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ABSTRACT

The background error covariance (correlation) between model state variables is of central importance
for implementing data assimilation and understanding model dynamics. Traditional approaches for esti-
mating the background error covariance involve many heuristic approximations, and often the estimated
covariance is flow-independent, i.e. only reflecting statistics of the climatological background. This
study examines temporally and spatially varying estimates of error covariance in a spectral barotropic
model using a Monte Carlo approach, an implementation of an ensemble square root filter called the
ensemble adjustment Kalman filter (EAKF). The EAKF is designed to maintain as much information
about the distribution of the prior state variables as possible, and results show that this method can
produce reasonable estimates of error correlation structure with an affordable sample (ensemble) size.
The impact of using temporally and spatially varying estimates of error covariance in the EAKF is
examined by using the time and spatial mean error covariances derived from the EAKF in an ensemble
optimal interpolation (OI) assimilation scheme. Three key results are: (1) for the same ensemble size, an
ensemble filter such as the EAKF produces better assimilations since its flow-dependent error covari-
ance estimates are able to reflect more about the synoptic-scale wave structure in the simulated flows;
(2) an ensemble OI scheme can also produce reasonably good assimilation results if the time-invariate
covariance matrix is chosen appropriately; (3) when using the EAKF to estimate the error covariance
matrix for improving traditional assimilation algorithms such as variational analysis and OI, a relatively
small ensemble size may be used to estimate correlation structure although larger ensembles produce
progressively better results.

1. Introduction

The probabilistic nature of the evolution of the
atmosphere has been widely recognized since the
early 1960s (Gleeson, 1961; Lorenz, 1963). Repre-
senting the evolution of the atmosphere as a continu-
ous stochastic dynamical process, the evolution of the
stochastic process can be simulated using Monte Carlo
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methods, usually referred to as ensemble forecasting
(Leith, 1974; Kalnay and Toth, 1996; Molteni et al.,
1996; Houtekamer et al., 1996). In this context, data
assimilation is the problem of sampling the probability
of the state of a dynamical system given noisy mea-
surements, i.e. filtering. In filtering theory (Jazwinski,
1970), data assimilation generates a conditional prob-
ability density function (PDF), the probability distri-
bution of the system state given a set of observations.
The data assimilation process uses model dynamics to
extract the reliable information from observations.

A central issue in implementing filtering is com-
puting the product of two distributions that represent,
respectively, the information from a set of observations
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and the prior constraints from the model dynam-
ics. The Kalman–Bucy filter is the best known ap-
proximate algorithm for solving the filtering problem
(Kalman, 1960; Kalman and Bucy, 1961). Under the
assumptions of linear error evolution and Gaussian
error distributions, the algorithm derives a linear com-
bination of measurements to update the state estimate.
The weighting coefficient matrix (the Kalman gain) is
determined from the prior state covariance, the obser-
vational operator, and the observational error variance.
Given the assumptions, the Kalman filter update gives
an optimal estimate of the system’s state.

Several ensemble algorithms have been developed
by modifying the Kalman filter algorithm. For ex-
ample, the ensemble Kalman filter (hereafter called
EnKF) (Evensen, 1994; Houtekamer and Mitchell,
1998; 2001; Burgers et al., 1998; Van Leeuwen, 1999;
Keppenne, 2000; Mitchell and Houtekamer, 2000;
Hamill et al., 2001; Whitaker and Hamill, 2002) ac-
counts for the nonlinear evolution of the prior state
covariance by using an ensemble sample of system
states to evaluate the error covariance. In order to
carry out this algorithm, the observational distribu-
tion is sampled by perturbing observations using sam-
ples from the observational error distribution. The per-
sistent introduction of a small but significant noise
into the product may destroy information about the
prior relations between state variables and therefore
degrade the relative performance of the algorithm
(Anderson, 2001; Whitaker and Hamill, 2002). The
ensemble adjustment Kalman filter (EAKF; Anderson,
2001), an implementation of an ensemble square root
filter (Tippett et al., 2002) updates the prior ensem-
ble using a linear operator derived from the product
of the observational and prior distributions. The new
ensemble has exactly the mean and covariance char-
acteristics that would result if the prior sample and
observational error covariance are approximated by
Gaussians while maintaining information about the
higher-order moment structure of the prior distribution
(Anderson, 2001). Results of perfect model studies
with an idealized global dry primitive equation model
show that the filter is able to reconstruct the structure
of the free atmosphere using only surface pressure ob-
servations at a set of randomly located points on the
sphere.

The covariance between the state variables is of
central importance for implementing data assimila-
tion, since it is a measurement of the uncertainty of
the system as well as the relation between state vari-
ables and observations. In principle, the covariance

and other error statistics of forecasting variables can
be obtained by forward integration of the Kolmogorov
equation (also called the Fokker–Planck equation;
Jazwinski, 1970) to obtain the probability density dis-
tribution. However, for a realistic model, direct solu-
tion of this equation is not viable due to an extreme
computational cost and the lack of realistic initial
conditions for probability densities. Therefore, sim-
plifications and approximations have to be made. Tra-
ditional approaches usually analyze the climatolog-
ical characteristics of error statistics using the ex-
plicit relation between physical variables under some
approximate assumptions (Daley, 1991) or through
the observational/forecasting time series correlation
(Buell, 1960; 1971; 1972a,b; Seaman and Gauntlett,
1980; Buell and Seaman, 1983; Hollingsworth, 1986;
Parrish and Deber, 1992). Therefore, the calculated
correlation structures are flow-independent and, in
mid-latitudes, reflect the climatological large-scale
trough–ridge circulation (Seaman and Gauntlett, 1980;
Buell and Seaman, 1983; Thiebaux, 1985; Hollings-
worth, 1986). Cohn (1993) discussed dynamics of
short-term univariate forecast error covariances using
some simplified governing equations. Bouttier (1993)
studied the evolution of the error covariance of geopo-
tential height using tangent linear integration of a
barotropic model starting from an idealized elliptic
initial distribution of the auto-correlation of geopoten-
tial height. Ehrendorfer and Tribbia (1997) studied the
characteristics of forecast error covariances through
singular vectors constructed by a set of tangent linear
integrations using both the Lorenz84 (Lorenz, 1984)
model and a barotropic model.

