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ABSTRACT

A number of operational atmospheric prediction centers now produce ensemble forecasts of the atmosphere.
Because of the high-dimensional phase spaces associated with operational forecast models, many centers use
constraints derived from the dynamics of the forecast model to define a greatly reduced subspace from which
ensemble initial conditions are chosen. For instance, the European Centre for Medium-Range Weather Forecasts
uses singular vectors of the forecast model and the National Centers for Environmental Prediction use the
‘‘breeding cycle’’ to determine a limited set of directions in phase space that are sampled by the ensemble
forecast.

The use of dynamical constraints on the selection of initial conditions for ensemble forecasts is examined in
a perfect model study using a pair of three-variable dynamical systems and a prescribed observational error
distribution. For these systems, one can establish that the direct use of dynamical constraints has no impact on
the error of the ensemble mean forecast and a negative impact on forecasts of higher-moment quantities such
as forecast spread. Simple examples are presented to show that this is not a result of the use of low-order
dynamical systems but is instead related to the fundamental nature of the dynamics of these particular low-order
systems themselves. Unless operational prediction models have fundamentally different dynamics, this study
suggests that the use of dynamically constrained ensembles may not be justified. Further studies with more
realistic prediction models are needed to evaluate this possibility.

1. Introduction

Because it is impossible to measure precisely the cur-
rent state of the atmosphere and because numerical pre-
diction models are only approximations of the true at-
mospheric dynamics, it is natural to view the task of
predicting the future state of the atmosphere in a sto-
chastic framework. In recent years, the world’s opera-
tional atmospheric prediction centers have increasingly
tended to view the forecast problem in this light. This
has led to the development of ensemble prediction sys-
tems at most of the operational centers (Tracton and
Kalnay 1993; Palmer et al. 1993; Molteni et al. 1996).

The enormous number of variables (degrees of free-
dom) in modern global atmospheric prediction models,
typically on the order of 1 000 000, has naturally led to
grave concerns about whether the small number of en-
semble forecasts that can be produced with available
computer resources can reasonably sample the proba-
bility distributions to be predicted. The general conclu-
sion has been that it is impossible to sample adequately
the full complexity of the prediction model’s phase
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space (Gleeson 1970). Instead, a priori attempts are
made to identify a vastly reduced set of directions in
phase space that are the most important to sample when
producing an ensemble forecast (Houtekamer 1995;
Palmer et al. 1993); these directions are frequently de-
termined using information from the dynamics of the
forecast model (Mureau et al. 1993; Toth and Kalnay
1993).

One primary difference between the ensemble pre-
diction schemes of the various operational centers is the
way in which this subset of important directions is cho-
sen. For instance, the National Centers for Environ-
mental Prediction (NCEP) use directions determined
from a set of leading ‘‘breeding’’ vectors (Toth and Kal-
nay 1996). The European Centre for Medium-Range
Weather Forecasts (ECMWF) makes use of optimal per-
turbations that are obtained from the leading singular
vectors of a linearized version of their forecast model
(Buizza et al. 1993). Most other major centers are pro-
ducing ensembles with variants of these two methods.
Similar methods have also been used in nonoperational
studies of the sensitivity of the evolution of the atmo-
sphere in both global (Farrell 1990) and regional models
(Vukicevic and Raeder 1995; Errico and Vukicevic
1992).

Much of the utility of ensemble (Monte Carlo) tech-
niques is based on their interpretation as a random sam-
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ple of a probability distribution (Epstein 1969; Leith
1974). When the search for ensemble members is lim-
ited by dynamical constraints, the ensemble is no longer
a random sample, and great care must be taken in in-
terpreting quantities derived from the ensemble. In the
following, the value of using dynamical constraints in
the selection of initial conditions for ensemble forecasts
is examined in a perfect model study where the only
source of error is assumed to be a prescribed obser-
vational error distribution (analysis error distribution in
a real model). The study is mostly performed in two
very low-order (three-variable) dynamical systems. The
results are extrapolated to the vastly larger and more
complex operational prediction models; however, it is
fair to point out in advance that this extrapolation must
be regarded with caution. Further studies with models
of intermediate size and complexity are still needed to
better understand the impact of dynamical constraints.

The utility of dynamically constraining ensembles has
been addressed several times before (Houtekamer 1995;
Brooks et al. 1995; Buizza and Palmer 1995). In the
study most closely related to the present results, Hou-
tekamer and Derome (1995) examined this problem in
a global three-level quasigeostrophic model with mod-
erate horizontal resolution. Their conclusions were that
the use of dynamically constrained initial conditions had
relatively little impact on ensemble predictions. The
present study differs from theirs in several ways. First,
as noted in section 2, this study is concerned with eval-
uating more than the ensemble mean forecast; the results
for the ensemble mean are consistent with Houtekamer
and Derome’s conclusion that dynamical constraints
have relatively little impact. Second, this study is able
to examine a very large sample of different ensemble
forecasts due to the simplicity of the dynamical systems
used. This allows one to have considerably greater con-
fidence in the results presented.

Section 2 discusses the selection of measures for eval-
uating ensemble predictions. Section 3 defines the types
of dynamical constraints studied here and presents re-
sults for linear models. Section 4 describes correspond-
ing nonlinear experiments whose results are presented
in section 5. Section 6 presents a discussion of the results
and their possible implications for large prediction mod-
els, while section 7 provides conclusions and some sug-
gestions for further research.

2. Evaluating ensemble forecasts

Since all observations have an associated measure-
ment error, the observed (analyzed) state of the atmo-
sphere can be represented as a probability distribution.
The forecast problem is then to predict how this prob-
ability distribution is evolved in time by a model. In
the following, an ensemble of initial states is used to
sample this observed probability distribution and is in-
tegrated to produce an estimate of the probability dis-
tribution at some forecast time (Leith 1974). This sec-

tion describes a set of measures that are used to evaluate
the quality of ensemble forecasts of the probability dis-
tribution. The evaluation of the forecast of the complete
probability distribution is one thing that distinguishes
this study from some earlier evaluations of ensemble
forecasts (Houtekamer and Derome 1995).

