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Abstract. Cloud and aerosol effects on radiation in two
contrasting cloud types, a deep mesoscale convective sys-
tem (MCS) and warm stratocumulus clouds, are simulated
and compared. At the top of the atmosphere, 45–81% of
shortwave cloud forcing (SCF) is offset by longwave cloud
forcing (LCF) in the MCS, whereas warm stratiform clouds
show the offset of less than∼20%. 28% of increased nega-
tive SCF is offset by increased LCF with increasing aerosols
in the MCS at the top of the atmosphere. However, the
stratiform clouds show the offset of just around 2–5%. Ice
clouds as well as liquid clouds play an important role in the
larger offset in the MCS. Lower cloud-top height and cloud
depth, characterizing cloud types, lead to the smaller offset of
SCF by LCF and the offset of increased negative SCF by in-
creased LCF at high aerosol in stratocumulus clouds than in
the MCS. Supplementary simulations show that this depen-
dence of modulation of LCF on cloud depth and cloud-top
height is also simulated among different types of convective
clouds.

1 Introduction

Among the many atmospheric processes that play a role in
the Earth’s radiation budget, clouds are among the most im-
portant and difficult to understand. Clouds affect the energy
balance in the atmosphere by regulating the flow of radia-
tion at the top of the atmosphere. This regulation process
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is complicated by cloud microphysics involving numerous
processes among different types of hydrometeors such as
droplets, ice crystals, rain, snow, and hail. Also, increas-
ing aerosols with industrialization are known to change cloud
microphysics. Increasing aerosols decrease droplet size and
increase cloud albedo (first aerosol indirect effect) and pos-
sibly suppress precipitation and alter cloud lifetime (second
aerosol indirect effect). Uncertainties of radiative forcing as-
sociated with aerosol indirect effects are comparable to ra-
diative forcing by an anthropogenic increase in green house
gases (Ramaswamy et al., 2001).

Ramanathan et al. (1989) indicated that radiaitve prop-
erties of deep convective clouds were different from those
of stratiform clouds, regarding the modulation of outgoing
longwave radiation. Also, recent studies showed aerosols
could change microphysical and dynamical properties of
deep convective clouds (Khain et al., 2003, 2004, 2005,
2008; Lynn et al., 2005; Tao et al., 2007; Lee et al., 2008a).
Lee et al. (2008b) found that aerosol effects on cloud mass
and precipitation were different for deep convective and shal-
low stratiform clouds. Due to stronger interactions between
microphysics and dynamics, increases in cloud mass were
much larger in deep convective clouds than in shallow strat-
iform clouds for the same aerosol increases. This indicates
that the response of radiation to aerosol increases can also be
different for deep convective and stratiform clouds.

Systems like the Asian and Indian Monsoon, storm tracks,
and ITCZ, playing important roles in global hydrologic and
energy circulations, are driven by deep convective clouds, of-
ten organized into MCSs. Detrainment of ice crystals from
deep convective clouds is the major source of ice anvils and
cirrus in these systems. These cirrus clouds have significant
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impacts on the global radiation budget (Ramanathan et al.,
1989; Liou, 2005), and their radiative properties are mainly
determined by ice-crystal formation and growth in deep con-
vective clouds (Houze, 1993). Hence, aerosol effects on
deep convective clouds can alter radiative properties of cir-
rus clouds and, thereby, global radiation budget. Especially
those systems located over or near continents can be affected
by aerosol changes significantly. Therefore, it is important to
gain the understanding of how deep convective clouds (and
their ice clouds) affect radiation and aerosols modify the ef-
fects of deep convective clouds on radiation.

This study aims to fulfill the following goals: 1) gain a
preliminary understanding of how clouds and aerosols affect
radiation in deep convection. 2) Examine how those cloud
and aerosol effects in deep convection operate differently as
compared to warm stratiform clouds, so as to find factors
controlling the dependence of those effects on cloud types.

Integration design and aerosol descriptions are presented
in Sect. 2. The results and summary and discussion are given
in Sects. 3 and 4.

2 Integration design and aerosol specification

To fulfill goals of this study, cases of a stratocumulus
cloud system and an observed deep MCS are simulated us-
ing a cloud-system-resolving model (CSRM) coupled with
double-moment microphysics. The Weather Research and
Forecasting (WRF) model is used as a CSRM. The CSRM
used here is described in detail in Lee et al. (2008a). Impacts
of the MCS on radiation and aerosol effects on radiation in
the MCS are analyzed and compared to cloud and aerosol
effects on radiation in warm marine stratiform clouds. This
study also examines a role ice clouds play in radiation in the
MCS.

The model domain has 2 dimensions. A mesoscale cloud
system typically produces precipitation over areas∼100 km
or more in horizontal scale in at least one direction (Houze,
1993). Hence, for the simulation of the MCS, the model do-
main is set to 168 km in horizontal width. The model domain
is 20 km deep. The horizontal grid length is 2 km, and the
vertical grid length is 500 m. For shallower clouds, though,
this resolution becomes problematic due to small-scale en-
trainment and detrainment processes at cloud top, which play
important roles in the evolution of shallow stratiform clouds.
Hence, finer resolution is used for the simulation of strati-
form clouds but with smaller domain. The model domain
is 26 km wide and 20 km deep. The horizontal grid length is
set to 100 m and the vertical spacing is uniformly 40 m below
2.0 km and then stretched to 240 m near the model top.

Periodic boundary conditions are set on horizontal bound-
aries and a damping layer of 5 km depth is applied near the
model top for simulations of both the MCS and stratiform
clouds. Henceforth, the MCS and stratiform-cloud cases are
referred to as “DEEP” and “SHALLOW”, respectively.

Atmospheric Radiation Measurement (ARM) sub-case A
(13:30 UTC 29 June–13:30 UTC 30 June 1997) observations
provide large-scale forcings for DEEP. The sub-case A pro-
duced the largest precipitation rate among the 1997 IOP
sub-cases through the development of a deep MCS. Sound-
ing/profiler data were obtained every 3 h from the ARM
SGP clouds and radiation testbed (CART) central facility lo-
cated near Lamont, OK (36.61◦ N, 97.49◦ W) and from four
boundary facilities. They were analyzed using a constrained
variational objective analysis method by Zhang et al. (2001).
The 3-hourly analyses were used to interpolate large-scale
advection for potential temperature and specific humidity at
every time step. Observed surface fluxes of heat and mois-
ture were prescribed. To isolate better the different role of
clouds and aerosols in radiation, differences in environmen-
tal conditions between DEEP and SHALLOW need to be
minimized. For this, clouds in DEEP and SHALLOW are
simulated for the same LST (local solar time) period at the
same latitude on the same date. For SHALLOW, reanaly-
sis data obtained every 6 h from the European Centre for
Medium-Range Weather Forecasts (ECMWF) at (36.61◦ N,
74.99◦ W) (12:00 UTC 29 June–12:00 UTC 30 June 2002)
were used to prescribe large-scale forcings and surface fluxes
at every time step. Hence, nearly the same incident solar ra-
diation is applied to those two types of clouds. Also, calcu-
lations described in the following Sect. 3.1 show the differ-
ence in surface longwave radiation flux between two types
of clouds is within∼5% relative to the flux in deep MCS.
Therefore, both types of clouds are affected by similar radi-
ation inputs from the top of the atmosphere (TOA) and the
surface. The details of the procedure for applying large-scale
forcings are described in Donner et al. (1999) and are similar
to the method proposed by Grabowski et al. (1996). Horizon-
tal momentum was damped to observed values, following Xu
et al. (2002).

