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ABSTRACT

Land water and energy balances vary around the globe because of variations in amount and temporal distri-
bution of water and energy supplies and because of variations in land characteristics. The former control (water
and energy supplies) explains much more variance in water and energy balances than the latter (land charac-
teristics). A largely untested hypothesis underlying most global models of land water and energy balance is the
assumption that parameter values based on estimated geographic distributions of soil and vegetation character-
istics improve the performance of the models relative to the use of globally constant land parameters. This
hypothesis is tested here through an evaluation of the improvement in performance of one land model associated
with the introduction of geographic information on land characteristics. The capability of the model to reproduce
annual runoff ratios of large river basins, with and without information on the global distribution of albedo,
rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both
cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resis-
tance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-
alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by
comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have
been shown to be minimal.

The withholding of information on global variations in these parameters leads to a significant degradation of
the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments,
in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter
among these three whose spatial variations add the most predictive power to the model in stand-alone mode.
Further single-parameter experiments with surface roughness length, available water capacity, thermal conduc-
tivity, and thermal diffusivity show very little sensitivity to estimated global variations in these parameters.
Finally, it is found that even the constant-parameter model performance exceeds that of the Budyko and gen-
eralized Turc–Pike water-balance equations, suggesting that the model benefits also from information on the
geographic variability of the temporal structure of forcing.

1. Introduction

Global models of land water and energy balances
translate precipitation and radiative fluxes and near-sur-
face atmospheric states to land water and energy storage
and effluxes. This translation is achieved by use of func-
tional relations that include parameters characterizing
land processes. These relations and parameters differ
from one model to the next; however, all land models
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need parameters to describe, in some way, shortwave
reflectance, soil water retention characteristics and plant
root density profile (which collectively control water
storage capacity for evaporation), surface control of va-
por release to the atmosphere, and aerodynamic rough-
ness of the surface. Originally, land models used global
constants for most land parameters (e.g., Manabe 1969).
Dickinson et al. (1981) and Sellers et al. (1986) initiated
the practice of assigning values to parameters of global
land water- and energy balance models on the basis of
estimated global distributions of vegetation and soil
characteristics, and this method has since become stan-
dard practice among climate modelers. Underlying this
approach is an implicit assumption that the character-
istics and the functional dependences are sufficiently
well known to make this an improvement over the use
of global constants.
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Various investigators (e.g., de Rosnay and Polcher
1998; Zeng et al. 1998; Kleidon and Heimann 1998)
have reported improvements in model performance as-
sociated with changes in methods for specification of
land parameters. However, such studies, including that
described in Part I (Milly and Shmakin 2002) of this
series of papers, generally have not distinguished be-
tween improvements due to information on geographical
variations of parameters and those due to better global
mean information.

An indication of the immature state of land modeling
has been provided in a revealing analysis by Koster et
al. (1999). They compared the annual runoff produced
by nine models to observations for 106 river basins
worldwide. They used the same set of observations to
test the simple semiempirical equation of Budyko
(1974), which uses only annual precipitation and net
radiation as inputs. Overall, no model performed sub-
stantially better than Budyko’s equation, and most mod-
els performed much worse. The superior performance
of Budyko’s equation was found despite the fact that
most or all of the models had the advantage of using
information on the global distributions of surface char-
acteristics. Furthermore, all of the models used infor-
mation on the temporal variations of forcing at a 6-h
timescale. In view of these findings, it is reasonable to
question whether land models gain any advantage from
use of globally distributed information. Koster et al.
remarked that runoff values derived from Budyko’s
equation

can be considered crude yardsticks against which to mea-
sure success in offline [land model] validation exercises.
[A land model] can perhaps be said to contribute to the
realism of the annual surface water balance across the
globe only if the errors it produces in an equivalent val-
idation experiment are, on average, significantly less
than [values obtained from a Budyko analysis].

Having introduced globally variable land parameters
into a land model (Part I), we seek here to determine
to what extent, if any, the use of globally varying pa-
rameters benefits model performance. Our chosen mea-
sure of model performance is the degree of agreement
between observed and modeled annual runoff ratios of
large river basins. The runoff ratio is a simple integral
measure of the partitioning of precipitation into evap-
oration and runoff and, hence, of the partitioning of net
radiation into latent and sensible heat fluxes. Further-
more, runoff and precipitation are arguably the best and
second-best measured major water or energy fluxes at
the basin scale. Our focus on the annual timescale helps
to separate the problem of runoff generation, our main
interest here, from that of runoff routing. On a monthly
timescale, model performance would be affected by de-
tails of the formulation of storage lags, but on the annual
timescale, such effects essentially will be removed for
most basins.