Careful definitions of terminology are essential to the
following discussion. The term ‘‘member’’ refers to an
individual forecast that is part of an ensemble for a given
initial condition probability distribution. ‘‘Set’’ refers to
a collection of k-member ensembles; a set is composed
of ‘‘samples,’’ each of which is a k-member ensemble.

a. Ensemble mean forecast

The root-mean-square distance (rms) in phase space
between the mean of an ensemble of forecasts and the
verifying truth is the principal tool for measuring fore-
cast error here. The anomaly correlation (AC) is also
frequently used to evaluate the error of atmospheric
forecasts. Results are not shown for AC; however, the
results of section 3 are unchanged if one substitutes AC
for rms, and the results of sections 5 and 6 were found
to be qualitatively unchanged. The conclusions of this
study would remain unchanged if AC had been substi-
tuted for rms everywhere.

b. Consistency

If the verifying truth is indistinguishable from a ran-
domly selected member of an ensemble forecast over a
large set of forecast cases, the ensemble forecasts are
said to be consistent with the truth. Consistency is eval-
uated here using a binning method (Anderson 1996b;
Harrison et al. 1995; Molteni et al. 1996) that is also
referred to as Talagrand diagrams. The binning method
evaluates the consistency of ensemble predictions of a
scalar, x, by using the individual ensemble forecasts of
x to partition the real line. For a consistent ensemble
the truth should fall into each bin with equal probability.
Given a large set of ensemble forecast cases and the
verifying truth for each, the distribution of the truth in
the bins should be uniform. The standard chi-square test
is applied to evaluate if the distribution of the truth in
the bins is uniform; the significance of the chi-square
test is presented here to allow comparison between dif-
ferent sets of ensemble forecasts. Small values of the
chi-square significance mean that the distribution of the
truth is unlikely to be uniform, which implies that the
ensemble forecasts are not consistent with the truth. For
a variable that is consistent, one expects the values of
the significance to be approximately uniformly distrib-
uted over the interval 0–1 (i.e., a random sample from
a uniform distribution will produce a chi-square signif-
icance of 0.1 or less 10% of the time and a value greater
than 0.9 10% of the time). Consistency is related to
other uses of ensemble forecasts, such as predicting
forecast skill or producing ‘‘clusters’’ (Brankovic et al.
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1990; Molteni and Tibaldi 1990; Cheng and Wallace
1993) of forecasts. Inconsistent forecasts will generally
be inferior to consistent forecasts for such applications.
It is important to remember that a consistent forecast is
not necessarily a skillful forecast; for example, ensem-
bles selected randomly from the model climate distri-
bution will be consistent. Therefore, consistency should
only be used as a measure of forecast quality in concert
with other measures such as those discussed in the pre-
vious subsection.

c. Spread versus skill

The second moment (variance) and even higher mo-
ments of a forecast probability distribution can be pre-
dicted using ensemble forecasts. To date, the relation of
a measure of the second moment (spread) to the ensem-
ble mean forecast error has received the most attention
(Kalnay and Dalcher 1987; Molteni and Palmer 1991;
Barkmeijer 1993; Houtekamer 1993). Traditionally, the
quality of the ensemble forecast’s variance prediction
has been judged by examining the correlation of the
ensemble spread and the forecast error of the ensemble
mean over a large set of forecasts (Barker 1991; Wobus
and Kalnay 1995). Although this correlation is a poor
measure of the quality of the second-moment forecast
from an ensemble (Houtekamer 1993), examples of the
correlation of the spread and the ensemble mean rms
are discussed to facilitate comparison with the results
of previous studies.

Another evaluation of the spread versus skill relation
is performed by evaluating the consistency of the en-
semble predictions of forecast error and the verifying
forecast error between the ensemble mean and the truth.
One cannot get a random sample of the distribution of
ensemble mean rms error directly from an ensemble of
forecasts. With an n-member ensemble, one might con-
sider examining the distribution of rms differences be-
tween a given ensemble member and the mean of the
remaining n 2 1 members; this would produce n values.
However, these rms differences are not independent; this
is easily seen by considering the limiting case of a two-
member ensemble in which this would produce two
identical values.

In order to produce a random sample of the ensemble
mean rms, one needs a sample of the mean of the dis-
tribution that is independent of the randomly chosen
members. One can then compute the rms difference be-
tween each of the n ensemble members and this inde-
pendent mean. These n predictions of the rms error can
be used to partition the real line into n 1 1 bins. For
an ensemble that is consistent with the truth, the veri-
fying rms error of the ensemble mean should fall into
each of these bins with equal probability. The same chi-
square method described above can be used to evaluate
this. This also measures how well one can predict the
expected value of the ensemble mean rms error from
the ‘‘spread’’ of the ensemble.

All that is needed now is an independent sample of
the mean of the probability distribution. As is discussed
in sections 3 and 4, an independent mean is available
in the ensemble forecasts made here, at least for short
forecast lead times.

d. Inclusiveness

Another measure of the quality of an ensemble fore-
cast examines whether extreme outliers of the proba-
bility distribution are appropriately sampled. The rms
error of the member with the largest rms in an ensemble
is used as a crude measure of how well the edges of
the probability distribution are sampled by the ensem-
ble.

One might also be interested in evaluating the worst
forecast ‘‘bust’’ over a large set of ensemble forecasts.
Here, the worst forecast bust is defined as that ensemble
forecast for which the ensemble member with the min-
imum rms (the best forecast in the ensemble) is farthest
from the verifying truth. Because this is an extremely
unstable statistic, the notion of worst forecast bust is
measured by averaging the rms error of the best ensem-
ble member for each of the forecast cases that fall in
the top 1% of worst forecast busts found in a large set.
This quantity is related to how often the ensemble fore-
cast completely fails to represent the true state.

It appears that there is no generally accepted measure
of inclusiveness in this sense. In fact, there seem to be
almost as many measures as there are operational pre-
diction organizations. Therefore, this measure should be
regarded as one possible measure that is appropriate to
some subset of users of ensemble forecasts.

3. Constrained and unconstrained ensembles

A number of the world’s operational prediction cen-
ters are producing constrained initial conditions for their
ensemble predictions. Here, a ‘‘constrained’’ ensemble
initial condition is defined as an ensemble in which only
some subspace of the complete model phase space is
sampled. Constrained ensemble forecasts include the
use of the singular value decomposition (singular vec-
tors) at ECMWF (Molteni et al. 1996) and the breeding
cycle at NCEP (Toth and Kalnay 1996). In this section,
constrained and corresponding unconstrained ensemble
initial condition distributions are compared in a general
perfect model framework.

Suppose one is given a perfect prediction model that
operates on points in an n-dimensional real (one can
easily generalize to complex) phase space (Gleeson
1970) along with a long model trajectory T(t), where t
is time, that corresponds to the ‘‘truth’’ of the system
being predicted. Also assume that observed points can
be generated for each true point by adding a random
selection from a prescribed observational error distri-
bution E.

Given an observed point O(t) and the observational
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FIG. 1. An idealized depiction of the constrained and unconstrained
probability distributions. The unconstrained distribution is repre-
sented by the spherical distribution centered around the observed
point and enveloping the true point. The constrained distribution is
the circular distribution centered on the observed point and on a plane
defined by the two vectors that are dynamically constrained ‘‘im-
portant’’ directions in phase space.

error distribution, an ensemble of initial conditions that
is consistent with the corresponding truth T(t) can be
generated by subtracting random samples of E from O(t)
(Leith 1974). In addition, all ensemble initial conditions
used here are made symmetric around O(t) by doubling
the size of the ensemble. If Ui is a member of the en-
semble, then the point Vi 5 2O(t) 2 Ui is also added
as a member. This procedure guarantees that the ensem-
ble mean of the initial conditions is O(t). Similar pro-
cedures are used at the operational centers to minimize
ensemble mean forecast error at early forecast leads
(Molteni et al. 1996; Toth and Kalnay 1993). Toth and
Kalnay (1996) found that having paired perturbations
reduces error at longer lead times, too.