Two experiments are conducted for each of DEEP and
SHALLOW. The first experiment uses predicted aerosol
profiles from the Geophysical Fluid Dynamics Laboratory
(GFDL) Global Atmosphere Model (AM2) with aerosol
chemistry (nudged to analyzed fields) and is referred to as
“high-aerosol run”. The description of aerosol chemistry in
the GFDL AM2 can be found in Lee et al. (2008a). The
predicted mass profiles by the GFDL AM2, averaged over
a one-day period, are obtained at (36.61◦ N, 97.49◦ W) on
29 June 1997 and (36.61◦ N, 74.99◦ W) on 29 June 2002
for DEEP and SHALLOW, respectively. Vertical profiles
of the obtained aerosol, shown in Fig. 1a and c, are used
for the high-aerosol run for DEEP and SHALLOW, respec-
tively. The second experiment, referred to as “low-aerosol
run”, uses aerosol profiles where aerosol mass is reduced by
a factor of 10 as compared to the high-aerosol run.

Sulfate, organic and salt aerosols are assumed to act only
as cloud condensation nuclei (CCN) and to have tri-modal
lognormal size distributions. The mode diameter and stan-
dard deviation of the distributions, as well as the partitioning
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 Fig. 1. Vertical profiles of(a) aerosol species and(b) total aerosol number and CCN number (at supersaturation of 1%) for high aerosol runs
in DEEP. Salt is present in (a), but its values are less than 0.01µg m−3. (c andd) are the same as (a andb), respectively, but for SHALLOW.

among modes, are assumed to follow Whitby’s (1978) val-
ues for clean continental air mass and not to vary spatiotem-
porally for both DEEP and SHALLOW. SHALLOW over
the ocean adopts the same mode diameter, standard devia-
tion and partitioning among modes of aerosol distributions
as DEEP over the continent, since clouds in SHALLOW are
just off the coast of Virginia where aerosols advected from
the continent are likely to be dominant. Dust and black
carbon (BC) aerosols are assumed to act only as ice nuclei
(IN), since this study does not consider dust and BC aerosols
coated by the sulfate which can act as CCN. Dust and BC
aerosols obey uni-modal lognormal size distributions whose
mode diameter and standard deviation are from Seinfeld and
Pandis’s (1998) values for remote continental areas. As as-
sumed for aerosols acting as CCN, mode diameter and stan-
dard deviation are assumed not to vary for those acting as
IN.

Aerosol number concentration in each bin of the size spec-
trum is determined based on aerosol mass and aerosol par-
ticle density for each species using the assumed log-normal
size distribution at each grid point. Figure 1b and d shows the
vertical profile of the sum of aerosol number concentration
over all aerosol species and the CCN number concentration
at a supersaturation of 1% for DEEP and SHALLOW, re-
spectively. Total aerosol number concentration at the surface
is ∼4000 cm−3 for DEEP, a typical value in clean continental
areas (Whitby, 1978), and∼50% of aerosols are activated at
a supersaturation of 1%. For SHALLOW, total aerosol num-
ber concentration at the surface is∼3600 cm−3 and∼53% of
aerosols are activated at a supersaturation of 1%. Aerosols in
the high-aerosol run in SHALLOW show a similar aerosol

concentration at the surface to that in DEEP. This is because
those stratiform clouds in SHALLOW are simulated just off
the coast of Virginia where significant increases in aerosols
advected from the continent were observed since industrial-
ization. Hence, the comparison of the high- and low-aerosol
runs for the case of stratiform clouds identifies aerosol ef-
fects for the similar transition of aerosol levels to that for the
case of the MCS. This indicates that the MCS and stratiform
clouds both are affected by a similar aerosol environment,
minimizing differences in the aerosol level to contribute to
the better isolation of the role of different effects on radiation
from clouds and aerosols between the two types of clouds.

For the assumed log-normal size distribution with the con-
stant standard deviation and mode radius here, the ratio of
aerosol mass partitioned into each size bin of the distribu-
tion to total aerosol mass does not vary with total aerosol
mass. Hence, a decrease in the total aerosol mass by a factor
of 10 leads to 10-fold decreases in the partitioned aerosol
mass in all size bins in the low-aerosol runs. This also
leads to 10-fold decreases in aerosol number in each bin of
the size distribution, since the identical particle density of
each aerosol species is used for the high- and low-aerosol
runs. Hence, the surface aerosol number concentration is
∼400 cm−3 in the low-aerosol runs, a typical value in mar-
itime air (not affected by pollution) (Whitby, 1978). The
comparison of the high- and low-aerosol runs identifies how
a transition from maritime aerosols to rather polluted con-
tinental aerosols affects radiation. Depending on predicted
aerosol mass within cloud, the total aerosol number for each
aerosol species varies and is reset to the background value at
all levels outside cloud. Within clouds, aerosols are advected,
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Table 1. Time- and area-averaged shortwave flux (SW) and longwave flux (LW) at the top (TOA) and base (SFC) of the atmosphere in
DEEP.↑ and↓ denote upward and downward radiation, respectively.

Time- and area-averaged radiation fluxes at the top and base of the model (W m−2)

TOA

SW↑ SW↓ SW LW↑ LW↓ LW SW+LW
(SW↑ −SW↓) (LW↑ −LW↓)

ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR
Low aerosol 97.20 85.15 478.53 478.53−381.33 −393.38 266.86 276.63 0.00 0.00 266.86 276.63−114.47 −116.75
High aerosol 120.92 85.02 478.53 478.53−357.61 −393.51 257.10 273.39 0.00 0.00 257.10 273.39−100.51 −120.12
Observed 111.65 – 477.15 477.15 -365.50 – 260.23 – 0.00 0.00 260.23 –−105.27 –
Difference 23.72 −0.13 0.00 0.00 23.72 −0.13 −9.76 −3.24 0.00 0.00 −9.76 −3.24 13.96 −3.37
(high–low)

SFC

SW↑ SW↓ SW LW↑ LW↓ LW SW+LW
(SW↑ −SW↓) (LW↑ −LW↓)

ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR
Low aerosol 60.43 70.63 316.53 371.57−256.10 −300.94 442.10 442.10 365.61 361.85 76.49 80.25−179.61 −220.69
High aerosol 55.56 70.60 288.07 370.67−232.51 −300.07 442.10 442.10 370.17 362.16 71.93 79.94−160.58 −220.13
Observed 54.64 – 279.44 – −224.80 – 453.99 – 397.12 – 56.87 – −167.93 –
Difference −4.87 −0.03 −28.46 −0.90 23.59 0.87 0.00 0.00 4.56 0.31 −4.56 −0.31 19.03 0.56
(high–low)

diffused and depleted by nucleation (nucleation scavenging).
Initially aerosol mass mixing ratio is everywhere set equal
to its background value. Background aerosol number con-
centrations for all aerosol species in each aerosol size mode
are assumed not to vary with time, since the variation of the
extracted aerosols from GFDL AM2 is not significant on the
date of simulations.