We assume at the outset that the detection of a land-

characteristic signal in runoff response may be difficult.
We do not expect, for example, that differences in runoff
between a forest and a grassland under similar climatic
conditions will be much greater than the noise intro-
duced into our model by errors in precipitation. To min-
imize the distortion of the analysis by measurement er-
rors, we use only river basins for which errors in pre-
cipitation are known to be small. The analysis is facil-
itated by use of the error-characterized basin dataset of
Milly and Dunne (2002a, manuscript submitted to Water
Resour. Res., hereafter MIDUa).

2. Methodology

a. Model

The Land Dynamics (LaD) model has been described
and tested in Part I. Water storage is tracked in snow,
glacier ice, root-zone, and groundwater stores. Heat is
stored as latent heat of fusion of snow and glacier ice,
and as sensible heat in the ground, the latter represented
by a one-dimensional conduction equation. Runoff is
generated, as necessary, to keep root-zone water content
from exceeding a given capacity. All runoff passes
through a groundwater reservoir of specified residence
time and then is summed over all grid cells in a river
basin for calculation of river discharge. Evaporation is
limited by a bulk stomatal resistance in series with the
aerodynamic resistance and decreases below its maxi-
mum value as soil water decreases. Most land param-
eters are defined as globally varying fields, as described
below.

The LaD model has nine parameters (of which the
first two listed appear only as a product): effective depth
of the root zone (ZR), available water capacity (AWC),
bulk heat capacity of the ground (C), thermal conduc-
tivity of the ground (l), surface roughness length (zo),
non-water-stressed bulk stomatal resistance (r s ),
groundwater residence time (t), snowfree surface albedo
(An), and snow-masking depth ( ). Each land param-W*S
eter is prescribed as a temporally constant function of
soil type (S) (51, 2, . . . , 9) and/or vegetation type (V)
(51, 2, . . . , 10) indices, which, in turn, are determined
from global datasets. In general, for any parameter v,

v 5 F (S ) or v 5 F (V ), (1)i j v i j i j v i j

where indices i and j denote dependence on longitude
and latitude, respectively, and Fv is a table of parameter
values indexed by soil type or vegetation type. The geo-
graphic distribution of nine soil types (seven texture
classes or combinations for mineral soils plus ice and
organic soil) are specified following Zobler (1986). The
distribution of 10 vegetation types (5 forest types, grass-
land, desert, tundra, agriculture, and ice) is obtained
from Matthews (1983), whose 32 types were aggregated
in Part I to form the LaD model types. Both fields are
defined at 18 resolution.
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b. Strategy

How can we assess the predictive value of global
distributions of model parameters? First, we need to
introduce some objective measure of agreement between
the model and some set of observations. We then could
compare the model performance using its global distri-
bution of parameters to that with globally constant pa-
rameter values. The result of such a comparison, how-
ever, would undoubtedly depend upon the values chosen
for the globally constant parameters. An objective and
meaningful choice for the global constants would be
those values that optimize the value of the chosen per-
formance measure. Such an optimization would, how-
ever, give unfair advantage to the globally constant pa-
rameter set. To make a meaningful comparison, there-
fore, we should optimize both the globally constant and
the globally varying parameter distributions, using an
equal number of degrees of freedom in both optimi-
zations.

To describe the strategy more precisely, let us con-
sider first the case of any single parameter v. In order
to quantify the predictive power of the model, we define
a measure of performance F (e.g., the root-mean-square
difference between modeled and observed runoff ). The
globally constant v field can be denoted by vo, whereCf v

vo is some arbitrarily chosen global constant value of
v and is the tuning factor for v in the globallyCf v

constant parameter case. The globally variable v field
can be denoted by v ij, where is the analogousV Vf fv v

tuning factor for the globally variable parameter case.
We define * as that value of where F( vo) isC C Cf f fv v v

optimized, and * as that value of where F( vij)V V Vf f fv v v

is optimized. The difference between the corresponding
optima, F( *v ij) and F( *vo), is our measure of theV Cf fv v

predictive value of globally distributed parameter esti-
mates. For the case of multiple parameters, we still per-
form only two optimizations, one with all parameters
globally constant, and the other with all globally vari-
able. However, each optimization must be carried out
in a multidimensional space of tuning factors, with one
factor for each parameter.

