BOTTLENOSE DOLPHIN (*Tursiops truncatus*): Western North Atlantic Coastal Morphotype Stocks

STOCK DEFINITION AND GEOGRAPHIC RANGE Stock Structure of the Coastal Morphotype

A. Latitudinal distribution and structure along the coast

The coastal morphotype of bottlenose dolphin is continuously distributed along the Atlantic coast south of Long Island, around the Florida peninsula and along the Gulf of Mexico coast. On the basis of differences in mitochondrial DNA haplotype frequencies, Curry (1997) concluded that the nearshore animals in the northern Gulf of Mexico and the western North Atlantic represent separate stocks.

Scott et al. (1988) hypothesized a single coastal migratory stock ranging seasonally from as far north as Long Island, NY, to as far south as central Florida, citing stranding patterns during a high mortality event in 1987-88 and observed density patterns along the US Atlantic coast. More recent studies indicate that the single coastal migratory stock hypothesis is incorrect, and there is a complex mosaic of stocks (NMFS 2001; McLellan et al. 2003).

Recent genetic analyses of samples from Jacksonville, FL, Georgia, central South Carolina (primarily the estuaries around Charleston), southern North Carolina, and coastal Virginia, using both mitochondrial DNA and nuclear microsatellite markers, indicate that a significant amount of the overall genetic variation can be explained by differences between these areas (NMFS 2001). These results indicate a minimum of five stocks of coastal bottlenose dolphins along the US Atlantic coast and reject the null hypothesis of one homogeneous population.

Photo-identification studies also support the existence of multiple stocks (NMFS 2001). A coastwide photographic catalog has been established using contributions from 15 sites from Cape May, NJ, to Cape Canaveral, FL (Urian et al. 1999). No matches have been found between the northernmost and southernmost sites. However, there appears to be a high rate of exchange among northern field sites, where dolphins occur only seasonally, and central North Carolina. Other areas of frequent exchange include Beaufort and Wilmington, NC. In contrast to the patterns found in the northern end of the range, there appears to be less movement between southern field sites. There are only two confirmed matches between the relatively large catalogs of Jacksonville, FL, and Hilton Head, SC, for example, and no matches between the Charleston, SC site and other sites.

Satellite-linked radio transmitters have been deployed on dolphins in Virginia Beach, VA, Beaufort, NC, Charleston, SC and New Jersey. The movement patterns of animals with satellite tags provide additional information complementary to other stock identification approaches. The results, along with photo-identification of freeze- branded animals, indicate that a significant number of dolphins reside in NC in summer and do not migrate. A dolphin tagged in Virginia Beach, VA, spent the winter between Cape Hatteras and Cape Lookout, NC. indicating seasonal migration between North Carolina and areas further north (NMFS 2001).

Another potential stock has been identified from stable isotope ratios of oxygen (NMFS 2001). Animals sampled along the beaches of North Carolina between Cape Hatteras and Bogue Inlet during February and March show very low stable isotope ratios of ¹⁸O relative to ¹⁶O (referred to as depleted ¹⁸O or depleted oxygen, Cortese 2000). One possible explanation for the depleted oxygen signature is a resident group of dolphins in Pamlico Sound that move into nearby nearshore areas in the winter. The possibility of a resident group of bottlenose dolphins in Pamlico Sound is supported by results from satellite telemetry and photo-identification results. Alternatively, these animals may represent a component of the migratory animals that spend their summers at the northernmost end of the range of bottlenose dolphins and winter in North Carolina. Either possibility suggests that they represent a separate stock.

There are additional resident estuarine stocks that are likely demographically distinct from coastal stocks, but they are currently included in the coastal management unit definitions. For example, year-round resident populations have been reported at a variety of sites from Charleston, South Carolina (Zolman 1996) to central Florida (Odell and Asper 1990). Seasonal residents and migratory or transient animals also occur in these areas (summarized in Hohn 1997). In the northern part of the range, the patterns reported include seasonal residency, year-round residency with large home ranges, and migratory or transient movements (Barco and Swingle 1996, Sayigh et al. 1997). Communities of dolphins have been recognized in embayments and coastal areas of the Gulf of Mexico (Wells et al. 1996; Scott et al. 1990; Weller 1998), and it is not surprising to find similar situations along the Atlantic coast.

In summary, integration of the results from genetic, photo-identification, satellite telemetry, and stable isotope studies confirms a complex mosaic of coastal bottlenose dolphin stocks. Therefore, seven management units within the range of the coastal morphotype of western North Atlantic bottlenose dolphin have been defined (Figure 1). The true population structure is likely more complex than the seven units identified in this report, and research efforts continue to identify that structure.

Figure 1. Management units of the coastal morphotype of bottlenose dolphin along the Atlantic coast of the US as defined from genetic, stable isotope ratio, photo-identification, and telemetry studies (NMFS 2001).