Ensemble filtering algorithms approximate the error
statistics using an ensemble of forecasts that repre-
sent discrete samples of the probability density dis-
tribution. This approach retains nonlinear character-
istics of the error evolution because each member is
advanced by separately integrating the nonlinear gov-
erning equations. Therefore, a sound ensemble filter is
expected to produce useful estimates of the time evo-
lution of covariance between the state variables. This
study examines the characteristics of various estimated
covariances using ensemble methods focusing on the
EAKF. Due to the central role of error covariance in
data assimilation, an investigation of the characteris-
tics of the evolution of error covariance should benefit
the whole data assimilation community. The knowl-
edge of the sensitivity of the ensemble assimilation
algorithms with respect to the spatially and tempo-
rally varying estimates of error covariance increases

Tellus 55A (2003), 2



128 S. ZHANG AND J. L. ANDERSON

understanding of the model dynamics and assimila-
tion technologies.

The paper is arranged as follows: A brief descrip-
tion of the Monte Carlo method and the EAKF observ-
ing/assimilation simulation experiment is given in sec-
tion 2. Section 3 presents details of various estimated
covariance structures and section 4 examines the sen-
sitivity of the ensemble assimilation with respect to
various spatially and temporally varying estimates of
error covariance. The sensitivity of the EAKF assim-
ilation with respect to the ensemble size is also in-
vestigated in this section. Several ensemble Optimal
Interpolation schemes are tested with a variety of time-
invariate estimates of error covariance in section 5.
Finally, a summary and discussion are presented in
section 6.

2. Methodology

2.1. A Monte Carlo method for estimating
error covariance

Viewing the atmosphere as a continuous stochastic
dynamical process, the evolution of the atmospheric
state is described by the vector stochastic differential
equation (Jazwinski, 1970),

dxt/dt = f(xt , t) + G(xt , t)wt (1)

Here, xt is an n-dimensional vector representing the
model state at time t (n is the size of the model state),
f is an n-dimensional vector function, wt is a white
Gaussian process (uncorrelated in time) of dimension
r with mean 0 and covariance matrix S(t), while G is
an n × r matrix.

The probability density distribution of the state
xt completely defines the error statistics. For exam-
ple, the error covariance is the second-order mo-
ment of the probability density function (PDF) of
the atmospheric state, and the error covariance nor-
malized by the standard deviations gives the error
correlation. The differential equation that describes
the evolution of the PDF, p(x, t) (the subscript t of xt

is dropped) is the Fokker–Planck equation (Gardiner,
1983, chapter 5; Jazwinski, 1970, chapter 4),

∂p

∂t
= −

n∑
i=1

∂(p fi )

∂xi

+1

2

n∑
i, j=1

∂2

∂xi∂x j

[
p(GSST GT )i j

]
(2)

where x is a random vector which consists of n random
variables, x1, . . . , xn . For multivariate systems such
as the atmosphere and ocean, p(x, t) is also called the
joint probability density function. In data assimilation,
the probability density of the analysed state is defined
as being conditional on a set of available observations.
The data assimilation problem is how to produce the
analysis state using the knowledge of the conditional
probability density.

For realistic numerical models, direct numerical in-
tegration of eq. (2) is unrealistic due to an extremely
high computation cost. In addition, eq. (1) is a stochas-
tic differential equation with a white Gaussian forcing
function. Since the wt process is only delta-correlated
and not mean square Riemann integrable, eq. (1) has no
mathematical meaning (chapter 4, Jazwinski, 1970).
In practice, using Monte Carlo methods to simulate
the continuous stochastic dynamical process is conve-
nient. Monte Carlo methods use finite random samples
as a discrete representation of the continuous stochas-
tic process, instead of solving the stochastic differen-
tial equation. Here, the forecast model (1) is assumed
to be deterministic,

dxt/dt = f(xt , t) (3)

and a set of randomly selected perturbations to a given
initial state is used to form an initial ensemble of fore-
casts. When integrated in the model, these random
samples of x discretely represent the distribution of
the forecast probability. Approximations of the vari-
ous moments of the distribution can be computed from
these discrete samples. For example, the covariance
matrix, a second-order central moment, is

cov{xi , x j } = 1

M

M∑
m=1

(xim − x̄i )(x jm − x̄ j ) (4)

where x̄i and x̄ j represent, respectively, the ensemble
mean of the i-th and j-th model variables (xi , x j ), and
M is the ensemble size. The diagonal elements of the
symmetric matrix cov {xi , x j } are error variances of the
model variables, while off-diagonal elements repre-
sents the error covariance between the model variables.

Miller et al. (1994, 1999) employed Monte Carlo
estimates of covariance statistics to devise a general-
ization of the extended Kalman–Bucy filter, and com-
pared the evolution of the PDF by the Monte Carlo
method and the numerical integration of the Fokker–
Planck equation using a stochastically forced double-
well model. It was found that there is little difference
between the solutions by the Monte Carlo method and
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the numerical integration of the Fokker–Planck equa-
tion. In the following sections, an EAKF is used in
a spectral barotropic model to compute error covari-
ance estimates with various degrees of approximation
by using a series of observing/assimilation simulation
system experiments.

2.2. Brief description of an ensemble adjustment
Kalman filter

Great efforts have been made to implement data as-
similation to address the probabilistic nature of the
dynamical/observational system of the atmosphere
and ocean (Evensen, 1994; Miller et al., 1994; 1999;
Houtekamer and Mitchell, 1998; 2001; Burgers et al.,
1998; Van Leeuwen, 1999; Anderson and Anderson,
1999; Keppenne, 2000; Mitchell and Houtekamer,
2000; Bishop et al., 2001; Hamill et al., 2001; Whitaker
and Hamill, 2002; Anderson, 2001). These studies at-
tempted to compute a conditional probability distribu-
tion of the system state given a set of observations. The
core of these filtering algorithms solves for the prod-
uct of the prior distribution of the system state, which
is governed by the model dynamics, and the observa-
tional error distribution (a function of the observing
system which is normally given as Gaussian) (chapter
6, Jazwinski, 1970).

Ensemble filters like the EAKF used here and the
perturbed observation ensemble Kalman filter can be
applied sequentially to individual scalar observations
without loss of generality, especially when a large en-
semble size is used to discretize the distribution of
the state (Whitaker and Hamill, 2002). The impact
of each scalar observation on each scalar component
of the state vector can also be computed independently
(Anderson, 2002). In what follows, a description of
how the EAKF computes the impact of a scalar ob-
servation on a single state variable component is pre-
sented.

The EAKF first constructs a prior joint state/
observation vector (referred to as a joint state vec-
tor), zp = {x, h(x)} with length 2, where x represents
a single scalar component of the state vector at the
time t and h is an operator (on the full state) that gives
the expected value of the observation given the state
vector x. In the perfect model framework, the actual
observation is

yo = h(x) + ε (5)

where ε is a sample selected from an observational
error distribution (assumed Gaussian here) associated

with the instrument being simulated. The filtering al-
gorithm computes the distribution of the updated joint
state vector, zu, which can be expressed as

p(zu/yo) = p(yo | zp)p(zp)/normalization (6)

where p(yo | zp) denotes the conditional probability
density distribution of the observation yo given the
prior joint state vector zp and p(zp) represents the prior
distribution of the joint state vector zp. The normaliza-
tion in eq. (6) guarantees that the total probability of
all possible states is 1 and does not need to be com-
puted for the EAKF algorithm. Equation (6) expresses
how a new observation, yo, modifies the probability
distribution of the prior joint state, p(zp).