This study focuses on aerosol effects on the nucleation of
cloud particles and thereby cloud microphysical and radia-
tive properties and, thus, does not take into account aerosol
direct effects on radiation. In other words, aerosol impacts
on cloud-particle properties after its activation are only taken
into account.

3 Results

3.1 Radiation fluxes

The all- and clear-sky radiative fluxes for shortwave and
longwave radiation are obtained. The clear-sky fluxes are
diagnosed by setting the mixing ratios of all the hydromete-
ors to zero with all the other variables unchanged at every
time step for the high- and low-aerosol runs, respectively.
Henceforth, the clear-sky condition is referred to as “CLR”
and the all-sky as “ALL.” Radiation fluxes are shown in Ta-
bles 1 and 2 for DEEP and SHALLOW, respectively (↑ and
↓ denote upward and downward fluxes, respectively, and mi-
nus signs indicate downward net flux). In Tables, SW and
LW represent shortwave flux and longwave flux, respectively.
Table 3 shows SCF, LCF, and cloud radiative forcing (CRF),
which is SCF+LCF, in DEEP and SHALLOW. Cloud forc-
ing here is defined as CLR – ALL. The role of ice clouds

in DEEP is diagnosed by setting the mixing ratio of all ice-
phase hydrometeors to zero with all the other variables un-
changed at every time step for the high- and low-aerosol runs.
Henceforth, this ice-free condition is referred to as “DEEP
(LIQ)” and cloud forcing in DEEP (LIQ) is presented in Ta-
ble 3. The comparison of DEEP (LIQ) to DEEP identifies
the role of ice clouds in radiation.

Differences in individual upward and downward fluxes
between the high-aerosol run and observation in DEEP are
within ∼10% of observed fluxes. The size and path of cloud
particles (i.e., cloud liquid and cloud ice) play important
roles in determining the impacts of clouds on radiative fluxes.
Hence, one or both of simulated size and path of cloud parti-
cles are compared to the observation, depending on the avail-
ability of observed data. The domain-averaged liquid-water
path (LWP) is 51 g m−2. This LWP is within∼10% of the
observed LWP (55 g m−2). Thus, clouds in DEEP can be
considered to be simulated reasonably well for the calcula-
tion of radiation. The LWP is observed by the microwave
radiometer and corrections are made to eliminate the con-
tamination by raindrops on the instrument as described in
Liljegren (1994). The comparisons for the size of cloud liq-
uid and the size and path of cloud ice are not viable here,
since the 1997 ARM observation does not provide those data,
though more recent ARM observations after the year 2000
started to provide those data. Simulated LWP and effective
size in SHALLOW are compared to observation by the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) to as-
sess the ability of the model to simulate stratiform clouds;
comparisons for radiative fluxes are not viable here, since
the MODIS data do not provide observed fluxes. The effec-
tive size in this study is in diameter. The domain-averaged
simulated LWP is 56.20 g m−2 and MODIS-observed LWP
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Table 2. Time- and area-averaged SW and LW at the top (TOA) and base (SFC) of the atmosphere in SHALLOW.

Time- and area-averaged radiation fluxes at the top and base of the model (W m−2)

TOA

SW↑ SW↓ SW LW↑ LW↓ LW SW+LW
(SW↑ −SW↓) (LW↑ −LW↓)

ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR
Low aerosol 93.11 38.24 478.53 478.53−385.42 −440.29 274.26 283.25 0.00 0.00 274.26 283.25−111.16 −157.04
High aerosol 111.21 38.12 478.53 478.53−367.32 −440.41 273.46 282.90 0.00 0.00 273.46 282.90−93.86 −157.51
Observed – – – – – – – – – – – – – –
Difference 18.10 −0.12 0.00 0.00 18.10 −0.12 −0.80 −0.35 0.00 0.00 −0.80 −0.35 17.30 −0.47
(high–low)

SFC

SW↑ SW↓ SW LW↑ LW↓ LW SW+LW
(SW↑ −SW↓) (LW↑ −LW↓)

ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR ALL CLR
Low aerosol 23.92 27.02 319.62 374.75−295.70 −347.73 424.60 424.60 356.69 350.35 67.91 74.25−227.79 −273.48
High aerosol 21.32 26.73 298.19 373.89−276.87 −347.16 425.14 425.14 357.76 350.02 67.38 75.12−209.49 −272.04
Observed – – – – – – – – – – – – – –
Difference −2.60 −0.29 −21.43 −0.86 18.83 0.57 0.54 0.54 1.07 −0.33 −0.53 0.87 18.30 1.44
(high–low)

Table 3. Time- and area-averaged TOA and SFC shortwave cloud forcing (SCF), longwave cloud forcing (LCF), and cloud radiative forcing
(CRF) (W m−2), i.e. SCF+LCF, for DEEP, SHALLOW and DEEP (LIQ).

TOA (W m−2)

SCF LCF CRF

DEEP SHALLOW DEEP (LIQ) DEEP SHALLOW DEEP (LIQ) DEEP SHALLOW DEEP (LIQ)
Low aerosol −12.05 −54.87 −4.97 9.77 8.99 2.11 −2.28 −45.88 −2.86
High aerosol −35.90 −73.09 −18.08 16.29 9.44 4.52 −19.61 −63.65 −13.56
Difference −23.85 −18.22 −13.11 6.52 0.45 2.41 −17.33 −17.77 −10.70
(high–low)

SFC ( W m−2)

SCF LCF CRF

DEEP SHALLOW DEEP (LIQ) DEEP SHALLOW DEEP (LIQ) DEEP SHALLOW DEEP (LIQ)
Low aerosol −44.84 −52.03 −10.24 3.76 6.34 0.88 −41.08 −45.69 −9.36
High aerosol −67.56 −70.29 −21.38 8.01 7.74 2.64 −59.55 −62.55 −18.74
Difference −22.72 −18.26 −11.14 4.25 1.40 1.76 −18.47 −16.86 −9.38
(high–low)

at the location of simulation is 59.35 g m−2. In-cloud aver-
age effective size of simulated cloud liquid is 18.56µm and
MODIS-observed size is 17.10µm. Hence, differences are
within ∼10%, demonstrating that clouds in SHALLOW are
reasonably well simulated.

SCF is counterbalanced substantially more by LCF at the
top of the atmosphere in each high- and low-aerosol runs in
DEEP than in SHALLOW (Table 3). At the top of the at-
mosphere, 45% (81%) of SCF is counterbalanced by LCF
in the high-aerosol run (low-aerosol run) in DEEP. However,
in SHALLOW, just 13% (16%) of SCF is counterbalanced
in the high-aerosol run (low-aerosol run). At the bottom of
the atmosphere, differences in the counterbalance between
DEEP and SHALLOW are negligible as compared to those

at the top. Larger counterbalance in deep convective clouds
than in shallow stratiform clouds at the top of the atmosphere
is also observed by Ramanathan et al. (1989). They found
that SCF was substantially counterbalanced by the reduction
of outgoing LW in deep convective regions mainly associated
with Asian and Indian Monsoon, storm tracks, and ITCZ.
However, their data indicated that the counterbalance in the
regions of stratiform clouds was not as strong as in deep con-
vective regions.