The general approach outlined above is applied here.
Because the computational magnitude of the problem
grows rapidly with the number of parameters optimized,
it is critical that we minimize that number within reason.
In preliminary sensitivity studies, we have found that
model results for annual runoff (and all other water and
energy fluxes) are, under many conditions, highly sen-
sitive to values of ZR and rs within the ranges over which
they are believed to vary geographically. In general,
annual runoff from the model is relatively insensitive
to differences in the values of C, l, zo, t, and .W*S
Sensitivities to An and AWC are intermediate in mag-
nitude. For our main analysis, we shall consider only
the three parameters ZR, rs, and An. The other parameters
will be allowed to follow their usual global distributions,
described in Part I. Thus, we initially are investigating

only the predictive power that (imperfect) knowledge
of spatial distributions of ZR, rs, and An brings to the
model. (Analyses involving the other parameters will
be described below.)

For the optimization, our treatment of rs and An is as
described in the outline of the approach above. In con-
trast, ZR is handled differently. The effective root-zone
depth is given by (Part I)

Z 5 z ln(R /R ),R o c (2)

where Ro(V) and z(V) are parameters in the relation
(Jackson et al. 1996)

2z/zR(z) 5 R eo (3)

that describes root biomass density as a function of
depth z below the ground surface, and our parameter Rc

is the critical root-biomass density at the bottom of the
effective root zone, which is assigned a globally con-
stant value of 0.5 kg m23 (Part I). For optimization of
both globally constant and globally varying parameter
cases, we apply a globally constant scale factor to Rc.
For the case of globally varying parameters we use
Ro(V) and z(V), and for the globally constant case we
instead use constants for both of these fields. As for the
parameters rs and An, the choice of values for these
constants is immaterial, as the tuning factor is allowed
to vary freely to find the optimum. We chose to optimize
with respect to Rc because we considered it more un-
certain than either Ro or z, and because we wanted to
minimize the dimensionality of the problem.

It will be informative to know not only the overall
value of information on rs, An, Ro, and z, but also the
individual contributions of these parameters to predic-
tive power. For this reason, we design three single-pa-
rameter comparisons. In each of these comparisons, all
parameters except one (or two in the case of Ro and z)
are kept spatially varying according to their usual model
distributions. In each case, the corresponding single-
scale factor is tuned to optimize model performance.
Finally, we also perform similar single-parameter op-
timizations for the other model parameters: zo, AWC,
C, and l/C. The complete series of analyses is sum-
marized in Tables 1 and 2.

c. Quantifying model performance

Our measure of model performance F is the root-
mean-square deviation between modeled and observed
runoff ratios during the year 1988,

1/22K1 y 2 ŷm,k kF 5 , (4)O 1 2[ ]K p̂k51 k

in which K is the number of basins with suitable ob-
servational data, and ym,k, ŷk, and p̂k are modeled and
observed runoff and observed precipitation, respective-
ly, all for basin k. Following Part I, we use the ‘‘hat’’
notation as a reminder that observations are subject to
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TABLE 1. Summary of experimental design. Parameter assignments
(V 5 variable and C 5 constant) are explained in Table 2. Whenever
V is indicated for An, ZR, and/or rs, the global distribution includes
application of the optimal scale factors from the all-var series. Here
An is snowfree surface albedo, ZR is effective depth of the root zone,
rs is non-water-stressed bulk stomatal resistance, zo is surface rough-
ness length, AWC is available water capacity, C is bulk heat capacity
of the ground, and l is thermal conductivity of the ground.

Series
Tuned

parameters An ZR rs zo AWC C l/C

All-var An, Zr, rs V V V V V V V

All-const An, Zr, rs C C C V V V V

An-const
Zr-const
rs-const

An

Zr

rs

C
V
V

V
C
V

V
V
C

V
V
V

V
V
V

V
V
V

V
V
V

zo-const
AWC-const
C-const
l/C-const

zo

AWC
C
l/C

V
V
V
V

V
V
V
V

V
V
V
V

C
V
V
V

V
C
V
V

V
V
C
V

V
V
V
C

TABLE 2. Parameter assignments. Parenthetic y and s indicate de-
pendences on vegetation and soil distributions, respectively. (Sub-
sequent to given formulas for ZR, a restriction is applied that ZR not
be less than 0.01 m). In each row, f indicates a distinct tuning factor.