B. Longitudinal distribution

Aerial surveys conducted between 1978-1982 (CETAP 1982) north of Cape Hatteras, North Carolina identified two concentrations of bottlenose dolphins, one inshore of the 25 m isobath and the other offshore of the 50 m isobath. The lowest density of bottlenose dolphins was observed over the continental shelf, with higher densities along the coast and near the continental shelf edge. It was suggested, therefore, that the coastal morphotype is restricted to waters < 25 m deep north of Cape Hatteras (Kenney 1990). Similar patterns were observed during summer months north of Cape Lookout, North Carolina in more recent aerial surveys (Garrison and Yeung 2001; Garrison et al. 2003). However, south of Cape Lookout during both winter and summer months, there was no clear longitudinal discontinuity in bottlenose dolphin sightings (Garrison and Yeung 2001; Garrison et al. 2003).

Dolphin groups observed during aerial surveys cannot be attributed to a specific morphotype based on sighting information alone. Genetic analysis of tissue samples can be used to identify animals to a specific morphotype (Hoelzel et al. 1998, P. Rosel SEFSC unpublished results). An analysis of tissue samples from large vessel surveys during the summers of 1998 and 1999 indicated that bottlenose dolphins within 7.5 km from shore were most likely of the coastal morphotype, and there was an extensive region of overlap between the coastal and offshore morphotypes between 7.5 and 34 km from shore south of Cape Hatteras, NC (Torres et al. 2003). However, relatively few samples were available from the region of overlap, and therefore the longitudinal boundaries based on these initial analyses are uncertain (Torres et al. 2003). Extensive systematic biopsy sampling efforts were conducted in the summers of 2001 and 2002 to supplement collections from large vessel surveys. During the winters of 2002 and 2003, additional biopsy collection efforts were conducted in nearshore continental shelf waters of North Carolina and Georgia. A small number of additional biopsy samples were collected in deeper continental shelf waters south of Cape Hatteras during winter 2002. Genetic analyses of these biopsies identified individual animals to the coastal or offshore morphotype. Based upon the genetic results from all surveys combined, a logistic regression approach was used to model the probability that a particular bottlenose dolphin group was of the coastal morphotype as a function of environmental variables including depth, sea surface temperature, and distance from shore. These models were used to partition the bottlenose dolphin groups observed during aerial surveys between the two overlapping morphotypes (Garrison et al. 2003).

The genetic results and spatial patterns observed in aerial surveys indicate both regional and seasonal differences in the longitudinal distribution of the two morphotypes in coastal Atlantic waters. North of Cape Lookout, North Carolina (i.e., northern migratory and northern North Carolina management units) during summer months, the previously observed pattern of strong nearshore aggregation of bottlenose dolphins was again observed. All biopsy samples collected from

nearshore waters (<20 m depth) were of the coastal morphotype and all samples collected in deeper waters (> 40 m depth) were of the offshore morphotype. The genetic results confirm separation of the two populations in this region during summer months. South of Cape Lookout, NC, the probability of an observed bottlenose dolphin group being of the coastal morphotype declined with increasing depth; however, there was significant spatial overlap between the two morphotypes. Offshore morphotype bottlenose dolphins were observed at depths as shallow as 13 m, and coastal morphotype dolphins were observed at depths of 31 m and 75 km from shore (Garrison et al. 2003). These results indicate significant overlap between the two morphotypes in the southern management units during summer months.

Winter samples were collected primarily from nearshore waters in North Carolina and Georgia. The vast majority of samples collected in nearshore waters of North Carolina during winter were of the coastal morphotype; however, one offshore morphotype group was sampled during November just south of Cape Lookout, North Carolina only 7.3 km from shore. Coastal morphotype samples were also collected further away from shore at 33 m depth and 39 km from shore. The logistic regression model for this region indicated a decline in the probability of a coastal morphotype group with increasing distance from shore; however, the model predictions are highly uncertain due to limited sample sizes and high overlap between the two morphotypes. Samples collected in Georgia waters also indicated significant overlap between the two morphotypes with a declining probability of the coastal morphotype with increasing depth. A coastal morphotype sample was collected well offshore at a distance of 112 km from shore and a depth of 38 m. An offshore sample was collected in 22 m depth at 40 km from shore. As with the North Carolina model, the Georgia logistic regression predictions are uncertain due to limited sample size and high overlap between the two morphotypes (Garrison et al. 2003). The logistic regression models were used to predict the probability that an observed bottlenose group is of the coastal morphotype as a function of habitat variables and spatial location. There remain significant sampling gaps in the biopsy collections, particularly during winter months, that increase the uncertainty of model predictions. Both the predicted probability of a coastal morphotype occurring and the associated uncertainty in that prediction are incorporated into the abundance estimates for coastal morphotype bottlenose dolphin management units.