The high-aerosol run shows larger negative SCF by 23.85
and 18.22 W m−2 than the low-aerosol run at the top in DEEP
and SHALLOW, respectively (Table 3). This is mainly be-
cause more SW is reflected in the high-aerosol run than in
the low-aerosol run by 23.72 W m−2 and 18.10 W m−2 in
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 Fig. 2. Vertical distribution of in-cloud average effective size (in diameter) of(a) cloud liquid,(b) cloud ice and(c) rain in DEEP.(d) is the
same as (a) but for SHALLOW. The bottom of each figure corresponds to the lowest grid point of the atmosphere which is 250 (20) m for
DEEP (SHALLOW).

DEEP and SHALLOW, respectively, as shown in Tables 1
and 2. Since clouds in the high-aerosol run decrease the out-
going LW more than in the low-aerosol run in both DEEP
and SHALLOW (Tables 1 and 2), LCF is larger in the high-
aerosol run than in the low-aerosol run by 6.52 W m−2 and
0.45 W m−2 in DEEP and SHALLOW, respectively, at the
top (Table 3). Thus, similar to the larger compensation of
SCF by LCF in each of the high- and low-aerosol runs in
DEEP than in SHALLOW at the top, the variation of SCF
due to aerosol changes is offset by that of LCF much more
in DEEP than in SHALLOW. 28% of an increase of nega-
tive SCF due to aerosol increases is offset by that of LCF in
DEEP, whereas SHALLOW shows the offset of just 2% at
the top. DEEP also shows significantly larger offset (19%)
of the aerosol-induced changes in SCF by those in LCF than
that (2%) in SHALLOW at the bottom.

In the absence of ice clouds in DEEP (LIQ), the offset of
SCF by LCF is reduced to 42% (25%) in the high-aerosol
run (low-aerosol run) as compared to those in the presence
of ice clouds (DEEP) at the top (Table 3). However, still, the
offset in each high-aerosol run and low-aerosol run in DEEP
(LIQ) is larger than in SHALLOW. The offset of increased
negative SCF by increased LCF with increasing aerosols is
also reduced to 18% in the absence of ice clouds at the top in
DEEP (LIQ). However, the offset in DEEP (LIQ) is also still
larger than that in SHALLOW.

Results here indicate that deep convective clouds affect the
radiation budget quite differently as compared to stratiform
clouds in terms of the modulation of LW. They also indicate
that the aerosol-induced modulation of LW can substantially
offset that of SW in deep convective clouds, which has not
been considered in most GCM studies. To gain understand-
ing of these different responses of radiation between deep
convective and shallow clouds, the effective size and mass
of hydrometeors, which determine the radiative properties of
clouds, are examined.

3.2 Microphysical properties of clouds

Figure 2a–c shows the profiles of effective size, and Fig. 3a–
c, the profiles of the contents of cloud liquid, cloud ice, and
rain in DEEP. Since hail is treated radiatively in the same
manner as for snow in DEEP, they are treated as one hy-
drometeor entity, referred to as “snow+hail”, and the vertical
profile of the sum is depicted in Fig. 3d. During time integra-
tion, heights of cloud bases vary mostly from∼0.25 km (cor-
responding to the bottom of Figs. 2a–c and 3a–d) to∼2 km
due to spatiotemporally varying large-scale forcing and per-
turbed humidity and temperature fields by preexisting clouds.
The freezing level is∼4 km. The effective size of snow+hail
is prescribed as 150µm for both runs in DEEP. Only the ver-
tical profiles of effective size and contents of cloud liquid are
presented for SHALLOW in Figs. 2d and 3e, since stratiform
clouds in SHALLOW are warm clouds where ice processes
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Fig. 3. Time- and domain-averaged vertical distribution of contents of(a) cloud liquid,(b) cloud ice,(c) rain and(d) snow+hail.(e) is the
same as (a) but for SHALLOW. The bottom of each figure corresponds to the lowest grid point of the atmosphere which is 250 (20) m for
DEEP (SHALLOW).

are not present with negligible precipitation. Average precip-
itation rate is smaller than 0.01 mm day−1 in both the high-
and low-aerosol runs in SHALLOW. The contribution of rain
and snow+hail to radiation budgets is negligible as compared
to that of cloud liquid and cloud ice in DEEP, because their
particle sizes are generally larger than the radiation wave-
lengths. Hence, this study focuses on the role of cloud liquid
and cloud ice in radiation among hydrometeors.

The role of cloud liquid, accounting for larger fraction of
total cloud-particle (cloud liquid and cloud ice) mass than
cloud ice in DEEP and all cloud mass in SHALLOW (see
Fig. 3a, b and e), in radiation are first examined. Time-
and domain-average liquid-water content (LWC) is 0.0025
(0.0020) and 0.0006 (0.0013) g m−3 in the high- and low-
aerosol runs, respectively, in DEEP (SHALLOW). Although
in-cloud average LWC is larger in DEEP than in SHALLOW,
domain-average LWC is lower at low aerosol due to lower
cloud fraction in DEEP than in SHALLOW. Cloud fractions
averaged over all the time steps and a layer between min-
imum cloud-base height and maximum cloud-top height at
low aerosol in DEEP and SHALLOW are 0.27 and 0.90, re-
spectively. For the calculation of in-cloud averaged values
and cloud fraction, it is needed to determine the grid points
in cloud. Grid points are assumed to be in cloud if the num-
ber concentration and volume-mean size of droplets is typ-
ical for clouds and fogs (1 cm−3 or more, 1µm or more;
Pruppacher and Klett, 1997). To calculate the in-cloud av-
erage of a variable of interest, first, the conditional average
over the grid points in cloud is obtained at each time step;
the conditional average is the arithmetic mean of the vari-

able over collected grid points in cloud (grid point in clear
air is excluded from the collection). Then, those conditional
averages are collected and averaged over time to obtain the
in-cloud average in this study; only time steps with non-zero
conditional averages are included in the collection over time.
The domain-average difference in LWC at high aerosol be-
tween DEEP and SHALLOW is smaller than the in-cloud av-
erage difference due to lower averaged cloud fraction (0.32)
in DEEP than that (0.95) in SHALLOW.