This set of ensemble initial conditions is referred to
as an unconstrained ensemble initial condition distri-
bution in what follows, and forecasts generated from
these initial conditions are referred to as unconstrained
ensemble forecasts. The complete unconstrained ensem-
ble is used to compute the ensemble mean and for the
measures of inclusiveness described in the previous sec-
tion. Since only that half of the unconstrained ensemble
that is randomly selected (the Ui) is consistent with the
truth, only these ensemble members are used for form-
ing bins to evaluate measures of consistency. If one uses
both members of the pairs for forming bins, the truth
is not consistent, even at the initial time.

Suppose that an m-dimensional subspace of the n-
dimensional phase space is specified by m vectors rep-
resenting directions around O(t) that are believed to be
of unusual interest. For instance, these vectors could be
the m leading singular vectors (ECMWF) or breeding
vectors (NCEP). The constrained ensemble initial con-
dition samples the projection of the observational error
distribution on this subspace. It can be generated by
randomly selecting ensemble members in the same fash-
ion as for the unconstrained ensemble initial conditions
but then projecting onto the m-dimensional subspace.
Again, the constrained ensemble is made symmetric
around O(t) by doubling the ensemble size. Figure 1
illustrates the unconstrained and constrained initial con-
dition probability distributions that are sampled by the
ensemble initial conditions. The constrained ensemble
uses all the information about the observational error
distribution that can be expressed in the constrained
subspace. This is the only fair way to compare the con-
strained and unconstrained ensembles, since any other
sampling technique in the constrained subspace would
unfairly penalize the constrained ensembles.

By definition, the half of the constrained ensemble
initial conditions that is randomly selected [i.e., not the
part of the ensemble that is added to make it symmetric
around O(t)] is consistent with the truth in the m-di-
mensional subspace, but it is inconsistent with the truth
in the remaining (n 2 m)-dimensional subspace of the
phase space (given that the observational error’s pro-
jection onto these remaining directions is not a delta
function, which seems a reasonable assumption). In oth-

er words, the comparison of the constrained and un-
constrained methods is as fair as possible since the con-
strained methods know everything about the projection
of the probability distribution onto the directions they
sample.

Now, suppose that the forecast model is a linear op-
erator, L. If L is applied to the constrained and uncon-
strained ensembles, the ensemble means are identical to
the result of applying L to the observed point O(t) (Leith
1974; Vukicevic 1991). The unconstrained ensemble
forecast is a random sample of the truth (consistent) in
this perfect model study. The constrained ensemble con-
tinues to be consistent in the m-dimensional subspace
that results from operating on the original constrained
subspace with L, but it also continues to be inconsistent
in the remaining n 2 m directions. The fact that it is
inconsistent in some directions implies that the spread
and skill relation is also inconsistent.

Spread–skill consistency can also be evaluated in this
linear model context. The observed point O(t) is by
construction the mean of both the probability distribu-
tion being sampled and the full ensemble, so it can be
used for the computation of the expected rms error of
the ensemble mean (see section 2). In the linear model,
L[O(t)] remains the mean of the distribution, so it can
be used to compute a forecast distribution of ensemble
mean rms error at all lead times. A consistent sample
of the expected ensemble mean error can be produced
by computing the error between L[O(t)] and the ele-
ments of the randomly chosen half of the unconstrained
ensemble. Once again, the failure of the constrained
distribution to sample some directions in phase space
means that the constrained distribution does not dem-
onstrate this spread–skill consistency.

This section demonstrates that in a linear system there
may not be a reason to use a constrained ensemble, given
the measures being used here. The ensemble mean errors
are identical and the unconstrained ensemble is consis-
tent (both for the distributions and for spread versus
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skill), while the constrained ensemble is only consistent
over some subspace. The evaluation of inclusiveness is
difficult enough that it is addressed only empirically
through the nonlinear experiments of the next section.
Even if the constrained subspace were known a priori
to contain most of the interesting dynamics, there might
still be no reason to use a constrained ensemble. These
same results also apply to the early times of a forecast
when the behavior of a nonlinear forecast model is qua-
si-linear (Errico et al. 1993; Ehrendorfer and Tribbia
1997).

4. Design of nonlinear experiments

This section describes simple, nonlinear perfect mod-
el experiments that evaluate some of the impacts of
nonlinear models on the results of the previous section.
Emphasis is given to determining if nonlinear effects
could make the use of constrained ensemble initial con-
ditions superior to the use of unconstrained ensembles.
The experiments are described in terms of a general
nonlinear dynamical system and then applied to several
systems (see the appendix) in the next section.

First, a large number of true points on the attractor
of the dynamical system are generated by doing an ini-
tial very long spinup integration, followed by a contin-
ued integration in which the model state is periodically
sampled. In the real world, true states like this can never
be known because of inevitable observational errors.

Next, an observed state corresponding to each true
point is generated by adding a random sample from
some observational error distribution to the true state
vector. For the results shown here, the observational
error distribution is a random independent selection
from a normal distribution with a given standard de-
viation for each of the components of the true state
vector [independent identically distributed (iid) normal].
A number of other types of observational error distri-
butions were also examined. These included indepen-
dent selections from uniform distributions and the use
of normal distributions for error distance in which the
individual error components are not independent. Use
of these different observational error distributions had
no qualitative impact on the results.

As in the discussion of the previous section, an un-
constrained ensemble distribution is generated for each
observed state by subtracting a random sample of the
observational error distribution from the observed state
for each ensemble member. Again, a second ensemble
member that is symmetric around the observed point is
included for each randomly selected member. The ran-
domly selected half of the unconstrained ensemble is
then consistent with the observational error distribution
by definition.

A constrained ensemble distribution is also generated
for each observed state as in the previous section. The
constrained ensembles studied here are restricted to a
two-dimensional subspace of the model phase space.

Given two orthonormal vectors that span this subspace,
the observational error distribution can be projected on
the subspace, resulting in a two-dimensional probability
density distribution. The constrained ensemble is com-
posed of random samples of this reduced dimension
probability density distribution. This projection of the
observational error distribution onto the constrained
subspace allows the constrained ensemble to use all in-
formation about the observational error distribution that
can possibly be expressed in the subspace. As noted in
section 3, this is the only fair way to compare con-
strained versus unconstrained ensembles, since any oth-
er method of sampling in the constrained space would
unfairly penalize the constrained methods.

A variety of algorithms for selecting the constrained
subspace have been examined. The two primary ex-
amples, perturbed integrations and singular vectors were
discussed in detail for the Lorenz-63 system (see ap-
pendix) in Anderson (1996a).

