Bank to Maine (Table 1; Palka 2006). The value of g(0) used for this estimation was derived from the pooled data of 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 386 (CV=0.85) sei whales was derived from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of trackline in waters north of Maryland (38°N) (Table 1; Palka 2006). 6,180 km of trackline was within known sei whale habitat, from the 100 m depth contour on the southern Georges Bank to the lower Bay of Fundy. The Scotian shelf south of Nova Scotia was not surveyed. Shipboard data were collected using the two independent team line-transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and g(0), the probability of detecting a group on the trackline. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for g(0) and biases due to school size and other potential covariates (Palka 2005).

An abundance estimate of 207 (CV=0.62) sei whales was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000 m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence. (Table 1; Palka pers. comm.)

Table 1. Summary of recent abundance estimates for Nova Scotia sei whales. Month, year, and area
covered during each abundance survey, and resulting abundance estimate (N _{best}) and coefficient
of variation (CV).

Month/Year	Area	N _{best}	CV	
Aug 2002	Aug 2002 S. Gulf of Maine to Maine			
Jun-Jul 2004	Gulf of Maine to lower Bay of Fundy	386	0.85	
Aug 2006	S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence	207	0.62	

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). A current minimum population size is 128.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 128. The maximum productivity rate is 0.04, the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the sei whale is listed as endangered under the Endangered Species Act (ESA). PBR for the Nova Scotia stock of the sei whale is 0.3.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There was no reported fishery-related mortality or serious injury to sei whales in fisheries observed by NMFS during 2001-2005. A review of NMFS stranding and entanglement records from 2001 through 2005 yielded an average of 0.4 human-caused mortalities per year as a result of two ship strikes (Nelson *et al.* 2007). The carcass of a 13-meter female was recovered on May 2, 2001, in New York harbor after it slid off the bow of an arriving ship. Freshness of the carcass and hemorrhaging around the dorsal impact area indicated the strike was pre-mortem. The second record within the period was an 11-meter male discovered February 19, 2003, outside of Norfolk Naval Base in Norfolk, VA. A large gash into muscle tissue extended from behind dorsal midline on left side almost all the way around to the ventral midline on the right sides through blubber layer and into some muscle. Histopathology results supported perimortem trauma. The only other NMFS record of a human-caused sei whale mortality was from November 17, 1994, when a sei whale carcass was observed on the bow of a container ship as it docked in Boston, Massachusetts.

Fishery Information

There have been no reported entanglements or other interactions between sei whales and commercial fishing activities; therefore there are no descriptions of fisheries.

Table 2. Confirmed human-caused mortality and serious injury records of Nova Scotian sei whales, 2001- 2005.									
Date ^a	Report Type ^b	Sex, age, ID	Location ^a	Assigned Cause: P=primary, S=secondary		Notes / Observations			
				Ship strike	Entang./ Fsh inter				
5/2/01	mortality	13.0 m female	New York Harbor	P		Fresh carcass hung on ship's bow; hemorrhaging			
2/19/03	mortality	11.0m male	Norfolk, VA 36 58'N 76 21'W	P		Large gash into muscle, hemotoma and abrasions			

a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.

b. National guidelines for determining what constitutes a serious injury have not been finalized. Interim criteria as established by NERO/NMFS (Nelson *et al.* 2007) have been used here. Some assignments may change as new information becomes available and/or when national standards are established.

STATUS OF STOCK

The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine population trends for sei whales. The total level of U.S. fishery-caused mortality and serious injury is unknown, but the rarity of mortality reports for this species suggests that this level is insignificant and approaching a zero mortality and serious injury rate. This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and because the sei whale is listed as an endangered species under the ESA. A Recovery Plan for sei whales has been written and is awaiting legal clearance.

REFERENCES

- Barlow, J., S. L. Swartz, T. C. Eagle, and P. R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. U.S. Department of Commerce, Washington, DC. 73 pp.
- CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report #AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp.
- Donovan, G. P. 1991. A review of IWC stock boundaries. Rep. int. Whal. Commn (Special Issue) 13:39-68.
- Flinn, R.D., A.W. Trites, and E.J. Gregr. 2002. Diets of fin, sei, and sperm whales in British Columbia: An analysis of commercial whaling records, 1963-1967. Mar. Mammal Sci. 18(3):663-679.
- Hain, J. H. W., M. A. M. Hyman, R. D. Kenney, and H. E. Winn. 1985. The role of cetaceans in the shelf-edge region of the northeastern United States. Mar. Fish. Rev. 47(1):13-17.
- Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 in: G.W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDopnald, and D. G. Robertson. (eds). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
- Jonsgård, Å, and K. Darling. 1977. On the biology of the Eastern North Atlantic sei whale, Balaenoptera borealis Lesson. Rep. int. Whal. Commn (Special Issue) 1:124-129.
- Mitchell, E. 1975. Preliminary report on Nova Scotia fishery for sei whales (*Balaenoptera borealis*). Rep. int. Whal. Commn 25:218-225.
- Mitchell, E. and D. G. Chapman. 1977. Preliminary assessment of stocks of northwest Atlantic sei whales (*Balaenoptera borealis*). Rep. int. Whal. Commn (Special Issue) 1: 117-120.
- Nelson, M., M. Garron, R.L. Merrick, R.M. Pace and T.V.N. Cole. 2007. Mortality and serious injury determinations for large whale stocks along the United States Eastern Seaboard and Adjacent Canadian Maritimes, 2001-2005. U. S. Dep. Commer., Northeast Fish. Science Cent. Ref. Doc. 07-05, 18 pp.
- Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50.
- Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.
- Palka, D. 2005. Aerial surveys in the northwest Atlantic: estimation of g(0). *In*: Proceedings of the workshop on Estimation of g(0) in line-transect surveys of cetaceans, ed. F. Thomsen, F. Ugarte, and P.G.H. Evans. ECS Newletter No. 44 Special Issue. April 2005. Pgs 12-7.
- Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03. 41 pp.
- Payne, P.M., D.N. Wiley, S.B. Young, S. Pittman, P.J. Clapham, and J.W. Jossi. 1990. Recent fluctuations in the abundance of baleen whales in the southern Gulf of Maine in relation to changes in selected prey. Fish. Bull., U.S. 88: 687-696.
- Schilling, M.R., I. Seipt, M.T. Weinrich, S.E. Frohock, A.E. Kuhlberg, and P.J. Clapham. 1993. Behavior of individually identified sei whales, *Balaenoptera borealis*, during an episodic influx into the southern Gulf of Maine in 1986. Fish. Bull., U.S. 90(4): 749-755.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop, April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. U.S. Dept. of Commerce, Washington, DC. 93 pp.