POPULATION SIZE

Previous abundance estimates for the coastal morphotype of WNA bottlenose dolphin were based primarily upon aerial surveys conducted during the summer and winter of 1995. The surveys were designed based upon the previous assumption of a single coastal migratory stock, and therefore they did not provide complete seasonal and spatial coverage for the more recently defined management units. Previous abundance estimates were also not corrected for visibility bias (Garrison and Yeung 2001). Aerial surveys to update the abundance estimates were conducted during winter (January-February) and summer (July-August) of 2002. Survey tracklines were set perpendicular to the shoreline and included coastal waters to depths of 40 m. The surveys employed a stratified design so that most effort was expended in waters shallower than 20 m depth where a high proportion of observed bottlenose dolphins were expected to be of the coastal morphotype. Survey effort was also stratified to optimize coverage in seasonal management units. The surveys employed two observer teams operating independently on the same aircraft to estimate visibility bias.

The winter survey included the region from the Georgia/Florida state line to the southern edge of Delaware Bay. A total of 6,411 km of trackline was completed during the survey, and 185 bottlenose dolphin groups were sighted including 2,114 individual animals. No bottlenose dolphins were sighted north of Chesapeake Bay corresponding to water temperatures <9.5 °C. During the summer survey, 6,734 km of trackline were completed between Sandy Hook, NJ to Ft. Pierce, FL. All tracklines in the 0-20 m stratum, were completed throughout the survey range while offshore lines were completed only as far south as the Georgia-Florida state line. A total of 185 bottlenose dolphin groups was sighted during summer including 2,544 individual animals.

Abundance estimates for bottlenose dolphins in each management unit were calculated using line transect methods and distance analysis (Buckland et al. 2001). The independent and joint estimates from the two survey teams were used to quantify the probability that animals available to the survey on the trackline were missed by the observer teams, or perception bias, using the direct duplicate estimator (Palka, 1995). These estimates were further partitioned between the coastal and offshore morphotypes based upon the results of the logistic regression models and spatial analyses described above. A parametric bootstrap approach was used to incorporate the uncertainty in the logistic regression models into the overall uncertainty in the abundance estimates for each management unit (Garrison et al. 2003).

The aerial surveys included only animals in coastal waters, and the resulting abundance estimates therefore do not include animals inside estuaries that are currently included in the defined management units. An abundance estimate was generated for bottlenose dolphins in estuaries from the North Carolina-South Carolina border to northern Pamlico Sound using mark-recapture methodology (Read et al. 2003), and these estimates were post- stratified to be consistent with management unit definitions (Palka et al. 2001a; Table 1). Since abundance estimates do not exist for all estuarine waters, the population estimates and PBRs for these management units are negatively biased.

Bottlenose dolphins in the northern migratory stock migrate south during winter months and overlap with those from the northern North Carolina and southern North Carolina management units. It is not possible at this time to apportion the incidental mortality occurring during winter months in North Carolina waters among animals from these three management units. Therefore, a half-year PBR value is applied for each management unit in the summer based upon abundance estimates from summer aerial surveys. During winter months, these three stocks overlap spatially and a halfyear PBR is applied to the North Carolina mixed management unit based upon winter aerial survey abundance estimates. For the South Carolina and Georgia management units, the abundance estimates, minimum population size values, and the resulting PBR values are derived using a weighted average of abundance estimates from the winter and summer 2002 aerial surveys. The northern Florida management unit was only surveyed during the summer of 2002 and the winter of 1995. The resulting abundance estimate is therefore a weighted average of the seasonal estimates from the available surveys. Finally, the central Florida management unit was only covered during the 1995 surveys. Due to the age of the available abundance estimates, the PBR of the northern and central Florida management units were set to "undefined".

Table 1. Estimates of abundance and the associated CV, N_{min} , and PBR for each stock of WNA coastal bottlenose dolphins (Garrison et al. 2003). The PBR for the Northern Migratory, Northern NC, and Southern NC management units are applied semi-annually. South of NC, the PBR is applied annually. Except where noted, abundance estimates and PBR values do not include estuarine animals.

Unit	Best Abundance		N _{min}	PBR	PBR		
	Estimate	CV		Annual	½ Yr		
SUMMER (May - October)							
Northern migratory	17,466	0.19	14,621	(146.2)	73.1		
Northern NC							
oceanic	6,160	0.52	3,255	(32.6)	16.1		
estuary ⁴	919	0.13	828	(8.2)	4.2		
BOTH	7,079	0.45	4,083	(40.8)	20.3		
Southern NC							
oceanic	3,645	1.11	1,863	(18.6)	9.3		
Estuary ^d	141	0.15	124	(1.2)	0.6		
BOTH	3,786	1.07	1,987	(19.9)	9.9		
WINTER (November - April)							
NC mixed ^a	16,913	0.23	13,558	(135.6)	67.8		
		ALL YEAR					
South Carolina	2,325	0.20	1,963	19.6	na		
Georgia	2,195	0.30	1,716	17.2	na		
Northern Florida ^{b,c}	448	0.38	328	na	na		
Central Florida ³	10,652	0.46	na	na	na		

a NC mixed = northern migratory, Northern NC, and Southern NC

b Northern Florida estimates are a weighted mean of abundance estimates from the winter 1995 survey and the summer 2002 survey.

c Northern and Central Florida estimates include data from the winter 1995 survey and cannot be used to determine PBR due to their age.

d Read et al. 2003.