Parameter V (variable) C (constant)

An

ZR

rs

zo

AWC
C

l/C

fAAn(y)
z(y) ln[Ro(y)/ fZRc]
frrs(y)
zo(y)
AWC(s)
C(s)
(l/C )(s)

fAA n

z ln[R o/ fZRc]
frr s

f · z o

f · AWC
f · C
f · (l/C)

error. We use the year 1988 in order to allow the use
of the 1987–88 global forcing of the International Sat-
ellite Land Surface Climatology Project (ISLSCP) Ini-
tiative I CD-ROM; the model is run in stand-alone
mode, forced by 6-hourly data. The first year allows
spinup of the model, and the second year is used for
model performance evaluation. The ISLSCP precipita-
tion and radiation fields are adjusted for consistency
with precipitation analyses of MIDUa and radiation es-
timates from the Surface Radiation Budget dataset, as
described in Part I.

The set of basins used in (4) is a subset of those used
in Part I for an initial evaluation of the LaD model.
Mainly on the basis of data availability for 1988, the
set of 175 basins of MIDUa was reduced to a set of 82
in Part I. Basins were excluded from the latter set for
the present analysis if one or more of the following
conditions were met:

• The characteristic annual precipitation error would in-
duce a large runoff-ratio error. A quantity D* is de-
fined in Part I as the error in apparent runoff ratio that
would be caused by a characteristic error in basin-
mean, annual precipitation, if the model were perfect.
Here we exclude basins for which D* is greater than
0.1. The purpose of this constraint is to minimize dis-
tortion of our model evaluation by erroneous input
data.

• The basin climate is characterized by strong annual-
mean aridity, interrupted by an intense wet season. In
Part I it was shown that large model errors in a small
number of basins appear to be associated with neglect
of upward soil–water diffusion into the root zone dur-
ing the dry season. To avoid distortion of our analysis
by this recognized model error, we used only basins
for which the index C defined in Part I is less than
40 kg m22 y21. (A large value of C implies both a
very arid annual-mean climate and the presence of a

strong seasonal excess of precipitation over evapo-
rative energy supply.)

• The estimated area under cultivation, according to
Matthews (1983), is more than 50% of the total basin
area. This constraint was added because the model
vegetation field is based entirely on estimated natural
conditions, but vegetation type is a critical factor in
the present analysis.

• The estimated area of deserts, according to Matthews
(1983), is more than 50% of the total basin area. This
constraint was used because LaD parameter specifi-
cations for desert are quite arbitrary and are not linked
to vegetation characteristics in the model.

When all of these constraints were applied, the number
of basins decreased to K 5 22. These were, however,
surprisingly well distributed across the major vegetation
types that determine the assignment of parameter values
(Table 3).

d. Practical details

For each experiment series, numerous experiments
were run and the search for the optimum was done it-
eratively. Automated optimization techniques were not
used, because the process of checking their performance
for the limited number of series run would have required
essentially the same amount of computation. For the all-
var and all-const cases, we began with uniformly spaced
values of f A (scale factor for An) and logarithmically
spaced values of f r and f Z (scale factors for rs and ZR,
respectively). The initial coarse grid of F results indi-
cated the approximate location of the optimum, and sub-
sequent experiments were run to find the exact location
and value of the optimum to a precision more than ad-
equate to quantify differences among the various ex-
periment series. To accelerate the search and to simplify
the identification of the optimum, we constrained the
optimum to be the minimum value of F located on the
surface of zero mean error in runoff ratio across all
basins. More detailed sensitivity analyses for specific
cases suggested that this constrained value did not differ
significantly from the global optimum. Approximately
60–70 experiments were run in both the all-var and all-
const series.



JUNE 2002 305M I L L Y A N D S H M A K I N

TABLE 3. Information on individual basins in this study.

Dominant vegetation type Symbol River Gauge location Basin area (km2)

Broadleaf evergreen forest BE Amazon
Magdalena

Manacapuru (Brazil)
Puerto Berrı́o (Colombia)

2 300 000
74 000

Broadleaf deciduous forest BD Kanawha
Ohio

Kanawha Falls (West Virginia)
Sewickley (Pennsylvania)

22 000
50 000

Mixed broadleaf and needle-
leaf forest

BN Altamaha
Danube
Narva
Neman
Penobscot
Potomac

Doctortown (Georgia)
Orsova (Romania)
Narva (Estonia)
Smalininkai (Lithuania)
West Enfield (Maine)
Point of Rocks (Maryland)