Larger LWC in DEEP than in SHALLOW in the high-
aerosol run favors more absorption of LW emitted from the
surface, contributing to the larger offset of SCF by LCF in
DEEP than in SHALLOW (Table 3). The comparison of
DEEP (LIQ) to SHALLOW indicates liquid clouds alone
can lead to larger offset of SCF by LCF in deep convec-
tive clouds than in warm shallow clouds (Table 3). However,
cloud fraction and domain-average LWC are smaller in the
low-aerosol run in DEEP than in SHALLOW, favoring more
absorption of LW emitted from surface in SHALLOW. In ad-
dition to cloud mass and fraction, temperature at the top of
liquid cloud affects outgoing LW and the top of liquid cloud
is higher in both the high- and low-aerosol runs in DEEP
than in SHALLOW (Fig. 3a and e). As shown by Jensen
et al. (1994), LCF at the top of the atmosphere is roughly
proportional to the difference in temperature between cloud
top and the surface for the identical cloud optical depth. As
shown in Fig. 3a, liquid-cloud top reaches around 10 km
where average temperature is 232 K in DEEP. In SHALLOW,
liquid-cloud top reaches just around 1 km (Fig. 3e) where
average temperature is 286 K. At the surface, the average
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Figure 4
Fig. 4. Vertical distribution of in-cloud average CDNC (cm−3) (a)
in DEEP and(b) in SHALLOW, conditionally averaged over grid
points of non-zero droplet nucleation rate below freezing level. The
bottom of each figure corresponds to the lowest grid point of the
atmosphere which is 250 (20) m for DEEP (SHALLOW).

temperature is 295 K in DEEP and 288 K in SHALLOW.
Hence, larger vertical extent of liquid cloud leading to larger
temperature difference between liquid-cloud top and the sur-
face in DEEP than in SHALLOW contributes to larger offset
of SCF by LCF in tandem with increased liquid mass at high
aerosol. The effect of this larger temperature difference on
LCF outweighs the effect of decreased liquid mass and cloud
fraction on LCF, leading to larger offset of SCF by LCF in
liquid clouds in DEEP than in SHALLOW at low aerosol.

In addition to LWC, ice-water content (IWC) plays a role
in radiation in DEEP, which is absent in SHALLOW. As in-
dicated by Liou (2005), ice clouds play an important role in
the trapping of LW from the surface and their high altitude
enhances the reduction of outgoing LW. Their higher alti-
tude than that of liquid clouds, as shown in Fig. 3a and b,
increases LCF and thereby the offset of SCF by LCF at the
top as compared to those when only liquid clouds are con-
sidered. The comparison of DEEP to DEEP (LIQ) (Table 1)
for each of the high- and low-aerosol runs indicates that ice
clouds play as important roles as liquid clouds for larger off-
set of SCF by LCF in DEEP than in SHALLOW at the top of
the atmosphere.

Significant differences are observed in effective sizes of
cloud liquid, liquid content, and ice content between the
high- and low-aerosol runs in DEEP (Figs. 2a, 3a, and 3b).
The high-aerosol run has higher liquid content and smaller
liquid sizes than the low-aerosol run, and the ice content is
also larger in the high-aerosol run. Cloud liquid is∼5 times
greater around 4 km in the high-aerosol run. Cloud ice con-
tent is∼4 times larger at high aerosol around 10 km. Larger
cloud water content at high aerosol is due to increased con-
densation and deposition. Domain-averaged cumulative con-
densation and deposition are larger in the high-aerosol run
than in the low-aerosol run by 25.04 mm and 8.30 mm, re-
spectively. The domain-averaged cumulative value (denoted
by <>) of any variable (denoted byA) in this study is calcu-
lated using the following formulation:

< A >=
1

Lx

∫∫∫
ρa Adxdzdt

whereLx is the domain horizontal lengths, which are 168
and 26 km for DEEP and SHALLOW, respectively, andρa

is the air density. The smaller size of cloud liquid is due
to larger cloud droplet number concentration (CDNC) in the
high-aerosol run. The high-aerosol run shows 3–5 times
larger CDNC below freezing level where most differences
in droplet size are observed (Fig. 4a). The time- and domain-
average cloud liquid at high aerosol in SHALLOW is larger
than that at low aerosol by∼53%, much smaller than∼320%
increase shown in the high-aerosol run in DEEP (Fig. 3a
and e). CDNC is also larger at high aerosol than at low
aerosol in SHALLOW. This leads to the smaller size of cloud
liquid at high aerosol than at low aerosol in SHALLOW
(Fig. 4b). The smaller differences in cloud-liquid content
in SHALLOW are due to smaller increases in condensation
in the high-aerosol run than those in DEEP. Domain-average
cumulative condensation increases in the high-aerosol run by
∼28% in SHALLOW, which is∼7 times smaller increase as
compared to that in DEEP.

Larger cloud mass and fraction (note that averaged cloud
fractions are 0.32 (0.95) and 0.27 (0.90) at high and low
aerosols in DEEP (SHALLOW), respectively), smaller size
of cloud particles at high aerosol favor larger reflection and
absorption of downward SW (and more outgoing SW at the
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model top and less SW reaching the surface). Increased
cloud mass and fraction cause more LW emitted from the
surface to be absorbed by clouds at high aerosol, leading to
smaller outgoing LW at the top and larger downward LW at
the surface in the high-aerosol run than in the low-aerosol
run (Tables 1 and 2). Those changes in LW offset changes
in SW and the high-aerosol run in DEEP shows larger offset
than in SHALLOW mainly due to larger increases in cloud
mass (Fig. 3 and Table 3).

It should be pointed out that there are significant increases
in cloud-ice content in the high-aerosol run in DEEP, con-
tributing to more reflection and absorption of SW and LW,
respectively. The comparison of DEEP to DEEP (LIQ) indi-
cates changes in ice-particle mass accounts for a third of the
offset of increased reflection of SW by increased absorption
of LW at high aerosol in DEEP at the top of the atmosphere.

Increased condensation and deposition at high aerosol are
due to more updraft activity as shown in Fig. 5 illustrating the
updraft mass fluxes in the high- and low-aerosol runs. The
increased updraft activity is linked to enhanced near-surface
convergence at high aerosol, which in turn results from in-
creased downdrafts driven by evaporation. Delayed autocon-
version due to higher CDNC provides more abundant cloud
liquid to be transported into unsaturated areas as the source of
this increased evaporation. These feedbacks between dynam-
ics and microphysics are described in more detail in Lee et
al. (2008a) and simulated in Khain et al. (2003, 2004, 2005,
2008) and Lynn et al. (2005). Lee et al. (2008b) indicated that
increases in updrafts, leading to increases in condensation
and deposition, were much larger in deep convective clouds
than those in shallow clouds at high aerosol as shown in
Fig. 5a and b; the differences in in-cloud averaged increases
of mass fluxes at high aerosol between DEEP and SHAL-
LOW are∼4 times larger than those shown in Fig. 5a and b,
indicating there is a larger relative increase in mass fluxes at
high aerosol in cloud regions in DEEP than in SHALLOW.
They found that increased cloud particles were transported
to unsaturated areas more efficiently due to stronger convec-
tive motion at high aerosol in deep convective clouds than
in shallow clouds. Hence, evaporation increase was much
larger at high aerosol in deep convective clouds than in shal-
low clouds. Also, downdrafts with increased intensity from
increased evaporation could be accelerated more as they de-
scended to the surface at high aerosol due to deeper cloud
depth providing longer path for their descent in deep con-
vective clouds than in shallow clouds. This leads to more en-
hanced near-surface convergence and updrafts at high aerosol
in deep clouds than in shallow clouds. The differing re-
sponses of deep and shallow clouds to increased aerosol are
depicted schematically in Fig. 6.