The computation of the EAKF for assimilating a
single observation is schematically shown in Fig. 1.
First, the EAKF approximates the numerator in eq. (6)
as a product of two Gaussians: the observational
distribution (“obs PDF” curve in Fig. 1) and a Gaussian
approximation to the prior with the ensemble sample
mean and covariance (the solid curve labeled “prior

Fig. 1. Cartoon of how the ensemble adjustment Kalman
filter (EAKF) updates the estimate of the probability distri-
bution of a single state variable, x, when given a single ob-
servation, y. The dotted curves in the prior and analysis PDF
are schematic representations of the ensemble estimate of the
PDF (generated, for instance, by doing a kernel approxima-
tion) and are meant to suggest that the ensemble has mean-
ingful non-Gaussian structure. A Gaussian fit to the prior
PDF is represented by the solid curve. The update procedure
in eq. (8), making use of the forward observation operator
in eq. (5), gives the analysis Gaussian shown by the solid
curve; the observation error is assumed to be Gaussian. Fi-
nally, application of a linear operator as in eq. (9) leads to a
new ensemble with sample mean and covariance identical to
the solid analysis curve, but retaining non-Gaussian structure
as reflected by the dotted curve.
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PDF” in Fig. 1). The mean of the prior joint state vec-
tor is zp and the covariance matrix is

�p =
(

σ 2
x cov(x, y)

cov(x, y), σ 2
y

)
(7)

in which σ 2
x and σ 2

y are the prior ensemble estimates of
the variances of the state variable and of the observa-
tion variable respectively and cov(x, y) represents the
background covariance between the model grid and
observation location.

In this Gaussian approximation, the updated covari-
ance and mean of the joint state vector are

�u =
[
(�p)−1 + HT

(
σ o

y

)−2
H

]−1

zu = �u
[
(�p)−1zp + HT

(
σ o

y

)−2
yo

]
(8)

where an overbar denotes the ensemble mean, a su-
perscript “p” or “u” represents the prior/updated dis-
tribution, and σ o

y is the observational error standard
deviation of the instrument. H is a 1 × 2 matrix in
which the second element is 1 and the other is 0, so
that the estimated observation value calculated from
the joint state vector are y = Hz.

Given the updated mean (zu) and covariance (�u),
the EAKF uses a linear operator A to update each prior
ensemble member as

zu
i = AT

(
zp

i − zp
) + zu, i = 1, . . . , M (9)

where M represents the ensemble size, so that the up-
dated ensemble has exactly the mean zu and covariance
�u while maintaining much of the non-Gaussian in-
formation from the prior distribution, as shown in the
dotted curve of “analysis PDF” in Fig. 1. As stated
above only 2 × 2 matrices are required in order to
evaluate eqs. (8) and (9). Once eq. (8) is evaluated,
A is solved using the computed �u and zu (Anderson,
2001).

Like other filtering techniques, the EAKF can ex-
perience filter divergence (Jazwinski, 1970) in which
the distribution produced by the filter drifts away from
the truth. In order to avoid filter divergence, the EAKF
uses a covariance inflation parameter (denoted by γ

hereafter) to “broaden” the prior distribution and en-
hance the impact of the observations in the product
(Anderson, 2001). Also, extensive testing of the ef-
fects of γ in ensemble-based data assimilation was
made in Hamill et al. (2001) and Whitaker and Hamill
(2002).

The EAKF algorithm can be summarized by the
following steps:

Step 1. Advance the numerical model (3) to the time
of the next observation for each ensemble member
to form an ensemble that samples the prior distri-
bution of the state variables. Then each observation
is processed for each variable at each grid point for
assimilation.

Step 2. Compute �p in eq. (8) using the prior en-
semble estimates of the observation at the observa-
tional location and the model gridpoint. A covari-
ance inflation factor γ may be applied to broaden
the spread of the prior ensemble [each member’s
departure from the mean is increased by the factor
γ as γ (xp

i − xp)].
Step 3. Compute A (Appendix A in Anderson, 2001)

and update each ensemble member by eq. (9).
Step 4. Repeat steps 2 and 3 for each state variable.

In the ensemble adjustment filtering algorithm, the
adjusted ensemble maintains much of the information
about higher-order moments of the prior distribution
while having exactly the mean and covariance of the
product of two Gaussians. The non-Gaussian informa-
tion is still useful to represent the prior distribution,
although the prior ensemble is scaled by the covari-
ance inflater. Unlike the Kalman filter update equation,
the update formula [eq. (9)] does not require perturb-
ing the observations. In addition, only 2 × 2 matrix
operations are required, so computation and storage
requirements are small. Therefore the algorithm has
good potential to be applied to realistic atmospheric
and oceanic models.

2.3. Observing/assimilation system simulation
experiments using a global barotropic
spectral model

Here, observing/assimilation system simulation ex-
periments are conducted using a perfect model as-
sumption. For simplicity, the primary investigation is
carried out on a univariate system. The model chosen
is a non-divergent barotropic model in which the vor-
ticity equation is represented on the sphere by spher-
ical harmonic functions with a triangle truncation of
42 wavenumbers. A pseudo-spectral method with a
physical space grid consisting of 128 longitudes and
64 Gaussian latitudes for a total of 8192 grid points
is used to compute products and is the representation
of the state used for data assimilation. A time step of
1800 s is used with a third-order Adams–Bashforth
time differencing scheme which is initialized with a
single forward step followed by a single leapfrog step.
A ∇8 diffusion on the streamfunction is applied with
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a constant factor, so that the smallest resolved wave is
damped with an e-folding time of 2 d. A forcing must
be added to the model to induce interesting long-term
variability and to produce a quasi-realistic simulation
of the northern hemisphere zonal flow. In this case,
the zonal flow spherical harmonic components are re-
laxed towards the observed time mean zonal flow for
the period November through March 1991–92, with
an e-folding time of approximately 20 d.