The perturbed integration method (PI hereafter), is
similar to the breeding cycle used at NCEP. To find the
m most important directions, m randomly selected or-
thogonal vectors of very small amplitude are added to
the true point at the start of the long spinup integration.
Each of these perturbed states is integrated along with
the true point. After each time step, the vectors repre-
senting the difference between the perturbed states and
the true state are orthonormalized (to the same small
amplitude), and the resulting orthogonal vectors are add-
ed to the true state to form a new set of perturbations.
The perturbation vectors should converge to the local
Lyapunov vectors of the dynamical system after a long
integration (Buizza and Palmer 1995). The PI method
differs from the operational breeding cycle in several
ways. First, the breeding cycle normalizes to finite am-
plitude perturbations while the PI method normalizes to
a very small amplitude. Second, the breeding cycle per-
turbs around the analysis state (which introduces dis-
continuities in the trajectory followed during the com-
putation of the bred vectors), rather than the truth. Per-
turbed integrations around the observed points instead
of the truth were also investigated; the results were qual-
itatively indistinguishable from those for the PI method
and are not discussed further. It is possible that the ap-
plication of the breeding cycle within the context of an
analysis system could significantly change the behavior
of the bred vectors; this possibility needs to be inves-
tigated further in more realistic models. Operationally
produced breeding vectors have also been used for other
applications, such as reducing analysis errors or select-
ing optimal locations for targeted observations. The
present study only attempts to assess the use of the PI
method for producing ensemble forecasts in a somewhat
unrealistic environment where the initial errors are un-
related to the basic flow.

The use of the singular vector decomposition (SVD)
is the other primary method for selecting constrained
directions. The SVD method used here is essentially
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identical to those used operationally (Molteni et al.
1996) and in the study of Houtekamer and Derome
(1995). A description of the use of this method in one
of the low-order models discussed hereafter can be
found in Anderson (1996a). A number of different op-
timization times have been examined for the SVDs; the
impact of the optimization time on the results is dis-
cussed in the following sections.

The evaluation of spread–skill consistency in the fully
nonlinear model is somewhat problematic. At the initial
time, the observed point is the mean of the probability
distribution and the full ensemble, and can be used to
compute samples of the ensemble mean rms error (sec-
tion 2) as in the linear problem of section 3. At later
times, the ensemble mean of the full ensemble can be
used as a proxy for the mean of the forecast distribution.
A random sample of the expected rms error of the en-
semble mean can be generated from the rms distance
between each member of the randomly selected half of
the ensemble and the mean of the full ensemble. How-
ever, in the nonlinear model, there is no guarantee that
the full ensemble mean remains consistent with the fore-
cast distribution’s mean (Leith 1974) as forecast lead
extends past the linear range. This can lead to a loss of
consistency between the ensemble prediction of ensem-
ble mean rms error and the verifying rms error of the
ensemble mean at long forecast leads. A consistent en-
semble forecast will begin with a consistent relation,
but this consistency may gradually disappear as the fore-
cast extends into the nonlinear regime.

5. Nonlinear model results

Comparisons between constrained and unconstrained
ensembles are presented for a pair of three variable dy-
namical systems in this section. Both models can be
viewed as low-order analogs of the large-scale atmo-
spheric dynamics (Lorenz and Krishnamurthy 1987; Lo-
renz 1984). The first model has an unusually straight-
forward attractor that can facilitate understanding the
differences between the different ensembles. The at-
tractor of the second system is considerably more com-
plicated and may provide a better analog to the behavior
found in real forecast models.

All results shown in this section are averages over
10 000 sample sets of ensemble forecasts. This large set
is sufficient to produce extremely stable statistics for
most of the quantities evaluated; splitting the set into
two 5000 sample halves had little impact on the results.

Each experiment was performed for 2, 9, and 99
member pair ensembles; results are generally only pre-
sented for two member pair ensembles (i.e., two pairs
of integrations). This choice seems most compatible
with the very small ensemble sizes (especially relative
to the phase space size) that can be produced opera-
tionally. However, it is important to recall that the en-
semble forecasts here are simply being used to sample
the probability distributions of various scalar quantities.

The size of the phase space and its complexity have no
direct impact on the ability of an ensemble to sample
such quantities (Cramer 1966; see his chapter 14).
Where results for ensembles with more than two mem-
ber pairs are presented (see Fig. 9 and related discus-
sion), they should not be used to compare constrained
to unconstrained ensemble performance. For a fair com-
parison of larger ensemble sizes, one would have to
increase the dimension of the constrained subspace,
which was not done for the 9 and 99 member pair en-
sembles here.

a. Lorenz-63

The first model examined is the popular Lorenz-63
system (see appendix; Lorenz 1963), which has been
used in a number of ensemble forecast investigations
(Palmer 1993; Houtekamer and Derome 1994). All re-
sults shown are for an observational error distribution
with standard deviation of 1.0, which is approximately
2% of the total attractor range of this model. Forecast
integrations extend to 1.0 nondimensional time units,
which is somewhat longer than the time for an average
attractor trajectory to orbit one of the two lobes of the
attractor. As shown below, it is also a long enough in-
tegration that the error of individual ensemble members
is beginning to saturate; later stages of the forecasts are
clearly in the nonlinear regime. The SVD results shown
are for an optimization time of 1.0 time units. Opti-
mization times ranging from a single time step (0.01
time units) through 2.0 time units were also tested to
assess the impact of the optimization time on the SVD
results.

Figure 2 displays the rms error of the ensemble mean
as a function of forecast lead time, along with the mean
error of the individual ensemble members and the error
of the ensemble members with the maximum and min-
imum rms as a function of lead time for the unconstrai-
ned ensembles and the constrained SVD ensemble. The
curves for the rms of the ensemble mean are extremely
similar demonstrating that the constrained ensemble
does not offer an advantage for this quantity. The min-
imum rms curves are also very similar, but the curve
for the mean error of the individual members and the
maximum error curve show the SVD ensemble having
slightly lower rms. The brief initial decrease in the rms
error quantities is a reflection of the collapse of off-
attractor quantities onto the attractor.

All four rms error curves are nearly identical after
about 0.05 time units for the unconstrained and PI con-
strained ensembles (not shown). The rms errors of the
100 worst forecast busts as defined in section 2 are also
indistinguishable for both the PI and SVD constrained
ensembles and the unconstrained ensemble.

Although the rms of the ensemble mean is the same
for the constrained and unconstrained ensembles, there
are significant differences in the consistency results.
Figure 3 shows the consistency for the x and z variables
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FIG. 2. Average rms error as a function of lead time for uncon-
strained (solid) and SVD constrained (dashed) two-pair ensembles
for the L63 model; observational error standard deviation is 1.0. The
upper and lower curves are for the maximum and minimum rms,
respectively; the second set of curves from the bottom is the rms of
the ensemble mean; and the final set is the mean rms for the ensemble.
All results are averages over 10 000 samples. The minimum and en-
semble mean curves are nearly identical for the unconstrained and
constrained.