35 000
580 000

56 000
81 000
17 000
25 000

Needleleaf evergreen forest NE Northern Dvina
Rio Grande
Vuoksi
Warta

Ust’-Pinega (Russia)
Otowi Bridge (New Mexico)
Tainionkoski (Finland)
Gorzów (Poland)

348 000
37 000
61 000
52 000

Grassland G Cooper
Fitzroy
Fitzroy
Niobrara
Ob’
Paraná
Pecos
Powder

Callamurra (Australia)
Fitzroy Crossing (Australia)
The Gap (Australia)
Spencer (Nebraska)
Salekhard (Russia)
Corrientes (Argentina)
Artesia (New Mexico)
Locate (Montana)

230 000
45 000

136 000
31 000

2 900 000
1 950 000

40 000
34 000

FIG. 1. Contour plot of the performance measure F, for the all-
var case, as a function of non-water-stressed bulk stomatal resistance
and critical rooting density of a mixed broadleaf/needleleaf (BN)
forest, for a snowfree albedo-scale factor of 1. Parameters for all
vegetation types were varied simultaneously as described in the text;
BN was chosen simply to allow familiar physical quantities, rather
than the scale factors, as the plotted variables.

For the single-parameter optimizations, all factors
were set initially at the optimum values determined in
the all-var series. Subsequently, one factor (correspond-
ing to the globally constant parameter field) was given
3–5 values, F was computed for each value, the location
of zero mean error in runoff ratio was determined, and
the corresponding value of F was noted.

3. Results

The dependence of F on stomatal resistance and root-
ing depth, for a fixed level of snowfree albedo, is il-
lustrated in Fig. 1. The F surface is well behaved, and
there is no difficulty estimating the minimum level of
F. With a snowfree albedo scale factor of 1 (the case
in Fig. 1), the minimum value of F is 0.065. For albedo
factors of 0.5 and 1.5, the minimum is 0.066. Thus, the
overall minimum is estimated to be 0.065.

The optimal adjustment factors for An, rs, and Rc in
the all-var case were found to be about 1.0, 0.44, and
0.25, respectively. The last of these three values implies
Rc 5 0.125 kg m23. The fourfold decrease in Rc from
the initial estimate causes only a small change in typical
values of rooting depth derived therefrom; resultant ZR

values are mostly in the 1–1.5-m range, depending on
vegetation type. The reduction of rs by a factor of 0.44
is similar to the result of crude tuning in Part I, in which
other parameters were not allowed to vary. This rep-
resents a significant reduction in our a priori values of
rs, which were obtained from Dorman and Sellers
(1989). We have speculated that at least part of the
discrepancy may be associated with the lack of evap-
oration from an interception store and from wet ground
in the model (Part I). The absence of these pathways
for evaporation in the model would be compensated, in
the tuned model, by an artificial reduction in the resis-
tance to vapor flux through foliage.

For the all-const series, optimized globally constant
parameter values for An, ZR, and rs are 0.12, 0.74 m,
and 67 s m21, respectively. These are values consistent
with median values obtained in the all-var calibration.
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TABLE 4. Optimized model performance for each experiment series
and performance of semiempirical water-balance equations. Here F
is a root-mean-square difference between observed and modeled run-
off ratios, given by (4).

Experiment or equation F

All-var 0.065

All-const 0.095

An-const
Zr-const
rs-const

0.065
0.072
0.098

zo-const
AWC-const
C-const
l/C-const

0.062
0.068
0.065
0.065

Modified Turc–Pike
Budyko

0.107
0.110

FIG. 2. Scatterplot of modeled against observed runoff ratio in
1988, for all-var. Each symbol represents one of the 22 basins having
suitable data. Error bars represent 62D*, where D* is the error in
apparent runoff ratio that would be caused by the characteristic error
in basin-mean annual precipitation, if the model were perfect. For
one predominantly grassland basin (indicated by G), the model results
differ by more than 62D* from the observations.

We noted that the general topology of the F function
did not differ qualitatively between the all-var and all-
const cases.

Of main interest for this study are the optimal values
of F determined in each experimental series (Table 4).
As already noted, the optimal value of F for all-var is
0.065. This value implies that the 1988 basin runoff in
the model typically differs from the observed runoff by
6.5% of estimated 1988 precipitation. When the major
vegetation parameters are constrained to be globally
constant, with tuning (all-const), F degrades seriously
to a value of 0.095. This value implies that over half
of the error variance in the latter case can be explained
by the geographical variation of vegetation parameters
in the former case.