In order to simulate a worldwide observational net-
work, 600 randomly chosen locations on the surface of
the sphere are used to produce observations of stream-
function every 12 h. Observational error is simulated
by adding a sample of white noise with a standard de-
viation of 106 m2 s−1 to the “truth”. The “truth” is a
long control run of the model starting from an initial
streamfunction generated from the NCEP reanalysis
on 1 November 1991. The ensemble initial conditions
are produced by adding random samples of a Gaussian
with 106 m2 s−1 standard deviation to the unperturbed
streamfunction initial field at each grid point. This
study only adds the spatially uncorrelated random per-
turbations to produce the ensemble initial conditions.
The impact of the spatially correlated perturbations on
ensemble-based filtering algorithms would be another
research topic in this field. The system is spun up by
conducting an assimilation out to 500 d with 20 en-
semble members and a 
φ × 
λ sec φ observational
window, where 
φ and 
λ are the latitudinal and lon-
gitudinal width (20◦ in this study) and sec φ is the lati-
tudinal adjustment factor of the longitudinal width. An
observation is only allowed to impact the state vari-
ables within the window. The window means that the
analysis of each model gridpoint at the middle latitude
uses about 40 nearby observations. More sophisticated
methods for limiting the impact of remote observa-
tions on state variables are a topic of ongoing research
in ensemble filtering (Hamill et al., 2001). Applying
a smoothly varying distance-dependent weight to re-
duce the prior sample correlation between state and
observation variables (Hamill et al., 2001) would be
expected to improve further the performance of the
filtering algorithms applied here (Anderson, 2001).

3. Error correlation estimates

3.1. Variations of error correlation in time and space

Estimates of the error correlation in this study are
based on the computation of eq. (4) in the EAKF as-

similation run over the 100-d period from day 500 to
day 600. The error correlation is a 8192 × 8192 matrix
in which each column represents the distribution of the
streamfunction auto-correlation for a particular refer-
ence point to all the model grid points. Three refer-
ence points (177◦E, 3◦S), (177◦E, 42◦N), and (177◦E,
82◦N) were chosen to represent the situation for the
low-, middle- and high-latitudes.

Figure 2 displays the instantaneous spatial structure
of the streamfunction auto-correlation for the middle-
latitude reference point (marked by a star) for day
30, day 50, day 70 and day 90. The streamfunction
spatial correlation has a temporally varying character
which can be denoted by C(r0, r, t), where r0 and r,
respectively, represent the location vectors of the ref-
erence/correlated points and t represents the time. The
spatial correlation at middle latitudes has a wave-train
character. This wave-train character is more clearly
shown in Fig. 3, where a daily evolution of C(r0, r, t)
during the period from day 51 to day 56 is presented.
The temporally varying character of C(r0, r, t) re-
flects the oscillation of the synoptic and/or planetary
scales, i.e. the estimated correlation structure is flow-
dependent. The temporally and spatially varying char-
acter of C(r0, r, t) is also shown for the low (Fig. 4)
and high (Fig. 5) latitudes. However, instead of wave-
train structures, the streamfunction spatial correlation
at low and high latitudes shows an approximately sym-
metric structure, i.e., the positive correlation centered
at the reference point and negative correlation areas
surrounding the positive center. In addition, the pos-
itive correlation center around the reference point at
low latitudes appears smaller than at middle and high
latitudes, and the distribution at low latitudes shows
more localized noise. These phenomena demonstrate
the different dynamics of flows at different latitudes.

3.2. Estimate of anisotropic error correlation

The previous subsection presented a temporally and
spatially varying estimate of the streamfunction spa-
tial correlation. In many traditional data assimilation
schemes (Optimal Interpolation and some implemen-
tations of Variational Analysis, for instance), a time-
invariant error correlation is used. This subsection ex-
amines the time-invariant spatial correlation character
of the streamfunction, estimated by the EAKF observ-
ing/assimilation system simulation experiment.

The time mean spatial structure of the streamfunc-
tion correlation, C(r0, r) is estimated by conduct-
ing a time average of C(r0, r, t) over a long period.
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Fig. 2. The time-evolution of the correlation distribution over the domain from 0 to 90◦N and 90◦E to 270◦E for the reference
point (177◦E, 42◦N) (marked by an asterisk) at 20-d intervals starting from day 30 during the 100-d assimilation period from
day 500 to day 600, using 20 ensemble members. The contour interval is 0.2 and values greater than 0.4 are shaded.

Figure 6 presents the structures of C(r0, r) over the
100-d period from day 500 to day 600 for the high
(the reference point at 177◦E, 82◦N) (panel a), middle
(the reference point at 177◦E, 42◦N) (panel b) and
low (the reference point at 177◦E, 3◦S) (panel c)
latitudes. Time averaging filters much of the small-
scale localized “noise” and keeps the large-scale char-
acters seen in the time-varying correlation patterns.
The resulting streamfunction correlation distributions
mainly reflect the flow-independent character at dif-
ferent latitudes. For example, the trough–ridge dy-
namics in the middle latitudes is represented by a set
of positive/negative correlation centers alternately ar-
rayed along the great circle of the sphere (panel b),
while the correlation patterns in low and high lati-
tudes (panels a and c) are approximately axisymmet-
ric. The correlation patterns at the middle latitudes
are consistent with the propagating path of the plane-
tary waves derived from a barotropic vorticity equation
by Hoskins and Karoly (1981). These characteristics
are shown more clearly by Fig. 7, which shows the
zonal mean of the distributions of the streamfunction

auto-correlation over all reference points located at the
same latitude (a total of 128 gridpoints), denoted by
[C][r0(φ), r] where r0(φ) means that the location of
the zonal mean reference point is only dependent on
the latitude of gridpoints. Again, the auto-correlation
distribution at the high (panel a) and low (panel c)
latitudes is approximately isotropic, while the one at
the middle latitudes has a wave-train (trough–ridge)
character.

3.3. Estimate of the isotropic error correlation

In order to derive a globally isotropic streamfunc-
tion spatial correlation structure, C0(r ), where r is the
distance between a correlated point and the reference
point, the isotropic correlation structure is first cal-
culated at each latitude, denoted by C0[r0(φ), r ] using
[C][r0(φ), r], which is available from the previous sub-
section. The distance from every correlated point to the
reference point is computed and the correlation coeffi-
cients are re-arrayed by the distance order (from small
to large), and then a linear interpolation is used to pro-
duce the curve of the isotropic correlation coefficient
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Fig. 3. Same as Fig. 2 except for a daily interval from day 51 to day 56.