Minimum Population Estimate

The minimum population size (Nmin) for each stock was calculated as the lower bound of the 60% confidence interval for a lognormally distributed mean (Wade and Angliss 1997). For the estimates derived from bootstrap resampling, the appropriate Nmin was taken directly from the bootstrap distribution of abundance estimates. These estimates may be negatively biased because they do not include estuarine animals and do not fully account for visibility bias. Minimum population sizes for each stock are shown in Table 1.

Current Population Trend

There are insufficient data to determine the population trend for these stocks.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are not known for the WNA coastal morphotype. The maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a recovery factor (Wade and Angliss 1997). The recovery factor is 0.50, the default for depleted stocks and stocks of unknown status. This complex of management units incorporates the range of the former WNA coastal migratory stock that was defined as depleted under MMPA guidelines. At least some of these management units are likely depleted relative to their optimum sustainable population (OSP) size due both to mortality during the 1987-1988 die-off and high incidental mortality in fisheries relative to PBR. Given the known population structure within the coastal morphotype bottlenose dolphins, it is appropriate to apply PBR separately to each management unit so as to achieve the goals of the MMPA (Wade and Angliss 1997).

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total estimated average annual fishery related mortality during 1996-2000 was 233 bottlenose dolphins (CV=0.16) in the Mid-Atlantic coastal gillnet fishery. The management units affected by this fishery are the northern migratory, northern North Carolina, and southern North Carolina management units. An estimated 6 (CV= 0.89) mortalities occurred annually in the shark drift gillnet fishery off the coast of Florida during 1999-2002, affecting the Central Florida management unit. No observer data are available for other fisheries that may interact with WNA coastal bottlenose dolphins. Therefore, the total average annual mortality estimate is considered to be a lower bound of the actual annual human-caused mortality for each stock.

Fishery Information

Bottlenose dolphins interact with commercial fisheries and occasionally are taken in fishing gear including gillnets, seines, long-lines, shrimp trawls, and crab pots (Read 1994; Wang et al. 1994) in near-shore areas where dolphin density and fishery effort are greatest. There are nine Category II commercial fisheries that interact with WNA coastal bottlenose dolphins in the 2003 MMPA List Of Fisheries (LOF), six of which occur in North Carolina waters. Category II fisheries include the Mid-Atlantic coastal gillnet, NC inshore gillnet, Mid-Atlantic haul/beach seine, NC long haul seine, NC stop net, Atlantic blue crab trap/pot, Southeast Atlantic gillnet, Southeastern U.S. Atlantic shark gillnet and the Virginia pound net (see 2003 List of Fisheries, 68 FR 41725, July 15 2003). The mid-Atlantic haul/beach seine fishery also includes the haul seine and swipe net fisheries. The term Mid-Atlantic refers to the geographic area south of Long Island, landward to 72° 30' W longitude, and north of the line extending due east from the North Carolina/South Carolina border (66 FR 6545, January 22 2001).

There are five Category III fisheries that may interact with WNA coastal bottlenose dolphins. Three of these are inshore gillnet fisheries: the Delaware Bay inshore gillnet, the Long Island Sound inshore gillnet, and the Rhode Island, southern Massachusetts, and New York Bight inshore gillnet. The remaining two are the shrimp trawl and Mid-Atlantic menhaden purse seine fisheries. There are have been no takes observed in these fisheries in recent years and no systematic observer coverage.

Mid-Atlantic Coastal Gillnet

This fishery has the highest documented level of mortality of WNA coastal morphotype bottlenose dolphins, and the North Carolina sink gillnet fishery is its largest component in terms of fishing effort and observed takes. Of 12 observed mortalities between 1995-2000, 5 occurred in sets targeting spiny or smooth dogfish and another in a set targeting "shark" species, 2 occurred in striped bass sets, 2 occurred in Spanish mackerel sets, and the remainder were in sets targeting kingfish, weakfish, or finfish generically (Rossman and Palka 2001). Only two bottlenose dolphin mortalities were observed in 2001-2002, both occurring in the winter mixed North Carolina unit. The overall estimated level of mortality has declined during the past two years associated with reductions in fishery effort, reduced levels of observer coverage, and reduced bycatch rates (Rossman and Palka, unpublished manuscript). Due to these significant changes in the behavior of the fishery, bycatch estimates for these fisheries are separated into two periods from 1996-2000 and 2001-2002 (Table 2).