FIG. 4. Consistency of ensemble ‘‘spread’’ and rms error of en-
semble mean measured by the significance of the chi-square test as
a function of lead time for the same L63 experiments as in Fig. 2.
Results are shown for the unconstrained (solid), PI constrained
(dashed, only briefly nonzero), and SVD constrained (indistinguish-
able from zero) ensembles.

FIG. 3. Consistency of ensemble predictions and truth measured by the significance of the chi-square test as a function of lead time for
the x and z variables of the L63 model for the same experiment as in Fig. 2. Results are for the unconstrained ensemble (solid), the PI
constrained ensemble (dashed), and the SVD ensemble, which is indistinguishable from zero in both panels.

of the Lorenz-63 system as a function of forecast lead
time (results for the y variable are qualitatively similar
to those for x). For all three variables, the SVD con-
strained ensemble is highly inconsistent at all lead times
with significance values generally less than 1 3 10210.
The unconstrained ensemble is consistent by definition
at the initial time of the forecast. For the x and y vari-
ables, the unconstrained ensemble also appears to be
consistent with the truth at all leads while the con-
strained PI ensemble is inconsistent until about time 0.1

and consistent thereafter. For the z variable, both the PI
and unconstrained ensembles are consistent initially but
rapidly become inconsistent as forecast lead increases
past time 0.1; at later times both ensembles regain con-
sistency. A more detailed analysis and some alternative
measures need to be developed to better understand this
behavior.

Figure 4 shows the consistency of the ensemble
spread and skill as a function of lead. Again, the SVD
ensemble is highly inconsistent at all lead times. For
this quantity, however, the PI ensemble is also highly
inconsistent, while the unconstrained ensemble is con-
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FIG. 5. Average rms error as a function of lead time for uncon-
strained (solid) and SVD constrained (dashed) two-pair ensembles
for the L84 model; observational error standard deviation is 0.2. The
upper and lower curves are for the maximum and minimum rms,
respectively; the second set of curves from the bottom is the rms of
the ensemble mean; and the final set is the mean rms for the ensemble.
All results are averages over 10 000 samples. The minimum and en-
semble mean curves are nearly identical for the unconstrained and
constrained.

sistent until lead time 0.5. The conclusion is that the
unconstrained ensemble can be used to make reliable
predictions of forecast skill out to time 0.5 but that the
two constrained ensembles can not.

Much of the behavior of these three ensembles in the
Lorenz-63 model can be explained since both the equi-
librium and nonequilibrium dynamics of this system are
relatively straightforward. The large-scale structure of
the attractor consists of nearly flat sheets that are at-
tached at one end and trajectories rotate around these
sheets, sometimes switching from one to another. The
nonequilibrium dynamics in the vicinity of the attractor
is also simple; points close to the attractor are rapidly
pulled in toward the nearest attractor sheet. If one can
capture the details of that part of the observational error
distribution that is parallel to the local attractor sheet,
one can predict most of the evolution of the probability
distribution. This is reflected by the small differences
between the unconstrained and PI constrained distri-
butions in this model. As noted in Anderson (1996a),
the two leading vectors computed by the PI method are
very nearly parallel to the local attractor sheet over the
vast majority of the Lorenz-63 attractor. Within about
0.1 time units, both the two-dimensional PI ensemble
and the three-dimensional unconstrained ensemble are
pulled onto the nearest attractor sheet (in the vicinity
of the region where the two sheets are joined somewhat
more complicated behavior is possible; see section 6
and Fig. 11). For the x and y variables for which the
unconstrained distribution remains consistent, the PI
distribution also becomes consistent as the two distri-
butions collapse to the same plane.

Although the primary off-attractor dynamics is a col-
lapse to the nearby attractor sheet, there is also a shear
in phase space in directions along the attractor. The
consistency of spread and skill is affected by this shear
as the PI and unconstrained distributions collapse to the
attractor. The PI distribution may not sample points that
contain the true point (because it only samples in di-
rections parallel to the local attractor), while the un-
constrained does sample the true point in all cases (see
additional discussion in section 6 and Fig. 10). For this
reason, the unconstrained ensemble is able to maintain
spread skill consistency for a much longer period of
time.

The SVD constrained ensemble performs more poorly
than the PI in this case (in terms of consistency with
the truth) because the two leading singular vectors are
on average not nearly as close to parallel to the local
attractor sheet (Anderson 1996a). The SVD ensemble
therefore tends to fail to sample the important part of
the probability distribution parallel to the local attractor
and ends up being inconsistent with the truth. It is in-
teresting to note that the singular vectors are not such
poor predictors of the local attractor structure that the
rms of the ensemble mean is degraded.

b. Lorenz-84

The Lorenz-63 model’s extremely simple attractor is
not a very rigorous test of ensemble initial condition
distributions. In particular, because the PI method is so
successful in sampling the relevant phase space direc-
tions, this model can cast undue aspersions on the SVD
method. The Lorenz-84 model (Lorenz 1984; see ap-
pendix) is another three-variable model that has a more
complicated attractor structure. For this model, the at-
tractor dimension is greater than 2 and not nearly in-
tegral (Leonardo 1995) so that neither of the constrained
direction methods can give an accurate depiction of the
local attractor structure in all cases. Ehrendorfer and
Tribbia (1997) examine the use of the SVD method for
predicting the evolution of the second moment of fore-
cast probability distributions in this model.

All results shown are for an observational error dis-
tribution with standard deviation of 0.2, which is ap-
proximately 2% of the total attractor range of this model.
Forecast integrations extend to 2.0 nondimensional time
units, which is somewhat longer than the time for an
average attractor trajectory to go once around the central
portion of the attractor. As shown below, it is also a
long enough integration that the error of individual en-
semble members is beginning to saturate. The SVD op-
timization time for the results shown is 1.0 time units.

Figure 5 shows the rms error curves for the uncon-
strained and SVD ensembles; in this case, the curves
for the PI ensembles are indistinguishable from those
for the SVD. In both cases, the rms error of the ensemble
mean forecast is essentially identical for unconstrained
and constrained ensembles at all forecast leads. Again,
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FIG. 6. Consistency of ensemble predictions and truth as measured by the significance of the chi-square test as a function of lead time
for the y and z variables of the L84 model in the same experiment as in Fig. 5. Results are shown for the unconstrained ensemble and the
PI and SVD constrained ensembles, which are both indistinguishable from zero throughout both panels.

FIG. 8. Correlation between ensemble spread and ensemble mean
rms error as a function of lead time for the same experiment as
depicted in Fig. 5. Results are shown for the unconstrained ensemble
(solid) and the PI (dashed) and SVD (dash-dotted) constrained en-
sembles.

FIG. 7. Consistency of ensemble spread and ensemble mean rms
error as measured by the significance of the chi-square test as a
function of lead time for the same L84 experiments as in Fig. 5.
Results are shown for the unconstrained and for the PI and SVD
constrained ensembles, which are both indistinguishable from zero
throughout.

the mean error of individual ensemble members is larger
in the unconstrained ensemble, demonstrating that this
ensemble is making a more efficient sampling of the
phase space.