C0[r0(φ), r ] for a specific latitude φ in equal-distance
space. Figure 8 shows the correlation coefficient as a
function of distance (r) for different latitudes: panel
a shows the situation beyond 70◦N(S), panel b be-
tween 30◦N(S) and 60◦N(S) and panel c between 20◦S
and 20◦N (each curve in the panels represents a dif-
ferent latitude in the corresponding region). Panels a
and c show a nearly axisymmetric correlation struc-
ture at high and low latitudes, while panel b exhibits
a more oscillatory correlation coefficient with respect

to r. This oscillation of the correlation at the middle
latitudes is related to the strong anisotropic character
over there (quasi-longitudinal wave-train, panel b in
Fig. 7, for instance). For example, the ratio of the ma-
jor axis (in the zonal direction) and the minor axis (in
the meridional direction) of the ‘elliptic’ correlation
centers in panel b of Fig. 7 governs the amplitude of
the oscillation while the model resolution (gridpoint
distance, approximately 300 km in this case) is respon-
sible for the oscillation scale (when the gridpoint space
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134 S. ZHANG AND J. L. ANDERSON

Fig. 4. The daily evolution of the correlation distribution over the domain from 45◦S to 45◦N and 90◦E to 270◦E for the
reference point (177◦E, 3◦S) from day 51 to day 56. Details are as in Fig. 2.

is converted to the distance space, the correlation co-
efficients appear jumping around through the resolved
interval) (panel b in Fig. 8)

A globally isotropic streamfunction correlation
structure is obtained by averaging results from all 64
latitudes, as shown in Fig. 9 (solid line). The globally
isotropic correlation function can be approximately
fitted by a theoretical correlation model (Thiebaux,
1976; 1985) as

ρ(r ) =
(

cos(cr ) + sin(cr )

Lc

)
e− r

L (10)

where c and L are two free parameters that control the
shape of the curve. The correlation coefficients at every
100 km over the first 4000 km (41 values) are used to
fit the curve (determining the parameters c and L) by
the least-square estimate. Since eq. (10) is a highly
nonlinear function, a Newton numerical method
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Fig. 5. Same as Fig. 4 except for the reference point (177◦E, 82◦N) and over the domain of 40◦N to 90◦N.
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Fig. 6. The distributions of the time-averaged correlation over days 500 to 600) for the reference points (a) (177◦E, 82◦N),
(b) (177◦E, 42◦N) and (c) (177◦E, 3◦S). The contour interval is 0.1 and with values greater than 0.2 shaded. The domain for
(a) and (b) is the northern hemisphere and for (c) is 45◦S to 45◦N and 90◦E to 270◦E. Details are as in Fig. 2.

(Kincaid and cheney, 1996) is employed to approach
the approximate stationary point of the Euclidean
distance between the 41 derived correlation values and
the theoretical values, ρ(r ), with respect to c and L.
The estimated c and L are respectively 1.25 × 10−6

m−1 and 1.25 × 106 m, as shown by the dashed line
in Fig. 9. The solid and dashed lines in Fig. 9 show
that the numerically derived globally isotropic corre-
lation function from the EAKF observing/assimilation
system simulation experiment is close to the theoreti-
cal correlation model. However, section 4.2 will show
that the small discrepancy, especially over the short
distance, between C0(r ) and ρ(r ), will produce the
different assimilation results.

3.4. Sensitivity of error correlation estimate
to ensemble size

This subsection evaluates the sensitivity of esti-
mated error correlation from the EAKF with respect

to ensemble size, using ensembles with 100 and
200 members. Figure 10 presents a daily evolution of
the estimated streamfunction spatial correlation using
100 (left) and 200 (right) members during the period
from day 51 to day 53 for the middle-latitude refer-
ence point (177◦E, 42◦N). Generally, comparing with
the results using 20 members (left panel in Fig. 3),
the estimated correlation using 100/200 members has
a similar structure but less noise. The difference be-
tween the 100-member correlation estimate (left pan-
els in Fig. 10) and the 200-member corrlation estimate
(right panels in Fig. 10) is much less than the difference
between the 100-member correlation estimate and the
20-member correlation estimate (left panels in Fig. 3).
The same results are found for both high and low
latitudes (not shown). This means a small ensemble
size may introduce some noise in the correlation es-
timate. Considering that increasing the ensemble size
will greatly increase the computational cost, in practice
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Fig. 7. Same as Fig. 6 except for the zonal mean of correlation distributions of all reference points located at the same
latitude.

as a trade-off ones have to choose a practical ensem-
ble size (20 for instance in this study) to estimate the
correlation. Figure 11 shows the time averaged esti-
mated spatial correlations using 100 members, which
are similar to the results using 20 members (Fig. 6).
The globally isotropic correlation functions derived
with 20-member (solid line in Fig. 9) and 100-member
(dotted line in Fig. 9) ensembles also are quite similar
except for small differences before 300 km and be-
tween 1000 and 2000 km. This implies that for this
barotropic model framework, ensemble size may have
a little larger impact on the correlation estimates at
these scales. These results reveal that the ensemble-
based filtering algorithms, such as EAKF, may be able
to produce a reasonable correlation distribution of the
model state using a relatively small sample ensemble
(20 in this case). The reasons include that the spatial
correlation of the state variables is governed by the
dynamics of various scale flows such as propagating

waves. More detailed discussions will be given in sec-
tion 5, where estimates of correlation and covariance
using the ensemble technique are compared.

4. Sensitivity of the ensemble adjustment
filtering assimilation to different
correlation structures

4.1. Motivation and experiment design

All modern data assimilation algorithms are closely
related. For example, Miller (1998) derived the for-
mulation of the Kalman–Bucy filter starting from
the Euler–Lagrange equations of a weak constraint
four-dimensional variational problem. In addition,
Optimal interpolation (OI) (Gandin, 1963) is a sim-
plification of the Kalman–Bucy filter with an error
covariance matrix that does not vary in time, while the
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Fig. 8. Isotropic correlation functions in distance space for (a) poleward of 70◦N(S), (b) between 30◦N(S) and 60◦N(S) and
(c) between 20◦S and 20◦N. Each curve in (a), (b), and (c) represents a model-defined latitude in that region. Details are as
in Fig. 2.

Kalman–Bucy filter is a simplification of the nonlinear
(ensemble) filter to the case of linear dynamics and lin-
ear observational operators. Examining the sensitivity
of a nonlinear filtering assimilation algorithm such as
the EAKF to the temporal and spatial variation of error
correlation can increase understanding of the related
data-assimilation algorithms.