Table 2. Summary of the 1996-2002 incidental mortality of bottlenose dolphins (*Tursiops truncatus*) by management unit in the commercial Mid-Atlantic coastal gillnet fisheries. Data include the years sampled (Years), the number of vessels active within the fishery (Vessels), type of data used (Data Type), observer coverage (Observer Coverage), mortalities recorded by on-board observers (Observed Mortality), estimated annual mortality (Estimated Mortality), estimated CV of the annual mortality (Estimated CVs), and mean annual mortality (CV in parentheses).

the annual n	nortanty (L	Stimated	$a \in (5)$, and mean	i unnuur moru	unity (C + in pu	irentifiebeb).			
Seasonal	Years	Vessels	Data Type ^a	Observer	Observed	Observed	Estimated	Estimated	Mean Annual
Management				Coverage ^b	Serious Injury	Mortality	Mortality ^c	CVs ^d	Mortality
Unit									
Summer		NA	Obs. Data,	.05, .03, .02,	0, 0, 0,	0, 0, 1,	33, 30, 37,	0.48, 0.48,	ĺ
Northern	1996-2000		NER Dealer Data	.03, .03,	0, 0	1, 1,	19, 30,	0.48, 0.48,	30
Migratory								0.48	(0.22)
	2001-2002			.02, .01	0, 0	0, 0	11, 11	0.35,	11 (0.25)
								0.35	
Summer		NA	Obs. Data,	.01, .00, <.01,	0, 0, 0,	1, 0, 0,	27, 33, 17,	0.61, 0.61,	
Northern NC	1996-2000		NCDMF Dealer	.01, .03,	0, 0	0, 0,	13, 26,	0.61, 0.61,	23
			Data					0.61	(0.29)
	2001-2002			.01, <.01	0, 0	0, 0	8, 8	1.06,	8 (0.75)
								1.06	
Summer		NA	Obs. Data,	.00, .00, .01,	0, 0, 0,	0, 0, 0,	0, 0, 0,	NA	0
Southern NC	1996-2000		NCDMF Dealer	.03, .03,	0, 0	0, 0	0, 0		(NA)
			Data						
	2001-2002			.02, <.01	0, 0	0, 0	0, 0	NA	0 (NA)
Winter NC		NA	Obs. Data,	.01, .01, .02,	0, 0, 0,	1, 0, 1,	173, 211,	0.46, 0.46,	
mixed	1996-2000		NCDMF Dealer	.02, .02,	0, 0	2, 2,	175, 196,	0.46, 0.46,	180 (0.21)
			Data				146,	0.46	
	2001-2002			.01, .01	0,0	0,2	67, 50	0.45,	58 (0.32)
								0.45	, í
Total			•	2001-2	002 Only	•	•	-	77 (0.26)
									• • • •

NA=Not Available

a Observer data (Obs. data) are used to measure bycatch rates; the data are collected within the Northeast Fisheries Observer Program. The NEFSC collects weighout landings data that are used as a measure of total effort for the sink gillnet fisheries.

b The observer coverage for the Mid-Atlantic coastal sink gillnet fishery is measured as a proportion of the tons of fish landed.

c The annual estimates of mortality from 2001-2002 were generated by applying the same method used in Palka and Rossman (2001). An new factor variable was added to the model to separate the time series of historical data (1996-2000) from data collected during the recent time period (2001-2002) (Rossman and Palka, unpublished manuscript).

d The annual estimates of mortality from 1998-2000 were generated by applying one bycatch rate per management unit as estimated by a generalized linear model (Palka and Rossman 2001). The CV does not account for variability that may exist in the unit of total landings (mt) from each year that are used to expand the bycatch rate. Therefore, the CV is the same for all five annual estimates.

South Atlantic Shark Gillnet

Observed takes of bottlenose dolphins occurred primarily during winter months when the fishery operates in waters off of southern Florida. Fishery observer coverage outside of this time and area has increased significantly in the last 2 years, and there was one observed mortality during summer months in fishing operations off Cape Canaveral. All observed fishery takes are restricted to the Central Florida management unit of coastal bottlenose dolphin. Total bycatch mortality has been estimated for 1999-2002 following methods described in (Garrison 2003, Table 3).

Table 3. Summary of the 1999-2002 incidental mortality of bottlenose dolphins (*Tursiops truncatus*) by management unit in the driftnet fishery in federal waters off the coast of Florida. Data include years sampled (Years), number of vessels active within the fishery (Vessels), type of data used (Data Type), annual observer coverage (Observer Coverage), mortalities recorded by on-board observers (Observed Mortality), estimated annual mortality (Estimated Mortality), estimated CV of the annual mortality (Estimated CVs), and mean annual mortality (CV in parentheses).

Years		Vessels	Data Type ¹	Observer	Observed	Observed	Estimated	Estimated	Mean Annual
				Coverage ²	Serious	Mortality	Mortality	CVs	Mortality
					Injury				
Northern	1999-2002	6	Obs. Data,	0.29, 0.23,	0, 0, 0, 0	0, 0,0,0	0, 0, 0, 0	NA	0
Florida			SEFSC FVL	0.07, 0.20					
Central Florida	1999-2002	6	Obs. Data,	0.09, 0.15,	0, 0, 0, 0	4, 1, 4, 1	12, 2, 4, 7	0.78, 1, 0, 1	6 (0.89)
			SEFSC FVL	0.42, 0.25					
¹ Observer data are used to estimate bycatch rates. The SEFSC Fishing Vessel Logbook (FVL) is used to estimate effort as total number of									
vessel trip	vessel trips per bottlenose dolphin management unit								

² Observer coverage in the central Florida management unit is largely restricted to the period between January - March south of 27° 51' N latitude.