Maximum CAPE is∼2500 J kg−1 and maximum wind
shear is∼0.0075 s−1 in DEEP. CAPE is the integral of parcel
buoyancy from the surface to the domain top. Wind shear is
the change of wind speed from a grid to a grid immediately
above it, averaged over the lowest 6 km, unless otherwise

Fig. 5. Time series of domain-averaged updraft mass flux (for those
whose values are above-zero)(a) in DEEP at the lowest 5 km and
(b) in SHALLOW at the lowest 1.5 km.

stated; Wilhelmson and Klemp (1978) showed that low-level
shear below 6 km was more important to the development
of modeled convection than upper-level shear. According to
Bluestein (1993), these CAPE and shear conditions support
the development of deep cumulonimbus-type clouds, as sim-
ulated in DEEP.

3.3 Idealized stratiform clouds

Although similar radiation inputs (at TOA and the surface)
and aerosols are applied to both types of clouds in DEEP
and SHALLOW, the other environmental factors may have
affected differences in cloud and aerosol effects on radi-
ation between DEEP and SHALLOW. It is ideal to keep
the environmental conditions (e.g., initial condition, surface
albedo, large-scale forcing and surface fluxes) to be identi-
cal for those different types of clouds to better isolate cloud
and aerosol effects on radiation. However, it is unlikely to
simulate different types of clouds with identical conditions,
since Weisman and Klemp (1982) and Bluestein (1993) show
strong dependences of cloud types on environmental fac-
tors such as CAPE and wind shear. Moreover, warm strat-
iform clouds develop under neutrally stratified condition in
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Fig. 6. Schematic diagram illustrating the differing extent of inter-
actions between aerosols, microphysics, and dynamics in deep and
shallow convection.

the planetary boundary layer (PBL) with strong inversion on
its top while deep convective clouds develop under unsta-
ble conditions. Hence, it is needed to find a compromise by
simulating different types of clouds while minimizing differ-
ences in environmental conditions.

To further minimize differences in environmental condi-
tion between the MCS and warm stratiform clouds, an ide-
alized simulation of stratiform clouds (henceforth, referred
to as SHALLOW (IDEAL)) at the same LST period and lo-
cation on the same date in the same year as for DEEP is
performed. Hence, there are no differences in radiation in-
put at TOA and almost no differences in radiation input at
the surface between DEEP and SHALLOW (IDEAL). Also,
there are no differences in background aerosols and surface
albedo between DEEP and SHALLOW (IDEAL). To gen-
erate the idealized stratiform clouds, the same initial condi-
tion, large-scale forcing, and surface fluxes as for DEEP are
used for SHALLOW (IDEAL) except for larger-scale tem-
perature forcing to contribute to the further minimization of
differences in environmental conditions. For SHALLOW
(IDEAL), positive large-scale temperature forcing is applied
around the freezing-level as shown in Fig. 7b, whereas nega-
tive temperature forcing is applied around the freezing-level
for DEEP as shown in Fig. 7a. The positive temperature
forcing around the freezing-level favors the formation of in-

 

 
 

Figure 7
 

Fig. 7. Time- and domain-averaged vertical distribution of poten-
tial temperature large-scale forcing (K day−1) for (a) DEEP and(b)
SHALLOW (IDEAL). The bottom of each figure corresponds to the
lowest grid point of the atmosphere which is 250 (20) m for DEEP
(SHALLOW).

version layer and thus the formation of shallow warm strat-
iform clouds. This generates stratiform clouds developing
under more similar environment to that in DEEP than those
in SHALLOW, although the inversion layer from the pos-
itive temperature forcing leads to lower maximum CAPE
(∼300 J kg) than that (∼2500 J kg−1) in DEEP. The high- and
low-aerosol runs for SHALLOW (IDEAL) are performed us-
ing the same aerosol profiles as for the high- and low-aerosol
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Table 4. Time- and area-averaged TOA SCF, LCF, and CRF (W m−2) for SHALLOW (IDEAL), DEEP (CU) and DEEP (LOW-CU).

TOA (W m−2)

SCF LCF CRF

SHALLOW DEEP DEEP SHALLOW DEEP DEEP SHALLOW DEEP DEEP
(IDEAL) (CU) (LOW-CU) (IDEAL) (CU) (LOW-CU) (IDEAL) (CU) (LOW-CU)

Low aerosol −20.21 −15.43 −25.02 3.64 5.24 6.26 −16.57 −10.19 −18.76
High aerosol −40.01 −39.45 −43.79 4.60 10.65 9.63 −35.41 −28.80 −34.16
Difference −19.80 −24.02 −18.77 0.96 5.41 3.37 −18.84 −18.61 −15.40
(high–low)

runs, respectively, in DEEP. The same domain size and grid
horizontal and vertical lengths as in SHALLOW are used for
SHALLOW (IDEAL).

Time- and domain-averaged LWC is 0.0030 and
0.0020 g m−3 in the high- and low-aerosol runs, respectively,
in SHALLOW (IDEAL). Averaged cloud fractions calcu-
lated in the same manner as for DEEP and SHALLOW are
0.98 and 0.95 at high and low aerosol, respectively. Although
LWC and cloud faction in SHALLOW (IDEAL) are larger
than those in DEEP in both the high- and low-aerosol runs,
favoring more absorption of LW from the surface in SHAL-
LOW (IDEAL), just 11% (18%) of SCF is counterbalanced
in the high-aerosol run (low-aerosol run) in SHALLOW
(IDEAL). Note that 45% (81%) of SCF is counterbalanced
by LCF in the high-aerosol run (low-aerosol run) in DEEP
at TOA (Tables 3 and 4) (DEEP (CU) and DEEP (LOW-CU)
in Table 4 will be described in the following section). This is
because the difference in temperature between cloud top and
the surface is much smaller in SHALLOW (IDEAL) than
in DEEP. The cloud-top in SHALLOW (IDEAL) reaches
just around 2 km where average temperature is∼293 K and
average surface temperature is nearly the same (∼295 K)
in both DEEP and SHALLOW (IDEAL). Note that deep
convective clouds in DEEP reaches more than 10 km where
average temperature is smaller than 232 K.

Due to substantially less detrainment of cloud liquid and
limited vertical extent of shallow clouds in SHALLOW
(IDEAL), differences in evaporative cooling, convergence,
and updrafts between high and low aerosol cases reduce as
compared to those in DEEP as depicted in Fig. 6. This leads
to cloud-liquid increase of∼50% in the high-aerosol run,
∼6 times smaller increase than that shown in DEEP. This
in turn leads to much smaller offset of increased negative
SCF by increased LCF in SHALLOW (IDEAL) than that in
DEEP. Just 5% of increased negative SCF is offset by in-
creased LCF in SHALLOW (IDEAL), whereas DEEP shows
the offset of as much as 28% at TOA.