In this section, the EAKF assimilation algorithm is
applied using different error correlation structures. To
do this, every analysis step (precisely, step 2 in sec-
tion 2.2) only computes the error variances (diago-
nal elements of �p), while the error covariance (off-

diagonal elements of �p) between a model gridpoint
and an observational location is obtained using the
computed variances and a previously computed corre-
lation structure {ρ(r ), C0(r ), [C][r0(φ), r] or C(r0, r),
derived in last section}. In addition, the sensitivity
of the EAKF data-assimilation algorithm to the ac-
curacy of error correlation estimates is examined by
comparing the assimilation results using different ac-
curacy error correlation estimates from different en-
semble sizes. Finally, the relative importance of in-
creasing ensemble size and enhancing the accuracy
of correlation estimates is investigated by conducting
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Fig. 9. Globally isotropic correlation functions in distance space, estimated by 20 ensemble members (solid) and 100 ensemble
members (dotted), and the theoretical model ρ(r ) = [cos(cr ) + sin(cr )/Lc]e− r

L (dashed) (Thiebaux, 1976; Thiebaux, 1985)
with the free parameters c and L set to 1.25 × 10−6 m−1 and L = 1.25 × 106 m as suggested by least squares using the
coefficients at every 100 km over the first 4000 km, derived by a 20-member ensemble. A Newton numerical method (Kincaid
and cheney, 1996) is employed to approach the approximate stationary point of the Euclidean distance between the 41 derived
correlation values and the theoretical values, ρ(r ), with respect to c and L.

assimilation experiments using these error correlation
estimates with different accuracy combined with dif-
ferent assimilation ensemble sizes.

4.2. Comparisons of assimilation results

Starting from the end of the 500-d spin-up run
described in section 2.3, data assimilation is con-
ducted for another 500 d for five cases using ρ(r ),
C0(r ), [C][r0(φ), r], C(r0, r) and C(r0, r, t) as the es-
timates of the background error correlation between
the model state variables. The error statistics of assim-
ilation results using 20 ensemble members are listed in
Table 1; the statistical results of the 500 d of ensemble
forecasts (without assimilation) starting from the en-
semble initial conditions described in section 2.3 are
also included as case 0. Column 3 of Table 1 gives
the values of the covariance inflation factor (γ ) that
gave a reasonable ratio of the time-averaged root mean
square (RMS) error of the ensemble mean (RmsEm)
to the mean of the RMS (MRms) error from the in-
dividual ensemble members. A good covariance in-
flation is chosen empirically by testing a number of
values. The ratio in column 6 is normalized by the fac-
tor

√
[(M + 1)/2M] (Anderson, 1996), the expected

value of the ratio for ensemble size M. Values of the
normalized ratio close to unity imply that the ensemble

has a spread (standard deviation) that is approximately
consistent with the truth. For example, in order to de-
termine the value of γ for case 5, several trials were
conducted, in which the resulting normalized ratios
are 1.128, 1.104, 1.091, 1.080 and 1.113 for γ = 1.00,
1.02, 1.04, 1.06 and 1.10. The case with γ = 1.06 was
selected for case 5 for comparison in Table 1.

Table 1 shows that all five assimilation cases, includ-
ing the theoretical isotropic correlation model (case 1)
and estimated correlation structures (cases 2–5), re-
duce both RmsEm and MRms greatly from the pure
ensemble forecasts without assimilation (which essen-
tially represent the ‘climatological’ variability of the
model). The use of temporally and spatially varying
correlation estimates (the basic EAKF algorithm) pro-
duces the smallest assimilation errors (case 5). How-
ever, all estimated correlation structures in cases 2–
5 improve the assimilation results from the use of
theoretical correlation model ρ(r ) (case 1). The per-
centage of assimilation error reduction of cases 2–5
from case 1 is presented in Fig. 12. Although Fig. 9
showed a small difference between C0(r ) (the es-
timated isotropic correlation structure from EAKF)
and ρ(r ) (the theoretical correlation model, Thiebaux,
1976; 1985), the use of C0(r ) reduced both Rm-
sEm and MRms by around 6% (case 2) compared
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Fig. 10. Same as Fig. 3 except for using 100 ensemble members (left) and 200 ensemble members (right) from day 51 to
day 53.

to the use of ρ(r ) (case 1). This means that using
the ensemble filter to estimate the isotropic corre-
lation structure is able to provide more consistency
between the assimilation model and the correlation
model, so that the assimilation process can extract
more signal from observations. Particularly, the small
difference between C0(r ) and ρ(r ) at small distances
(<300 km in this case) may play a more significant role
to reduce the assimilation errors. Using [C][r0(φ), r],
in which an anisotropic correlation structure is only

latitudinally dependent, reduced assimilation errors
more (by 10%) (case 3). As more spatial varia-
tion was considered [case 4, where each location
has a time-invariant anisotropic correlation structure
C(r0, r)] the assimilation errors were further reduced
by 12% and 15% for RmsEm and MRms, respectively.
Finally fully considering the temporal and spatial
variation of error correlation, the EAKF had a best
improvement of the assimilation results (reduced
RmsEm and MRms by 17% and 22%, respectively)
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Fig. 11. Same as Fig. 6 except for using 100 ensemble members.

Table 1. Error statistics of 500-d EAKF assimilation from day 500 to day 1000 using different correlation
structures

Case Correlation Cov-inflate Normalized
no. model γ RmsEm (m2 s−1) MRms (m2 s−1) ratio

0 - - 16.32 × 105 22.0 × 105 1.024
1 ρ(r ) 1.020 1.94 × 105 2.64 × 105 1.015
2 C0(r ) 1.015 1.83 × 105 2.48 × 105 1.020
3 [C][r0(φ), r] 1.015 1.74 × 105 2.37 × 105 1.015
4 C(r0, r) 1.015 1.71 × 105 2.25 × 105 1.050
5 C(r0, r, t) 1.060 1.60 × 105 2.05 × 105 1.080

RmsEm, RMS of ensemble mean.
MRms, mean of RMS.
Case 0, ensemble forecasts (without assimilation).
Case 1, using a theoretical correlation model described in section 3.3 (dashed line in Fig. 9).
Case 2, using a globally isotropic correlation structure derived in section 3.3 (solid line in Fig. 9).
Case 3, using the anisotropic correlation structure for each latitude derived in section 3.2 (Fig. 7).
Case 4, using the anisotropic correlation structure for each observational location derived in section 3.2 (Fig. 6).
Case 5, using the temporally and spatially varying correlation estimate in the EAKF algorithm.
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Fig. 12. Percentage of assimilation error reduction by using
the EAKF estimated background error correlation structures
(cases 2–5 in Table 1) from the theoretical correlation model
ρ(r ) (case 1 in Table 1).

from the use of a theoretical isotropic correlation
model.

These results showed that considering the temporal
and spatial variations of error correlation can signifi-
cantly improve the assimilation results.