Beach Haul Seine

A total of 2 coastal bottlenose dolphin takes was observed, in the Mid-Atlantic beach haul seine fishery: 1 in May 1998 and 1 in December 2000.

Crab Pots

Between 1994 and 1998, 22 bottlenose dolphin carcasses (4.4 dolphins per year on average) recovered by the Stranding Network between North Carolina and Florida's Atlantic coast displayed evidence of possible interaction with a trap/pot fishery (i.e., rope and/or pots attached, or rope marks). Additionally, at least 5 dolphins were reported to be released alive (condition unknown) from blue crab traps/pots during this time period. During 2003, two bottlenose dolphins were observed entangled in crab pot lines in South Carolina.

Virginia Pound Nets

Stranding data for 1993-1997 document interactions between WNA coastal bottlenose dolphins and pound nets in Virginia. Two bottlenose dolphin carcasses were found entangled in the leads of pound nets in Virginia during 1993-1997, an average of 0.4 bottlenose dolphin strandings per year. A third record of an entangled bottlenose dolphin in Virginia in 1997 may have been associated with this fishery. This entanglement involved a bottlenose dolphin carcass found near a pound net with twisted line marks consistent with the twine in the nearby pound net lead rather than with monofilament gillnet gear.

Shrimp Trawl

One bottlenose dolphin was recovered dead from a shrimp trawl in Georgia in 1995 (Southeast USA Marine Mammal Stranding Network unpublished data), and another was taken in 1996 near the mouth of Winyah Bay, SC, during a research survey. No other bottlenose dolphin mortality or serious injury has been reported to NMFS. There has been very little systematic observer coverage of this fishery during the last decade.

Menhaden Purse Seine

The Atlantic menhaden purse seine fishery historically reported an annual incidental take of 1 to 5 bottlenose dolphins (NMFS 1991, pp. 5-73). However, no observer data are available, and this information has not been updated for some time.

Other Mortality

From 1997-2000, 1,382 bottlenose dolphins were reported stranded along the Atlantic coast from New York to Florida (Hohn and Martone 2001; Hohn et al. 2001; Palka et al. 2001b, Northeast Regional Stranding Program, Southeast Regional Stranding Program). Between 2001-2003, 977 bottlenose dolphins stranded along the Atlantic coast from New York to Florida (Table 4). Of these, it was possible to determine whether or not a human interaction had occurred for 459 (47%); for the remainder it was not possible to make that determination. Of those cases where a cause could be determined, 37% of the carcasses were determined to have been involved in a human interaction coastwide, and the majority of these were classified as fisheries interactions. However, this proportion ranged widely and was highest for Virginia (71%) and North Carolina (43%). Stranded carcasses are not routinely identified to either the offshore form.

The nearshore habitat occupied by the coastal morphotype is adjacent to areas of high human population and in the northern portion of its range is highly industrialized. The blubber of stranded dolphins examined during the 1987-88 mortality event contained anthropogenic contaminants in levels among the highest recorded for a cetacean (Geraci 1989). There are no estimates of indirect human-caused mortality resulting from pollution or habitat degradation.

Table 4. Summary of bottlenose dolphins stranded along the Atlantic Coast of the US. Total Stranded is further stratified into carcasses with signs of human interaction, those without any signs, and those where human interaction could not be determined (CBD). Human Interaction is stratified into stranded animals with line or nets marks or gear attached (Fishery Interaction), cleanly removed (cut off) appendages or cuts on the body (Mutilation), and other indications of human interactions such as propellor wounds. Florida strandings include only the Atlantic coast of Florida extending to Key West.

STATE	1			STATE			
S	2001	2002	2003		2001	2002	2003
New York Total Stranded	1	1	2	N. Carolina Total Stranded	87	94	69
Human Interaction				Human Interaction			
Fishery Interaction	0	0	0	Fishery Interaction	9	13	11
Mutilation	0	0	0	Mutilation	0	2	0
Other	0	0	0	Other	0	2	0
No Human Interaction	0	0	1	No Human Interaction	16	15	16
CBD	1	1	1	CBD	62	62	42
New Jersey Total Stranded	11	11	7	S. Carolina Total Stranded	69	28	35
Human Interaction				Human Interaction			
Fishery Interaction	1	1	1	Fishery Interaction	3	4	3
Mutilation	0	0	0	Mutilation	0	0	0
Other	0	1	0	Other	3	0	0
No Human Interaction	7	4	5	No Human Interaction	23	13	17
CBD	3	5	1	CBD	40	11	15
Delaware Total Stranded	6	13	18	Georgia Total Stranded	23	11	17
Human Interaction				Human Interaction			
Fishery Interaction	0	1	1	Fishery Interaction	1	0	0
Mutilation	0	0	0	Mutilation	0	0	0
Other	0	0	0	Other	1	0	0
No Human Interaction	3	8	13	No Human Interaction	5	0	2
CBD	3	4	4	CBD	16	11	15
Maryland Total Stranded	3	5	10	Florida Total Stranded	101	82	74
Human Interaction				Human Interaction			
Fishery Interaction	0	0	1	Fishery Interaction	9	8	11
Mutilation	0	0	0	Mutilation	0	0	0
Other	0	0	0	Other	1	2	0
No Human Interaction	1	2	8	No Human Interaction	46	50	21
CBD	2	3	1	CBD	45	22	42
Virginia Total Stranded	71	68	60	Total	372	313	292
Human Interaction							
Fishery Interaction	17	15	25				
Mutilation	1	2	0				
Other	1	4	0				
No Human Interaction	8	7	12				