Analysis here shows that differences in responses of ra-
diation to clouds and aerosols between SHALLOW and
DEEP are similar to those between SHALLOW (IDEAL)
and DEEP. This is despite different environmental conditions

between SHALLOW and SHALLOW (IDEAL). SHAL-
LOW and SHALLOW (IDEAL) adopt the different initial
and large-scale humidity and temperature conditions, surface
fluxes, and surface albedo although they both have the inver-
sion layer and the similar low wind shear (based on the wind
variation from the surface to the cloud-top) and CAPE, favor-
able for the development of stratiform clouds; the maximum
wind shear and CAPE during high- and low-aerosol simu-
lations are∼0.0004 s−1 and∼300 J kg−1, respectively, for
both SHALLOW and SHALLOW (IDEAL). This indicates
that different responses of radiation between deep clouds and
low-level shallow clouds are fairly robust to surface condi-
tions and overall atmospheric temperature and humidity con-
ditions of stratiform clouds. The presence of the inversion
layer in the cases of shallow clouds (leading to low CAPE
and the formation of stratiform clouds with smaller cloud
depth and lower cloud-top height than those in deep con-
vective clouds) plays a key role in those different responses
between deep convective and stratiform clouds.

3.4 Idealized convective clouds

The above analyses of radiation for the deep MCS and strat-
iform clouds imply that the modulation of LCF can even
vary with types of convective clouds with different cloud-
top height and cloud depth. To examine the sensitivity of
modulation of LCF to types of convective clouds, two sets
of additional simulations of idealized convective clouds are
performed. Each set of simulations is composed of the high-
and low-aerosol runs.

Updrafts play an important role in cloud depth and cloud-
top height of convective clouds; stronger updrafts carry cloud
particles higher. Updraft strength is partly determined by
CAPE (Weisman and Klemp, 1982). To generate convec-
tive clouds with different cloud-top height and cloud depth,
different CAPE levels are applied to those additional sets
of simulations. Comparisons among DEEP and these ad-
ditional simulations elucidate the dependence of the effects
of clouds and aerosols on radiation on types of convective
clouds. To better isolate this dependence, differences in envi-
ronmental conditions among three cases of convective clouds
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 Figure 8
 

Fig. 8. Time series of humidity large-scale forcing and area-
averaged water vapor mixing ratio at the lowest level of the atmo-
sphere(a) for DEEP and(b) for DEEP (CU) and DEEP (LOW-CU).

in this study need to be minimized. For the minimization,
only initial humidity fields and humidity forcing at the low-
est level are imposed differently to generate different CAPE
levels. This is because CAPE shows strong sensitivity to
the lowest-level humidity partly controlled by surface fluxes.
Except for the lowest-level humidity, the identical environ-
ment and aerosol conditions and model setup of the high-
aerosol run (the low-aerosol run) in DEEP are applied to
the high-aerosol run (the low-aerosol run) in these additional
simulations. In the first set of simulations, moderate CAPE
value of ∼1500 J kg−1 is applied, which is to support the
formation of cumulus clouds according to Bluestein (1993).
In the second of set of simulations, low CAPE value of
∼500 J kg−1 is applied, which is to support the formation
of low-level cumulus clouds according to Bluestein (1993).
Henceforth, the first and second sets of simulations are re-
ferred to as DEEP (CU) and DEEP (LOW-CU), respectively.

Figure 8 depicts the time series of humidity large-scale
forcing and area-averaged water vapor mixing ratio at the
lowest level of the atmosphere for DEEP, DEEP (CU), and
DEEP (LOW-CU). The negative forcing at the lowest level
in DEEP (CU) and DEEP (LOW-CU) lowers water vapor at
the lowest level by offsetting the effect of strong surface pos-
itive moisture flux on water vapor at the lowest level prior to
16:40 UTC on 29 June; the negative forcing (positive surface
moisture flux) acts to decrease (increase) the waver vapor at
the lowest level. Around 16:40 UTC, the humidity forcing
at the lowest level becomes zero losing its ability to offset
the effect of strong positive surface moisture flux. Hence,
the water-vapor-increase effect of the surface moisture flux
begins to predominantly control the lowest-level water va-
por. This causes vapor mixing ratio at the lowest level to
begin to rise around 16:40 UTC. Note that identical sur-
face fluxes are prescribed in DEEP, DEEP (CU), and DEEP
(LOW-CU). Hence, after the humidity forcing becomes zero,
the mixing ratio in DEEP (CU) and DEEP (LOW-CU) stabi-
lizes to a value lower than that in DEEP around 16:30 UTC
(Fig. 8a and b). The maximum CAPEs are∼1500 J kg−1

and∼500 J kg−1 for DEEP (CU) and DEEP (LOW-CU), re-
spectively, as intended. Note that the maximum CAPE in
DEEP is∼2500 J kg−1 where cumulonimbus-type clouds are
dominant. With lower CAPE in DEEP (CU) than in DEEP,
cumulus-type clouds are as dominant as cumulonimbus-type
clouds in DEEP (CU). With the lowest CAPE among three
cases of convective clouds, lower cumulus clouds as com-
pared to those in DEEP (CU) are dominant in DEEP (LOW-
CU). Lower CAPEs in DEEP (CU) and DEEP (LOW-CU)
than in DEEP lead to lower cloud depth and cloud-top height
as can be seen in the comparison between Figs. 3 and 9. Fig-
ure 9 depicts vertical profiles of time- and domain-averaged
cloud liquid and cloud ice content in DEEP (CU) and DEEP
(LOW-CU).

Time- and domain-averaged cloud mass (cloud liq-
uid+cloud ice) is 0.0027 (0.0010) and 0.0028 (0.0017) g m−3

at high (low) aerosol in DEEP (CU) and DEEP (LOW-CU),
respectively. Averaged cloud fractions calculated in the same
manner as for DEEP are 0.40 (0.38) and 0.51 (0.50) at high
(low) aerosol in DEEP (CU) and DEEP (LOW-CU), respec-
tively. Although LWC and cloud faction in DEEP (CU) and
DEEP (LOW-CU) are larger than those in DEEP in both the
high- and low-aerosol runs, favoring more absorption of LW
from the surface in DEEP (CU) and DEEP (LOW-CU), 27%
(34%) and 22% (25%) of SCF is counterbalanced in the high-
aerosol run (the low-aerosol run) in DEEP (CU) and DEEP
(LOW-CU), respectively, while 45% (81%) of SCF is coun-
terbalanced by LCF in the high-aerosol run (the low-aerosol
run) in DEEP as shown in Tables 3 and 4.

Increasing cloud fraction and mass with varying dominant
cloud types from cumulonimbus in DEEP to cumulonimbus
and cumulus in DEEP (CU) contribute to increases in neg-
ative SCF. However, due to lowering cloud-top height, LCF
decreases with this variation of cloud types, leading to the
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 Figure 9Fig. 9. Vertical profiles of time- and domain-averaged contents of
(a) cloud liquid and(b) cloud ice in the high-aerosol runs for DEEP
(CU) and DEEP (LOW-CU). The bottom of figure (a) corresponds
to the lowest grid point of the atmosphere which is 250 m for DEEP.

smaller offset of SCF by LCF in DEEP (CU) than DEEP
(Tables 3 and 4). Transition of dominant cloud type from cu-
mulonimbus and cumulus in DEEP (CU) to low-level cumu-
lus in DEEP (LOW-CU) also accompanies increasing cloud
fraction and mass, contributing to increases in negative SCF.
LCF also increases with this transition at low aerosol (while
LCF decreases with this transition at high aerosol). How-
ever, due to lowering cloud-top height with this transition,
increases in LCF are not as large as in those in negative SCF,
leading to smaller offset of SCF by LCF in DEEP (LOW-CU)
than in DEEP (CU) at low aerosol (Tables 3 and 4).