The relative importance of improved correlation es-
timates from larger ensemble sizes as opposed to other
improvements from increased ensemble size can be ex-
amined. 100-d assimilations using different ensemble
sizes (20 or 100) and estimated correlation structures
previously generated by various ensemble sizes are
conducted, starting from the end of the 500-d spin-

Table 2. Error statistics of 100-d EAKF assimilation from day 500 to day 600 using different ensemble sizes
and estimated correlations

20 members 100 members

RmsEm (m2 s−1) MRms (m2 s−1) RmsEm (m2 s−1) MRms (m2 s−1)
Case no.
(correlation
model) cor20 cor100 cor20 cor100 cor20 cor100 cor20 cor100

2
[C0(r )] 1.77 × 105 1.73 × 105 2.36 × 105 2.30 × 105 1.60 × 105 1.55 × 105 2.22 × 105 2.16 × 105

3
[[C](r0(φ), r)] 1.81 × 105 1.72 × 105 2.31 × 105 2.21 × 105 1.61 × 105 1.53 × 105 2.15 × 105 2.06 × 105

4
[C(r0, r)] 1.85 × 105 1.77 × 105 2.30 × 105 2.20 × 105 1.73 × 105 1.62 × 105 2.19 × 105 2.07 × 105

5
[C(r0, r, t)] 1.67 × 105 - 2.07 × 105 - - 1.22 × 105 - 1.59 × 105

cor20, estimated correlation distribution using 20 ensemble members.
cor100, estimated correlation distribution using 100 ensemble members.

up run. As described in the beginning of this section,
the values of γ are chosen by experimentation as 1.01
for all cases with 100 members, 1.015 for cases 2–4
with 20 members and 1.06 for case 5 with 20 mem-
bers. Error statistics are exhibited in Table 2, which
shows that the assimilation results are improved by
either increasing ensemble size or using refined corre-
lation estimates. Table 3 gives the percentage of error
reduction by increasing assimilation ensemble size or
using the refined correlation estimate. For example,
columns 2 and 3 tell that using the 20-member corre-
lation estimate but increasing assimilation ensemble
size from 20 to 100 reduces RmsEm and MRms by
10% and 6%, while columns 6 and 7 tell that using
20 members as an assimilation ensemble size but
changing the correlation estimate from cor20 to cor100

reduce both RmsEm and MRms only by 2%. Table 3
showed that increasing assimilation size improves the
assimilation results much more than using refined cor-
relation estimates.

5. Ensemble OI assimilation scheme with
different covariance matrices

Using time-invariate correlation structures ρ(r ),
C0(r ), [C][r0(φ), r] and C(r0, r) and time-invariate
variance estimates, the EAKF assimilation algorithm
can be degraded to an ensemble OI scheme. In this
case, each ensemble member is independently ad-
justed by a time-invariate covariance matrix (�p).
In this section, assimilation results from various
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Table 3. Reduction of errors by increasing ensemble size from 20 to 100 and/or using estimated correlation
structures from different ensemble sizes for 100-d assimilation from day 500 to day 600

Reduction of errors

Increasing ensemble size Refining cor-estimate
from 20 to 100 from 20 to 100 members

cor20 cor100 20-member 100-member Both

Case
no.
(correlation
model) RmsEm MRms RmsEm MRms RmsEm MRms RmsEm MRms RmsEm MRms

2
[C0(r )] 10% 6% 11% 6% 2% 2% 3% 3% 13% 8%
3
{[C][r0(φ), r]} 11% 7% 11% 7% 5% 4% 5% 4% 16% 11%
4
[C(r0, r)] 7% 5% 9% 6% 4% 4% 7% 6% 13% 10%
5
[C(r0, r, t)] - - - - - - - - 27% 23%

ensemble OI schemes using different covariance ma-
trices that are computed using different ensemble sizes
(20 and 100) and different correlation structures (cases
1–4 in Table 1) are examined (γ = 1.01). Figure 13
exhibits the estimated time-invariate variances from
the EAKF using 20-member (top) and 100-member
(bottom) ensembles over a global domain. Larger vari-
ances of the streamfunction in the barotropic model are
found over the subtropics and south polar area, and the
estimated variance using the 100-member ensemble is
larger than that using the 20-member ensemble. The
covariance matrices �

p
20m and �

p
100m for the four dif-

ferent correlation structure cases are used in place of
the sample prior covariance in step 2 in the EAKF
algorithm described in section 2.2 to carry out dif-
ferent ensemble OI schemes. The error statistics of
assimilation results during day 500 to day 1000 us-
ing 20 ensemble members are listed in Table 4, which
shows that for the �

p
20m case, both the RmsEm (col-

umn 3) and the MRms (column 6) of all four ensemble
OI cases are worse than for the EAKF (see case 5 in
Table 1). Among these four cases, the assimilation er-
rors from those two cases that have anisotropic corre-
lation structure (cases 3–4) are smaller than those with
isotropic correlation structure (cases 1 and 2). Case 4,
which fully considers the spatial variation of covari-
ance structure, gives the best ensemble OI assimilation
result.

Table 4 also shows that the use of the refined co-
variance matrix generated by 100 ensemble members

Fig. 13. The distributions of the time-averaged standard de-
viation over days 500–600 estimated by the EAKF using (a)
20-member and (b) 100-member ensembles. The contour in-
terval is 0.5 (×105 m2 s−1). Values greater than 2 (×105 m2

s−1) are lightly shaded and values greater than 4 (×105 m2

s−1) are heavily shaded.
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Table 4. Error statistics of 20-member ensemble OI assimilation from day 500 to day 1000 using different �pa

RmsEm (m2 s−1) MRms (m2 s−1)
Case Correlation
no. model �

p
20m �

p
100m Reduction �

p
20m �

p
100m Reduction

1 ρ(r ) 3.07 × 105 1.89 × 105 38% 5.27 × 105 2.53 × 105 52%
2 C0(r ) 3.14 × 105 1.71 × 105 46% 5.41 × 105 2.38 × 105 56%
3 [C][r0(φ), r] 2.46 × 105 1.66 × 105 33% 3.93 × 105 1.92 × 105 51%
4 C(r0, r) 2.28 × 105 1.9 × 105 17% 3.58 × 105 2.01 × 105 44%

aThe percent reduction in error resulting from the use of covariances estimated from 100 member ensembles, rather than 20
member ensembles, is also shown.
�

p
20m, estimated covariance matrix using 20 ensemble members.