Figure 6 shows the consistency for the y and z vari-
ables. For all of x, y, and z, both constrained ensembles
are highly inconsistent for all lead times with values of
significance rarely exceeding 1 3 10210. For the y vari-
able, the unconstrained ensemble is somewhat consis-
tent out to about time 0.5; its consistency for x (not
shown) is similar but disappears even earlier. For z (Fig.
6), the unconstrained ensemble becomes inconsistent for

lead times from 0.3 to about 1.0 and regains consistency
thereafter.

Figure 7 shows the spread–skill consistency for the
L84 model. Again, both constrained distributions are
highly inconsistent at all leads while the unconstrained
ensemble retains consistency to about time 0.5. One
could also look at the more traditional spread–skill cor-
relation as a function of lead time, which is shown in
Fig. 8. All three ensembles have a low spread–skill cor-
relation at early lead times because the initial condition
probability distribution is fixed and therefore uncorre-
lated with the initial error by definition (Barker 1991;
Wobus and Kalnay 1995). This demonstrates just one
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FIG. 9. Mean rms error of worst forecast bust as a function of lead
time for the same L84 ensembles as depicted in Fig. 5 except for (a)
two-pair ensembles, (b) 9-pair ensembles, and (c) 99-pair ensembles.
Results are for the unconstrained ensemble (solid) and the PI (dashed)
and SVD (dash-dotted) constrained ensembles.

of the many problems of using spread–skill correlation.
However, at later times, the unconstrained distribution
has a significantly higher correlation between spread and
skill. This enhanced correlation extends well beyond
time 0.5 at which the very sensitive consistency test
shows the spread and skill to become inconsistent. This
loss of consistency may be because the full ensemble
mean is no longer consistent with the mean of the true
distribution at these lead times (section 4). The conclu-
sion is that the unconstrained distribution is more useful
for making predictions of forecast skill.

Figure 9 shows the average rms of the worst forecast
busts as defined in section 2 for a variety of ensemble
sizes. For the two member pair ensembles shown in Fig.
9a, the unconstrained ensemble has rms slightly smaller
than for the two constrained ensembles. Since this is
likely to be an extremely unstable statistic, this result
was verified with much larger sets (50 000 samples) and
found to be stable. In this model, the constrained en-
sembles are more likely to have forecasts that entirely
miss the truth than is the unconstrained ensemble.

To date, only two member pair ensembles have been
discussed since this seems to be the most similar to the
small ensembles used by operational centers. In the ex-
periments with larger ensembles discussed next, the con-
strained ensembles are unfairly restricted to two-di-
mensional subspaces, so these results should not be used
to compare the abilities of constrained and unconstrained
ensembles. It is of interest, however, to use considerably
larger ensembles to better understand the behavior of
the complete probability distributions and to make sure
that the small ensemble size is not contributing quali-
tatively to the results presented. For this reason, Fig. 9
also contains plots of the worst forecast busts for the
Lorenz-84 models for 9 and 99 member pair ensembles.
As the ensemble size increases, the ratio between the
worst forecast busts for the constrained versus the un-
constrained ensembles get progressively larger. For all
other fields discussed previously, there is no qualitative
difference between the larger ensemble size results and
the two member pair ensemble results. This experiment
is not meant to suggest that operational centers would
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choose to search a number of directions in phase space
that is less than the size of the ensemble.

The SVD method has an additional free parameter,
the optimization time interval for the computation of
the SVDs. As noted above, the results shown here are
for an optimization time of 1.0 time units in both mod-
els, but SVD constrained ensembles were also evaluated
for optimization times ranging from 0.01 through 2.0
time units. In operational forecasting the length of the
optimization time has significant impacts on the struc-
ture of the SVDs and on the forecast results. In general,
operational considerations dictate that the optimization
time should be bounded above by the time interval up
to which the evolution of the finite amplitude ensemble
perturbations are well approximated by linear theory
(Buizza 1995).

In the results here, the length of the SVD optimization
had negligible impact on the results although the singular
vectors themselves are sensitive to this parameter (An-
derson 1996a). The results described in this section occur
not because the SVD method gives a poor set of con-
strained directions, but because sampling in any con-
strained two-dimensional subspace leads to similar re-
sults.

6. Interpretation and discussion

Dynamically constrained ensemble initial conditions
are a response to the staggering size of the phase spaces
associated with modern atmospheric prediction meth-
ods. Since one cannot hope to sample each of these
directions independently, one can argue that the most
appropriate use of resources is to sample only in a subset
of directions that are believed a priori to be of most
importance. In one argument, those directions that are
believed to support the most rapid error growth have
been judged to be the most important (Palmer et al.
1993). In other cases, those directions onto which the
analysis error is believed to project most heavily are
selected as most important (Toth and Kalnay 1996).

The results discussed in the previous sections suggest
that there are instances in which an a priori selection
of important directions for constrained initial conditions
may not be a useful approach. For the sake of argument,
suppose that algorithms exist to determine precisely all
the important (constrained) directions for an atmospher-
ic prediction model using whichever definition of im-
portance is deemed appropriate. If the remaining direc-
tions (referred to in this section as unconstrained direc-
tions) are in fact irrelevant to the evolution of the fore-
cast model, then there is no apparent harm in sampling
in these directions. The projection of the ensemble initial
conditions onto the unconstrained directions will evolve
with no significant impact on the important constrained
directions by definition. This was demonstrated for lin-
ear dynamics in section 3.

An additional simple demonstration can be made by
adding a large number of additional ‘‘irrelevant’’ de-

grees of freedom to the Lorenz-84 model and investi-
gating the behavior of constrained and unconstrained
ensembles. A 1000-variable model composed of the Lo-
renz-84 three-variable system and 997 additional vari-
ables whose dynamics consists of a uniform exponential
decay to zero is examined (see appendix). The experi-
mental design is the same as in section 5 with the ob-
servational error distribution being iid normal for each
of the 1000 variables. Because all of the additional vari-
ables are decaying, both the PI and SVD methods of
selecting a pair of constrained directions have negligible
projections onto any of the auxiliary directions in the
phase space. The two leading vectors for each method
are essentially identical to the Lorenz-84 in the re-
maining three phase-space dimensions. Results were ex-
amined for a reduced set of 1000 samples and for en-
semble sizes of 2 and 9 pairs. The results for this 1000-
variable auxiliary model are qualitatively similar to
those for the Lorenz-84 model for the x, y, and z variable
consistency; the spread–skill consistency; and for the
correlation of spread and skill. For the additional 997
variables, the unconstrained ensemble is consistent by
definition at all leads while the constrained ensembles
are both inconsistent. The rms error of the ensemble
mean forecasts from the constrained and unconstrained
distributions are indistinguishable at all forecast leads.
There are some differences in the maximum and min-
imum ensemble member rms and in the mean rms of
the ensemble members. Initially, the unconstrained en-
semble has higher values for these quantities than does
the constrained ensemble. As the auxiliary variables de-
cay and the three standard variables evolve, these three
rms error quantities from the unconstrained ensemble
collapse toward the constrained values, and by time 1.0,
the behavior is similar to that for the original L84 cases
(even if the decay time for the auxiliary variables is
infinite). This same behavior is reflected in the worst
forecast bust for the two ensemble pair cases. For early
lead times the unconstrained ensemble has slightly larg-
er mean rms for the worst forecast bust, but by time
1.0, the unconstrained has significantly smaller errors
than the constrained cases.