The relative contributions of An, ZR, and rs to the
difference between all-var and all-const results can be
inferred from results of the single-parameter calibrations
(Table 4). For the An-const case, the optimal value of
F is identical to that for all-var. Thus, when albedo was
prescribed as a global constant, the model output was
not degraded. For ZR-const, we obtained an optimal F
value of 0.072. This value indicates some decrease in
model performance from the all-var case, implying that
spatial information on rooting depth may contribute to
model performance. The most significant degradation
in model performance for a single-parameter series was
in the rs-const case. When stomatal resistance was made
to be globally constant, the optimal F was 0.098, ap-
proximately equal to the all-const value. This result im-
plies that the dominant difference between all-var and
all-const is that associated with information on global
distribution of rs.

The degradation of model results from all-var to all-
const is illustrated by comparison of Figs. 2 and 3. In
the all-var case (Fig. 2), only one of the 22 basins has
a modeled runoff ratio that differs from the observation
by more than 62D*. In all-const, calibrated model run-
off ratio differs from the observations by more than
62D* in seven of the basins. The two largest under-

estimates of runoff occur for basins in which the veg-
etation is predominantly broadleaf deciduous forest. As
seen in Fig. 4, prescription of globally constant rs leads
to an underestimate of rs in broadleaf deciduous forests,
causing the model to allow excessive evaporation, and
thus suppressing runoff. Conversely, the largest over-
estimate of runoff in the calibrated all-const experiment
is for a basin covered by broadleaf evergreen forest,
consistent again with Fig. 4.

The apparent lack of sensitivity of F to information
on the global distribution of albedo was investigated
further. For the four forest types represented in this anal-
ysis (Table 3), An ranges only from 0.11 to 0.13 in all-
var, so changing to a constant value of 0.12 in An-const
causes little difference in absorbed shortwave radiation
of forests; hence, little change in runoff ratio results.
However, the grassland An changes from 0.20 in all-var
to 0.12 in An-const. This change implies a 10% increase
in absorbed solar radiation under snowfree conditions.
The corresponding change in net all-wave radiation typ-
ically was 15% for grassland (larger than 10% because
of a relatively unchanged net loss of longwave radiation
between the two experiments). This significant change
in energy supply, however, produced almost no change
in the modeled runoff ratio. The failure of increased
energy supply to convert to decreased runoff is easily
understood. The runoff ratio already was smaller than
0.03 in most grassland basins in the all-var experiment,
so any further reductions induced by enhanced energy
availability inevitably would be small compared to typ-
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FIG. 3. Scatterplot of modeled against observed runoff ratio in
1988, for all-const. Each symbol represents one of the 22 basins
having suitable data. Error bars represent 62D*, where D* is the
error in apparent runoff ratio that would be caused by the charac-
teristic error in basin-mean annual precipitation, if the model were
perfect. Labeled points are those for which model output differs by
more than 62D* from observations: BD, broadleaf deciduous forest;
BE, broadleaf evergreen forest; BN, mixed broadleaf and needleleaf
forest; G, grassland.

FIG. 4. Calibrated values of non-water-stressed bulk stomatal
resistance as a function of vegetation type.

ical differences between observed and modeled runoff
ratios. Thus, the value of the optimal F could change
only very little between all-var and An-const.

The results of the single-parameter calibrations for
zo, AWC, C, and l/C are given in Table 4. None of the
optimal F values for these cases differs much from the
optimal all-var value of F. We conclude that informa-
tion on spatial variability of these parameters adds no
predictive power to the model in its present form.

In the spirit of the investigation by Koster et al.
(1999), mentioned in the introduction, we compared the
LaD model performance to that of Budyko’s (1974)
equation. We also considered a more general equation
of the same basic type as that of Budyko (Turc 1954;
Pike 1964; Choudhury 1999; Milly and Dunne 2002b,
manuscript submitted to Water Resour. Res., hereafter
MIDUb),

21/yyy p
5 1 2 1 + , (5)1 2[ ]p r

where y is annual runoff, p is annual precipitation, r is
surface net radiation divided by the latent heat of va-
porization of water, and y is a fitting parameter. We used
(5) in addition to Budyko’s equation, because it allows
for tuning of y to our dataset, maximizing the perfor-
mance of this approach. For both the Budyko and the
generalized Turc–Pike equations, we used values of r

that had been produced by the optimal all-var model
experiment.