�
p
100m, estimated covariance matrix using 100 ensemble members.

greatly reduces the assimilation errors for all cases;
RmsEm and MRms are reduced on average by 35%
and 52% respectively. Generally, the magnitude of the
assimilation error reduction due to the use of �

p
100m

with isotropic correlation structure [ρ(r ), C0(r )] is
greater than that with anisotropic correlation struc-
ture {[C][r0(φ), r], C(r0, r)}, in which the use of �

p
100m

with C0(r ) causes the greatest error reduction (46% for
RmsEm and 56% for MRms) and the use of �

p
100m with

C(r0, r) produces the smallest error reduction (17% for
RmsEm and 44% for MRms). This is consistent with
the distributions of the ensemble RMS errors shown
in Fig. 14 for case 2 (top), case 3 (middle) and case
4 (bottom) at the end of the assimilation (day 1000)
using �

p
20m (left) and �

p
100m (right) are presented. In ad-

dition, using �
p
100m, C(r0, r) does not give the best OI

results. This phenomenon may come from the use of a
uniform value of γ and therefore can be improved by
refining the γ value. Note that the difference between
�

p
20m and �

p
100m in case 1 is only due to the difference

in the accuracy of the error variance estimate using dif-
ferent ensemble sizes (shown in Fig. 13). This implies
that although the EAKF is able to produce a reasonable
correlation distribution with a relatively small ensem-
ble size (20 in this case), the enhanced accuracy of
variance estimates by a larger ensemble size may sub-
stantially improve the performance of related assimi-
lation algorithms. In other words, in ensemble-based
filters, it may be easier to approximate the correlation
distribution than the variance magnitude of the model
state variables using a relatively small ensemble size,
since the former reflects the relationship of the motion
status at different spatial locations while the latter re-
flects a local variability. The spatial relationship of the
motion status is governed by the dynamics of various
scale flows (usually grid-scale, propagating waves, for
instance). Therefore the spatial correlation distribution

can be reasonably estimated once the ensembles mem-
bers used reasonably samples these scale motions. A
local variability is, however, related to many other
complicated factors (including sub-grid scales) such
as turbulence, instability, the wave-flow interactions
etc. Then more samples are required to represent these
charracteristics for gaining the reasonable magnitude
of the variance that includes these factors.

The results and analyses suggest that when using an
ensemble-based filter such as the EAKF to estimate the
covariance matrix for use in traditional assimilation al-
gorithms, a relatively small ensemble size may be used
to estimate correlation structure, while estimating the
variances of the model variables with a larger ensem-
ble size may upgrade the assimilation algorithms.

Consistent with the previous study of Hamill and
Snyder (2000), as the observational network becomes
sparser, the use of a flow-dependent covariance im-
proves the assimilation results more significantly. Re-
ducing the observational network to 300 observations
over the global domain, gives RmsEm for ensemble OI
(case 4) and EAKF (case 5) as 4.2 × 105 and 2.5 × 105

m2 s−1, and the MRms for ensemble OI and EAKF are
7.0 × 105 and 3.2 × 105 m2 s−1. For this sparser ob-
servational network, the magnitude of the assimilation
error reduction (40% for RmsEm and 54% for MRms)
is much greater than that for the network with 600
observations (29% for RmsEm and 42%).

The results above also confirm that under some cir-
cumstances an ensemble OI scheme may produce an
acceptable assimilation result if used with an appropri-
ately estimated background error covariance matrix.

6. Summary and discussion

Estimating the background error covariance
between model state variables is a key issue for
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Fig. 14. Distributions of ensemble RMS errors at day 1000 over the global domain for the 20-member ensemble OI assim-
ilation of case 2 (top), case 4 (middle) and case 5 (bottom) using the estimated covariance matrix from 20-member (�p

20m,
left) and 100-member (�p

100m, right) ensembles. The shading boundaries are 3, 6 and 9 (×105 m2 s−1) for the Σp
20m situation

and 1, 2 and 3 (×105 m2 s−1) for the �
p
100m situation. The contour interval is 3 (×105 m2 s−1) for the former and 1 (×105 m2

s−1) for the latter.

implementing data assimilation and understanding
model dynamics. Using the Monte Carlo approach,
without solving the stochastic differential equations,
this study has estimated the background error covari-
ances generated by the application of an ensemble
adjustment Kalman filter (EAKF) to a barotropic
spectral model. Results showed that the EAKF can

produce reasonably accurate estimates of the error
correlation structure with a practical ensemble size
(20 in this case). The use of flow-dependent correla-
tion structures generated by the EAKF was shown to
be superior to the use of a variety of time-averaged
flow-independent correlation structures in this
context.
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An ensemble optimal interpolation (OI) assimila-
tion scheme was designed using a time-invariate co-
variance matrix to adjust a prior ensemble at every
observation time. The covariance matrix for the en-
semble OI is constructed from an estimated isotropic
or anisotropic error correlation structure (obtained
from the EAKF assimilation) combined with a time-
averaged error variance distribution. Five different
flow-independent covariance matrices were generated
using five different error correlation estimates. The
impact of the use of temporally and spatially varying
error covariance estimates was evaluated by compar-
ing the ensemble OI assimilations to the EAKF re-
sults. The examination produced three key findings:
(1) For a given ensemble size, an ensemble filter such
as EAKF produces the best assimilation since its flow-
dependent error covariance estimates are able to reflect
more about the synoptic-scale wave structure in the
assimilated flows; (2) an ensemble OI scheme may
also produce reasonably good assimilation results if
the flow-independent covariance matrix is appropri-
ately chosen; (3) when using the EAKF to estimate
the error covariance matrix for improving traditional
assimilation algorithms such as variational analysis
and OI, a relatively small ensemble size may be used
to estimate the error correlation structure while the
variances of the model variables estimated by a larger
ensemble size may upgrade the related assimilation
algorithms.

A stationary (flow-independent) error covariance
matrix is the first-order approximation of error covari-
ance matrix. Due to the rapid advances on computer
resource and assimilation methodology, some authors
have begun to pay attention to the trial that introduces
the temporally varying information of error covari-
ance matrix into data assimilation (Ghil et al., 1981;
Dee, 1991; Bouttier, 1993; Ehrendorfer and Tribbia,

1997; Hamill and Snyder, 2000). The results of this
study further showed that the use of the temporally
varying information of error covariance matrix may
significantly improve the results of data assimilation.
Therefore more attention on this issue may bring more
benefits for this community.

This study only evaluated the impacts of error co-
variances in a univariate system. Considering more
complicated and realistic models and observational
networks (Houtekamer and Mitchell, 2001; Hamill
et al., 2001) will be required to extend further un-
derstanding of the EAKF and other ensemble-based
assimilation methods. Initial results suggest that the
EAKF will continue to perform well in more realistic
models. Results have been promising in applications
in the dry dynamical core of a global primitive equa-
tion model and in a fully parameterized global numer-
ical weather prediction (NWP) model. Of particular
interest in these multivariate models is the structure of
the cross-correlation structure between state variables
of different kinds. For instance, the cross-correlation
structure of moisture variables with other variables can
shed light on the potential for assimilating measure-
ments of precipitation. A follow-on study will extend
the results presented here to global NWP models and
realistic observing systems.
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