This test is a particularly rigorous one for the un-
constrained ensembles. There are fewer than three im-
portant directions in this model by any of the standard
definitions and the constrained ensembles are given high
quality information about two of these directions. The
unconstrained ensemble has to deal with nearly 1000
additional unimportant directions. For the measures of
forecast quality and the dynamical systems investigated
here, even a huge number of unimportant directions does
not impact the quality of the unconstrained forecast.

To date, it has been assumed that the unconstrained
directions are entirely irrelevant to the evolution of the
constrained directions. If this is not the case, it becomes
increasingly difficult to justify the use of constrained en-
sembles. Two simple idealized examples, which reflect
behavior that occurs in both the L63 and L84 models,
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FIG. 10. Evolution of idealized constrained and unconstrained ini-
tial condition distributions in an attractor with shear. The attractor is
represented by the dotted line. The initial true point and observed
point are marked by the asterisks in the lower left portion of the
figure. The observed point is surrounded by the circular unconstrained
initial distribution; the constrained directions are depicted by the dark
line with two arrows through the observed point. The true point and
the corresponding constrained and unconstrained distributions at a
forecast time are depicted in the upper right portion of the figure.

FIG. 11. Evolution of idealized constrained and unconstrained ini-
tial condition distributions in an attractor with multiple ‘‘branches.’’
The upper panel shows the initial conditions as in Fig. 10; the heavy
dashed line separates points that are attracted to the right branch from
those attracted to the left. The lower panel shows the resulting dis-
tributions at a forecast time.

are used to demonstrate the potential pitfalls of the con-
strained ensemble approach. In both examples, the con-
strained directions are assumed to be perfectly computed
to give information about local important directions (the
attractor), while the unconstrained directions are still as-
sumed to decay quickly onto the attractor. It is important
to keep in mind that these idealized examples are indi-
vidual cases, while all behavior discussed to date has
been the mean over a large set of ensemble forecasts.

In the first example, depicted in Fig. 10, the dotted
line represents an idealized attractor and the shaded cir-
cle an observational error distribution (unconstrained
initial condition distribution) centered around an ob-
served point. It is assumed that all points off the attractor
quickly collapse onto the attractor. However, in this ex-
ample it is also assumed that there is a shear perpen-
dicular to the attractor so that points above the attractor
move more quickly in a direction parallel to the attractor
than points below the attractor. The constrained and un-
constrained distributions that result after some time are
shown in the upper part of Fig. 10. That portion of the
probability mass that was above the attractor has been
swept ahead of the true point during its collapse toward
the attractor, while the smaller portion that was origi-
nally below the attractor has lagged behind the true
point. Since the constrained initial condition distribution
is entirely above the attractor, the constrained distri-

bution is completely ahead of the true point. A portion
of the unconstrained distribution does remain around
the true point. The result in this case is that the con-
strained distribution is clearly inconsistent with the
truth, while the unconstrained distribution, although
spread over a larger area, does contain the truth.

An even more drastic example in which failing to
sample ‘‘unimportant’’ directions can be problematic is
depicted in Fig. 11. The attractor is locally represented
by the two dotted curves that could have resulted from
a recent bifurcation (qualitatively similar behavior oc-
curs in both L63 and L84 models) or could represent
two pieces of the attractor that simply happen to ap-
proach each other for a time (similar behavior occurs
in L84 model). Points to the right of the dotted line are
attracted to the right portion of the attractor; points on
the left of the line are attracted to the left. In the ex-
ample, the true point is on one branch of the attractor,
but the observed point is close to the other. The initial
observational error distribution (unconstrained ensem-
ble) and the constrained directions are shown at the top
of the figure. Much of the unconstrained distribution
and all of the constrained distribution move along the
left branch of the attractor as time passes. However, as
the lower part of Fig. 11 shows, the true point and some
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portion of the unconstrained distribution lie on the right
side of the attractor. In this case, the constrained dis-
tribution is highly inconsistent with the truth. Cases sim-
ilar to this example were found to be the cause of many
of the largest forecast bust cases in both the L63 and
L84 model integrations. The behavior depicted in Fig.
11 might happen frequently in real forecast models if
statistically significant clusters (Brankovic et al. 1990)
are occurring in operational forecasts; it remains unclear
at this time if such behavior is relevant for atmospheric
prediction.

The examples above demonstrate that unconstrained
ensembles can have a number of advantages over con-
strained ensembles. If consistency is the goal, there ap-
pears to be no justification for the use of constrained
ensembles. For the simple models examined here, there
is also no difference between the rms error of the en-
semble mean forecasts. However, it is possible to con-
struct dynamical systems for which the rms error of the
ensemble mean is better or worse for the constrained
than for the unconstrained ensembles. One can also con-
struct different measures for the ensemble mean skill
that give different expected values for the constrained
and unconstrained ensembles. The important point is
that it is the details of the dynamics and the error mea-
sure that determine the relative ensemble mean errors
of the constrained and unconstrained ensembles, and
that the size of the phase space and the attractor is not
of direct relevance. For the simple systems discussed
here, the dynamics do not support the use of constrained
ensembles to improve the ensemble mean forecast. If
this is not the case for realistic forecast models, it should
be rigorously demonstrated as an argument to support
the use of constrained ensembles.

Understanding why the errors of the ensemble mean
forecasts are so nearly identical in the models used here
is also of interest. It seems likely that this is related to
the fact that the models examined have only quadratic
nonlinearities. For linear forecast models, one can dem-
onstrate a number of results concerning the errors of
constrained and unconstrained ensembles (Ehrendorfer
and Tribbia 1997). They show that an optimal sample
of the forecast error covariance can be obtained by sam-
pling the leading singular vectors in the linear regime.
However, the results here extend well into the nonlinear
regime; this can be verified by noting that the errors of
the discrete forecast produced from the single observed
point are considerably larger than the errors of the en-
semble means by the end of the forecasts. Understanding
why the constrained and unconstrained errors are so
similar might allow an a priori statement about the ex-
pected results in larger models.

The results of Ehrendorfer and Tribbia (1997) also
point out the importance of the measure used for eval-
uating ensemble forecasts. They demonstrate that a set
of perturbations along the leading singular vectors is
optimal to sample the forecast error covariance. This
same set of perturbations is not optimal under the mea-

sures suggested here for evaluating ensemble forecasts
as demonstrated in previous sections.