The performance of the Budyko equation, the gen-
eralized Turc–Pike equation, and the LaD model runs
is summarized in Table 4. Using the Budyko equation
to predict runoff, we found a value of 0.110 for F. With
the generalized Turc–Pike equation, where we chose y
to minimize the sum of squares of deviations in runoff
ratios, the optimal value of F was only marginally bet-
ter, at 0.107; the optimal value of y was 2.26, similar
to values found in previous investigations (MIDUb).
Both the Budyko and the Turc–Pike F values are larger
than the all-const (0.095) optimum obtained with the
LaD model. It is reasonable to infer that the superior
performance of the LaD model, even for the case of
globally constant parameters, may be attributable to
knowledge of the subannual temporal variability of forc-
ing. The inferiority of the optimized Turc–Pike equation,
relative to the all-const case, is weakly evident also in
Fig. 5, which shows nine basins (compared to seven in
the all-const case) for which observations differ by more
than 62D* from predictions of the equation.

4. Summary and discussion

a. Summary

We have tested the hypothesis that information on
spatial variations in land characteristics contributes to
the capability of a land model to reproduce observed
patterns of annual water and energy balances. To this
end, we compared observations to model outputs from
experiments with and without globally variable param-
eters. In order to make a fair comparison, the model
was calibrated for both cases. The measure of perfor-
mance of the model was the goodness of fit of the cal-
ibration. The performance measure was defined in terms
of river discharge. Discharge can be accurately mea-
sured, and it is indicative of water and energy balances
in general, because it is highly correlated with evapo-
ration, latent heat flux, and sensible heat flux for given
precipitation and radiative forcings.
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FIG. 5. Scatterplot of modeled against observed runoff ratio in
1988, for generalized Turc–Pike Eq. (5) with y 5 2.26. Each symbol
represents one of the 22 basins having suitable data. Error bars rep-
resent 62D*, where D* is the error in apparent runoff ratio that would
be caused by the characteristic error in basin-mean annual precipi-
tation, if the model were perfect. Labeled points are those for which
model output differs by more than 62D* from observations: BD,
broadleaf deciduous forest; BE, broadleaf evergreen forest; BN,
mixed broadleaf and needleleaf forest; G, grassland; NE, needleleaf
evergreen forest.

We find that knowledge of spatial variations in land
characteristics does improve model performance. For
the LaD model introduced in Part I, with a carefully
selected subset of the dataset of MIDUa, the analysis
showed that the use of globally variable land charac-
teristics approximately halved the error variance of the
annual runoff ratio. The major contribution to this re-
duction is associated with the vegetation-based speci-
fication of global variations of non-water-stressed bulk
stomatal resistance. Parameters that define the rooting
depth also appeared to make a minor contribution; it is
possible that the relatively weak influence of rooting
depth in our results is more indicative of our poor
knowledge of its distribution than of model insensitivity
to rooting depth. For other parameters, globally variable
parameter estimates yielded no detectable improvement
in model performance over globally constant values.

Additionally, the performance of the model was com-
pared to the performance of simple equations that relate
runoff to annual precipitation and surface net radiation.
The model performed better than the simpler equations,
even when globally constant model parameters were
used, but especially when globally variable parameters
were used. This ordering of model performance is con-
sistent with the types of information provided as input.
The most accurate results are obtained using information
on both spatial variations in parameters and temporal
structure of forcing; accuracy decreases when the spatial

information is withdrawn; and accuracy decreases fur-
ther when temporal information is withdrawn.

b. Land model versus Budyko-type equation

The results described above are a departure from ear-
lier findings for land models. Koster et al. (1999) voiced
the logical expectation that land models should be able
to perform better than a simple Budyko-type equation,
but presented results implying that they could not. They
implicitly posed a challenge in discussing the results of
their analysis:

As [land models] become more complex and realistic,
they will presumably reach a point at which their gen-
erated runoff rates are indeed more accurate than those
produced by [Budyko’s] equation. When this happens, we
can say that the explicit physics in the [model] does in-
deed contribute to the realism of the simulated energy
and water budgets at the annual time scale.