STATUS OF STOCKS

CBD

The coastal migratory stock was designated as depleted under the MMPA. From 1995-2001, NMFS recognized only a single migratory stock of coastal bottlenose dolphins in the WNA, and the entire stock was listed as depleted. The management units in this report now replace the single coastal migratory stock. A re-analysis of the depletion designation on a management unit basis needs to be undertaken. In the interim, because one or more of the management units may be depleted, all management units retain the depleted designation. In addition, mortality exceeded PBR in the North Carolina winter mixed stocks during the period from 1996-2000 (Table 1). The total fishery-related mortality and serious injury for most stocks is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The species is not listed as threatened or endangered under the Endangered Species Act, but the management units are strategic stocks due to the depleted listing under the MMPA.

23

39

44

REFERENCES

- Barco, S.G. and W.M. Swingle. 1996. Sighting patterns of coastal migratory bottlenose dolphins (*Tursiops truncatus*) in the nearshore waters of Virginia and North Carolina. Final Report to the Virginia Dept. of Environmental Quality, Coastal Resources Management Program through Grant #NA47OZ0287-01 from NOAA, Office of Ocean and Coastal Resource Management. 32 pp.
- Barlow, J., S. L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background and a Summary of the 1995 Assessments. NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
- Bellman, S.A., J.A. Music, R.C. Klinger, R.A. Byles, J.A. Keinath, and D.E. Barnard. 1997. Ecology of Sea Turtles in Virginia. Final Report to National Marine Fisheries Service Northeast Region. Contract number NA80FAC-00004. Virginia Institute of Marine Science, Gloucester Point, Virginia.
- Buckland, S. T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
- Cortese, N.A. 2000. Delineation of bottlenose dolphin populations in the western Atlantic Ocean using stable isotopes. Master's thesis, University of Virginia, 118 pp.
- Curry, B. E. 1997. Phylogenetic relationships among bottlenose dolphins (genus *Tursiops*) in a world-wide context. Ph.D. dissertation, Texas A&M University, Texas, USA. 138 pp.
- CETAP (Cetacean and Turtle Assessment Program). 1982. A Characterization of Marine Mammals and Turtles in the Mid- and North Atlantic Areas of the U.S. Outer Continental Shelf, Final Report, Contract AA551-CT8- 48, U.S. NTIS PB83-215855, Bureau of Land Mgmt, Wash., DC, 576 pp.
- Garrison, L.P. 2003. Protected species interactions with the directed shark gillnet fishery off Florida and Georgia from 1999-2002. NMFS/SEFSC Internal report. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Garrison, L.P., P.E. Rosel, A.A. Hohn, R. Baird, and W. Hoggard. 2003. Abundance of the coastal morphotype of bottlenose dolphin *Tursiops truncatus*, in U.S. continental shelf waters between New Jersey and Florida during winter and summer 2002. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Garrison, L.P. and C. Yeung. 2001. Abundance Estimates for Atlantic Bottlenose Dolphin Stocks During Summer and Winter, 1995. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Geraci, J. R. 1989. Clinical investigation of the 1987-88 mass mortality of bottlenose dolphins along the U.S. central and south Atlantic coast. Final Report to National Marine Fisheries Service, U.S. Navy, Office of Naval Research, and Marine Mammal Commission, 63 pp.
- Hoelzel, A.R., C.W. Potter, and P.B. Best. 1998. Genetic differentiation between parapatric nearshore and offshore populations of the bottlenose dolphin. Proceedings of the Royal Society of London. 265: 1177-1183.
- Hohn, A. A. 1997. Design for a multiple-method approach to determine stock structure of bottlenose dolphins in the Mid-Atlantic. NOAA Tech. Memo. NMFS-SEFSC-401, 22 pp. NFS, Southeast Fisheries Science Center, Miami, FL.
- Hohn, A.A. and P. Martone. 2001. Characterization of bottlenose dolphin strandings in North Carolina, 1997-2000. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Hohn, A.A., B. Mase, J. Litz, W. McFee, and B. Zoodsma. 2001. Characterization of human-caused strandings of bottlenose dolphins along the Atlantic coast from South Carolina to Southern Florida, 1997-2000. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Kenney, R.D. 1990. Bottlenose dolphins off the northeastern United States. Pages 369-386 *in:* S. Leatherwood and R. R. Reeves (eds.), The bottlenose dolphin, Academic Press, San Diego, 653 pp.
- McLellan, W.M., A.S. Friedlaender, J.G. Mead, C.W. Potter, and D.A. Pabst. 2003. Analysing 25 years of bottlenose dolphin (*Tursiops truncatus*) strandings along the Atlantic coast of the USA: do historic records support the coastal migratory stock hypothesis? Journal of Cetacean Research and Management 4: 297-304.