In order to evaluate unconstrained forecasts in op-
erational models, one must have some means for pro-
viding a random sample of the analysis error. One could
explicitly use information about the error covariances
(and higher moments) to attempt to construct explicit
descriptions of the error distribution. While information
about error covariances is part of analysis systems, this
information is considered to be highly uncertain and it
would be difficult and expensive to use.

Instead, it might be possible to use the power of Monte
Carlo methods to produce random samples of the analysis
error distribution. To do this, one could perform a number
of different assimilations of data following the example
of Houtekamer and Derome (1995) (also Houtekamer et
al. 1996), each starting from a randomly selected initial
condition and each using independent samples of obser-
vations at each step during the assimilation.

To do this properly would in fact require completely
independent sets of observations (i.e., a number of com-
pletely redundant global observing systems). Since such
redundancy is clearly out of the question, one must at-
tempt to produce random samples of the observational
error distribution associated with the global observing
system at each observing time. One method for at-
tempting this would involve adding on random samples
from the observational error distribution of each indi-
vidual observation (or related group of observations)
(Evensen 1994). Houtekamer and Derome did this for
upper-air observations, noting that there is a covariance
in the errors for measurements from a single radiosonde
(Lonnberg and Hollingsworth 1986). The advantage to
this type of method is that the error distributions of
individual observations appear to be somewhat better
known than the entire global analysis error distribution.

So far this section has argued that constrained en-
semble forecasts may not be useful. However, there are
cases in which constraining ensemble forecasts is clearly
useful. The first case is when one knows the details of
the local attractor structure and its position. As dem-
onstrated in Anderson (1996a), in such cases it is valu-
able to use only ensemble initial conditions that lie on
the attractor. While such an approach would be nice, it
seems unlikely that algorithms for finding the position
of the local attractor will ever be practical in models as
large and complicated as operational forecast models.

A related case where constrained ensembles are po-
tentially useful is when an initialization is applied to
assimilated data before using them as initial conditions
for a forecast. If one selects an unconstrained ensemble
of initial conditions and then applies initialization to all
members, the result is typically an ensemble with far
too little variance (Hollingsworth 1980). Instead, it may
be more useful to apply an initialization and then only
search for ensemble members in directions that satisfy
the balance represented by the initialization. Again, it
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may be very difficult to design algorithms for finding
such constrained directions in large forecast models.

There may be instances in which it is computationally
more economical to compute a constrained ensemble
than an unconstrained one. For instance, the breeding
cycle at NCEP is extremely inexpensive as a means for
generating constrained initial conditions (Toth and Kal-
nay 1993). If algorithms for attempting to find an un-
constrained distribution prove to be expensive, this
would argue against their use.

Finally, as already noted, there may be dynamical sys-
tems or error measures for which constrained ensembles
are superior to unconstrained. More research is needed
to determine what aspects of a particular norm or dy-
namical system are important for this determination.

7. Conclusions and future work

For the low-order models discussed here, the previous
sections have demonstrated the relative merits of con-
strained and unconstrained ensembles. In general, for
the measures proposed in section 2, unconstrained en-
sembles perform at least as well as, and in many cases
much better than, constrained ensembles. These results
suggest that operational ensemble prediction systems
that make use of constrained initial conditions may be
suboptimal.

There is a long history of using such simple model
results as proxies for results that are too expensive to
obtain in large atmospheric prediction models (Lorenz
1963). Nevertheless, there is no guarantee that low-order
results can be generalized to much larger and more com-
plicated systems. To further strengthen the results, tests
of constrained versus unconstrained ensembles need to
be made in higher-order models. Houtekamer and De-
rome (1995) have already taken a significant step in this
direction, although they only evaluated first-moment
quantities. Examining higher moments of the ensemble
predictions in their quasigeostrophic forecast system
would be of interest.

The relation between constrained and unconstrained
ensembles also needs to be examined in operational pre-
diction models. Because of the great expense involved
in running these models, only a small set of relatively
small ensembles would be possible. The results here
suggest that the use of small (two pair) ensembles does
not present a problem in comparing the two types of
ensembles. Using such tiny ensembles would in turn
allow a greater number of cases to be evaluated to in-
crease the significance of the results. It would also be
of interest to examine particular cases, especially those
in which the two types of ensembles produced very
different results, in order to see if this is due to some
of the types of behavior described in section 6.

Problems remain with this method. In particular, with-
out having sets of independent observations, it requires
special procedures to guarantee that the Monte Carlo as-
similated ensemble initial conditions are statistically con-

sistent with the truth. Further work on Monte Carlo as-
similations in low-order forecast system simulations like
that of Houtekamer are needed to resolve these problems.

Problems also remain in assimilation cycles that re-
quire explicit initialization, for instance, to remove grav-
ity wave noise. As pointed out above, initialization tends
to reduce the variance of an ensemble. Again, special
efforts are required to ensure that ensemble initial con-
ditions retain sufficient variance in the presence of an
initialization. Fortunately, it appears that the most re-
cently developed operational assimilation systems no lon-
ger require an explicit initialization (Parrish and Derber
1992).

The results presented here also have implications for
nonoperational problems such as evaluating the sensi-
tivity of a particular set of initial conditions on the re-
sulting evolution of the atmosphere. For instance, using
SVDs to determine the directions in which the evolution
would be most sensitive is only relevant in a linear
regime and fails to give information about the likelihood
of such extreme perturbations. Just as in the prediction
problem, one must carefully assess what question one
desires to answer with an ensemble and then decide
whether constrained or unconstrained initial condition
distributions are the most appropriate for addressing the
question at hand.
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APPENDIX

Dynamical Systems

a. Lorenz-63

The Lorenz-63 model (Lorenz 1963) is defined by
the three differential equations

ẋ 5 2sx 1 sy, (A1)

ẏ 5 2xz 1 rx 2 y, (A2)

ż 5 xy 2 bz, (A3)

where the dot represents a derivative with respect to
time. The parameters are set to s 5 10, r 5 28, and b
5 8/3, a regime with known chaotic behavior. The two
step self-starting time differencing scheme of Lorenz
(1963) is used with a nondimensional time step of 0.01.

b. Lorenz-84

The Lorenz-84 model (Lorenz 1984) is defined by
the three differential equations
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2 2ẋ 5 2y 2 z 2 ax 1 aF, (A4)

ẏ 5 xy 2 bxz 2 y 1 G, (A5)

ż 5 bxy 1 2xz 2 z. (A6)

The parameters are set to a 5 0.25, b 5 4, F 5 8, and
G 5 1.25. The time differencing scheme is the same as
for the Lorenz-63 model.

c. Lorenz-84 with auxiliary variables

The m-variable auxiliary model has three variables
governed by the Lorenz-84 equations (A4)–(A6) and
m23 additional variables that are governed by an expo-
nential decay to zero with a prescribed e-folding time R:

ẇi 5 2(1/R)wi, i 5 4, . . . , m. (A7)
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