It would be gratifying to claim that the LaD model
is the first model to meet this challenge, but we believe
some other models would probably perform equally well
or better in a similarly designed experiment. We believe
that our positive results in this regard are explained
mainly by the level of attention given to assessment and
control of errors in precipitation. As argued by MIDUa,
this is a crucial issue in the evaluation and future de-
velopment of land models. It appears that the results of
Koster et al. (1999) may have contained a substantial
distortion of results due to nonnegligible errors in pre-
cipitation forcing, despite their reasonable efforts to
eliminate this factor. The present success is also partially
a result of excluding from analysis several seasonally
arid basins, for which the LaD model and similar models
are believed to be conceptually flawed. Additionally,
the strategy for tuning of the model may have contrib-
uted to the success of the experiment.

c. Intrinsic model errors, forcing errors, and
parameter errors

The error in a variable computed by a model is de-
termined by the intrinsic errors in the model formula-
tion, the errors in the parameters, and the errors in the
forcing. These undoubtedly interact in nonlinear ways,
but for purpose of discussion they may be considered
to be independent sources of error. When the error as-
sociated with any one of these factors (model, param-
eters, or forcing) is much greater than the error asso-
ciated with the others, the most fruitful efforts to reduce
total model error probably will be those that attack the
largest error source.

We believe insufficient characterization and control
of errors in model forcing, especially precipitation, is
currently the ‘‘bottleneck,’’ or limiting factor, in the
rigorous testing of land models and, hence, in their fur-
ther development (Milly 1994). When the forcing data
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used for model testing contain errors larger than those
intrinsic to the model, any improvements in model for-
mulation or parameter specification will be masked by
the data errors. Similarly, in model intercomparisons,
the differences between models of low and high accu-
racy can be hidden by the common error in shared forc-
ing data. Forcing errors also can mask errors associated
with errors in parameters, leading a globally constant-
parameter model to perform no worse than a model with
accurate global distribution of parameters. On the basis
of results presented here and in Part I, we believe more
attention should be directed toward detailed character-
ization of errors in model forcing as an integral part of
the land model evaluation process.

For the sake of completeness, we acknowledge that
errors in measurements of the ‘‘output’’ variables used
for model testing also must be taken into consideration.
When models, parameters, and forcing are all more
accurate than the measurements with which the models
are being tested, then it is time to improve the mea-
surements. In our application, we have focused on dis-
charge observations. Probably, errors in these mea-
surements generally are much smaller than errors in
the models, forcing, and parameters. This fortunate
state of affairs is brought about by the natural spatial
integration of river basins. The situation presently is
very different for observationally derived estimates, at
the spatial scale of the model grid, of the various com-
ponents of water storage: snowpack, soil water,
groundwater, and surface water. Each of these factors
can be measured accurately at a point, but intense spa-
tial variability prohibits easy extrapolation to the spa-
tial scales resolved by models.

d. Stand-alone analysis

In interpreting and applying the conclusions of this
analysis, is it crucial that the experimental design be
kept in mind. Most importantly, it should be recalled
that the model was run in stand-alone mode, that is,
with prescribed forcing by precipitation, downwelling
radiation, and near-surface atmospheric state. In so iso-
lating the land for analysis, we have cut potentially im-
portant feedback links, which could amplify or attenuate
any surface changes through induced changes in the
forcing. It is reasonable to suggest that a similar ex-
periment, if it allowed for atmospheric feedback, might
have results that differ quantitatively or even qualita-
tively from our results.

In particular, we note that the sensitivities to stomatal
resistance with prescribed forcing may be much greater
than those with atmospheric feedbacks. When evapo-
ration is suppressed by high stomatal resistance, the
atmospheric boundary layer is warmed and dried, there-
by enhancing the tendency for evaporation. This en-
hancement implies that a stand-alone design is more
sensitive than an atmosphere-coupled design to rs var-
iations and, hence, is a good starting point for the type

of analysis we have introduced in this paper. On the
other hand, it also implies that the benefit of knowing
the spatial pattern of rs in a climate model (and, cor-
respondingly, the degradation of accuracy when rs var-
iations are unknown) might not be so great as implied
by the present analysis.

e. Focus on annual timescale

We reiterate here a comment made in Part I, noting
that the conclusions of these papers are limited by their
focus on the annual timescale. Physical processes of
land water and energy exchange operate over a wide
spectrum of timescales. While acknowledging the im-
portance of many timescales, we find it helpful to ap-
proach the problem of data analysis and model devel-
opment with an initial focus on the annual timescale.
Nevertheless, it should be noted that the focus on annual
timescale will tend to affect specific aspects of the re-
sults. In particular, it would not be surprising to find
that the relative importance of individual parameters
might change if the study were conducted using sea-
sonally varying parameters as inputs and seasonal runoff
as a performance measure.
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