- NMFS[National Marine Fisheries Service]. 1991. Proposed regime to govern the interactions between marine mammals and commercial fishing operations after October 1, 1993. Draft Environmental Impact Statement, June 1991.
- NMFS[National Marine Fisheries Service]. 2001. Stock structure of coastal bottlenose dolphins along the Atlantic coast of the US. NMFS/SEFSC Report prepared for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Odell, D. K. and E. D. Asper. 1990. Distribution and movements of freeze-branded bottlenose dolphins in the Indian and Banana Rivers, Florida. Pp. 515-540 *in:* S. Leatherwood and R. R. Reeves (eds.), The bottlenose dolphin, Academic Press, San Diego, 653 pp.
- Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. Int. Whal. Commn., Special Issue 16:27-50
- Palka, D., L. Garrison, A. Hohn, and C. Yeung. 2001a. Summary of abundance estimates and PBR for coastal *Tursiops* for waters between New York and Florida during 1995 to 2000. NMFS/NEFSC Report prepared for the Bottlenose Dolphin Take Reduction Team. Available from: NMFS-Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.
- Palka, D., F. Wenzel, D. Hartley, and M. Rossman. 2001b. Summary of bottlenose dolphin strandings from New York to Virginia. NMFS/NEFSC Report prepared for the Bottlenose Dolphin Take Reduction Team. Available from: NMFS-Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.
- Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. Int. Whal. Commn., Special Issue 15: 133-147.
- Read, A.J., B. Foster, K. Urian, B. Wilson, and D. Waples. 2003. Abundance of bottlenose dolphins in the bays, sounds, and estuaries of North Carolina. Mar. Mamm. Sci. 19: 59-73.
- Rossman, M.C. and D.L. Palka. 2001. Bycatch estimates of coastal bottlenose dolphin (*Tursiops truncatus*) in the U.S. Mid-Atlantic gillnet fisheries for 1996 to 2000. Northeast Fisheries Science Center Reference Document 01-15. 77 pp.
- Sayigh, L., K. W. Urian, A. Bocconcelli, G. Jones, D. Koster, K. Halbrook and A. J. Read. 1997. Photoidentification of dolphins near Wilmington, NC. Abstract. Fifth Annual Atlantic Coastal Dolphin Conference.
- Scott, G. P., D. M. Burn, and L. J. Hansen. 1988. The dolphin die off: long term effects and recovery of the population. Proceedings: Oceans '88, IEEE Cat. No. 88-CH2585-8, Vol. 3: 819-823.
- Scott, M. D., R. S. Wells and A. B. Irvine. 1990. A long-term study of bottlenose dolphins on the west coast of Florida. Pp. 235-244 In: S. Leatherwood and R. R. Reeves. The bottlenose dolphin. Academic Press, San Diego. 653 pp.
- Torres, L.G., P.E. Rosel, C. D'Agrosa, and A.J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mamm. Sci. 19:502-514.
- Urian, K., A.A. Hohn, and L.J. Hansen. 1999. Status of the photo-identification catalogue of coastal bottlenose dolphins of the western north Atlantic: report of a workshop of catalogue contributors. NOAA Tech. Memo. NMFS-SEFSC-425.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
- Wang, K. R., P. M. Payne and V. G. Thayer. 1994. Coastal stock(s) of Atlantic bottlenose dolphin: status review and management: Proceedings and recommendations from a workshop held in Beaufort, North Carolina, 13- 14 September 1993. NOAA Tech. Memo. NMFS-OPR-4, 120 pp.
- Weller, D. W. 1998. Global and regional variation in the biology and behavior of bottlenose dolphins. Ph.D. dissertation, Texas A&M University, Galveston, TX. 142 pp.
- Wells, R. S., K. W. Urian, A. J. Read, M. K. Bassos, W. J. Carr and M. D. Scott. 1996. Low-level monitoring of bottlenose dolphins (*Tursiops truncatus*), in Tampa Bay, Florida: 1988-1993. NOAA Tech. Memo.NMFS-SEFSC-385, 25 pp. + 6 Tables, 8 Figures, and 4 Appendices.
- Zolman, E. S. 1996. Residency patterns, relative abundance and population ecology of bottlenose dolphins (*Tursiops truncatus*) in the Stono River Estuary, Charleston County, South Carolina. Master of Science thesis. University of Charleston, South Carolina, USA. 128 pp.