Smaller vertical extent of clouds in DEEP (CU) and DEEP
(LOW-CU) than in DEEP leads to smaller differences in
evaporative cooling, convergence and updrafts between high
and low aerosol cases (see Fig. 10 for the updrafts differ-
ences). This leads to∼2 and∼5 times smaller percentage
increases in cloud mass in DEEP (CU) and DEEP (LOW-

 

 
                                               

Figure10 
 
Fig. 10. Vertical profiles of time-averaged updraft mass flux (for
those whose values are above-zero) for DEEP, DEEP (CU) and
DEEP (LOW-CU). The bottom of the figure corresponds to the low-
est grid point of the atmosphere which is 250 m for DEEP.

CU), respectively, than in DEEP at high aerosol. This, in
turn, leads to 23 (18)% of increased negative SCF offset by
increased LCF in DEEP (CU) (DEEP (LOW-CU)), whereas
DEEP shows the offset of as much as 28% at TOA. The
smaller vertical extent of clouds leads to smaller offset of
increased negative SCF by increased LCF at high aerosol in
DEEP (LOW-CU) than in DEEP (CU).

Simulations for stratiform and convective clouds in this
study demonstrate that cloud-top height and cloud depth play
a critical role in the offset of SCF by LCF and offset of in-
creasing negative SCF by increasing LCF at high aerosol.

3.5 Effects of parameters of microphysics parameteri-
zation

The sensitivity of results to parameters used for parameter-
izations of microphysical processes and size distributions
which can affect the mass and number of cloud liquid and
cloud ice and thus radiation needs to be examined. For the
examination of the sensitivity to some of selected parame-
ters, simulations in DEEP are repeated by varying the values
of those parameters. Selected parameters are associated with
the fall speed of ice crystals, the conversion of rimed snow
to hail, size distributions of precipitable hydrometeors (i.e.,
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snow, hail, and rain), and crystal habits for collection and
optical properties.

The repeated simulations show that model results can be
considered robust to the variation of parameters used in the
fall speed of ice crystals (i.e., coefficients in the fall-speed
power law), in the conversion of rimed snow to hail (i.e.,
the threshold mixing ratio of snow mass), in the size distri-
bution of precipitable hydrometeors (i.e., the intercept pa-
rameter). In those additional simulations, the coefficients in
the fall-speed power law vary from the lowest value to the
highest value estimated by Khvorostyanov and Curry (2002).
The threshold mixing ratio of snow mass decreases and in-
creases from a value used in this study (0.5 g m−3) by a fac-
tor of 10. The intercept parameter varies from 8×105 to
8×107 for rain, from 3×102 to 3×108 for snow, and from
4×102 to 4×108 m−4 for hail. The range of the variation of
the intercept parameters is based on the estimated range by
Tong and Xue (2008), Gilmore et al. (2004), and McFarquhar
and Black (2004). Those variations lead to less than∼10%
changes in the percentage offset of SCF by LCF in each of
the high- and low-aerosol runs and less than∼5% changes
in the percentage offset of the increased SCF by increased
LCF at high aerosol, as compared to those shown in Table 1.
These variations in the offsets are much smaller than those
between stratiform clouds and deep convective clouds.

As can be seen in Fig. 3b, the large portion of mass of
cloud ice is concentrated around or above the level of homo-
geneous freezing (∼10 km) where the conversion of cloud
ice to precipitable snow is known to be very inefficient due
to the absence of liquid-phase particles. Hence, although
we assumed the collection efficiency of 1 for collisions be-
tween cloud ice and liquid-phase particles, just∼5% of the
ice formed by deposition was converted into snow in this
study. Different crystal habits lead to different collection
efficiencies (Pruppacher and Klett, 1978). This indicates
that different crystal habits lead to different removal of cloud
ice through precipitation as snow, which in turn can change
the mass of cloud ice and thus radiative properties of deep
clouds. However, the low conversion efficiency of cloud
ice, which is∼5%, even with the collection efficiency of
1 demonstrates that there will be negligible changes in the
mass of cloud ice with different crystal habits assumed. If we
assume a crystal habit having the efficiency of 0.1 or lower
(corresponding to around the lower end of the efficiency vari-
ation), it is expected that∼0.5% or lower of cloud ice is con-
verted into snow. This brings only∼4.9% or lower change
to the mass of cloud ice simulated in this study. This indi-
cates that results here are not likely to depend on changes in
the mass of cloud ice induced by different conversion of ice
crystals to snow due to the variation of an assumed crystal
habit for collection processes.

The dependence of crystal optical properties on the crys-
tal habit is a function of the aspect ratio of ice particles (Fu,
2008); the difference in the crystal optical properties is pro-
portional to that in the aspect ratio characterizing the crystal

habit. This study assumed the columnar shape of ice crystals
for the characterization of the optical properties and thus cal-
culation of radiative fluxes, following Phillips et al. (2007).
The columnar shape has an aspect ratio of∼0.3–0.5, which
corresponds to the lower range of aspect ratio of ice particles.
Fu (2008) showed the increase in reflected solar fluxes by cir-
rus clouds by∼ 10% when the crystal habit changes from the
columnar shape to the plate or dendrites having aspect ratio
around 0.7–1.0, corresponding to the upper range of the as-
pect ratio. Wendisch et al. (2007) showed that that change in
the habit leads to∼14–20% increases in LCF. These changes
in SCF and LCF bring only less than 5% change to the per-
centage offset of SCF by LCF in each of the high- and low-
aerosols runs and to the offset of varying SCF by varying
LCF between the high- and low-aerosol runs shown in Ta-
ble 1. This demonstrates that the qualitative nature of results
of this study does not depend on crystal optical properties
varying with the crystal habit.

3.6 Role of CCN and IN

In this study, CCN and IN are varied simultaneously between
the high- and low-aerosol runs in DEEP, which makes it dif-
ficult to separate the effects of CCN from those of IN and
vice versa. However, as shown in Lee et al. (2008a), the
mechanism producing stronger updrafts is triggered by the
increased evaporation of cloud liquid at high aerosol. They
showed that the role of ice particles in triggering the mech-
anism was negligible as compared to that of liquid particles
(see Sect. 4.3 and 4.4 in Lee et al. (2008a) for more detail).
Also, as can be seen in Fig. 3b, large portion of mass of cloud
ice is concentrated around or above the level of homogeneous
freezing (∼10 km) where it is found that homogeneous freez-
ing of haze and droplet particles (formed on CCN particles)
accounts for most of cloud-ice number. Hence, increased
CCN not only induces the stronger updrafts by increasing
cloud-liquid evaporation but also contributes to most of in-
creases in the number of ice particles around and above the
homogeneous freezing level. The increased updrafts increase
condensation and deposition and the large portion of the de-
position occurs on the ice particles formed by homogeneous
nucleation. Hence, it is likely that the qualitative nature of
results of this study does not depend on IN variation. To
confirm this, simulations in DEEP are repeated with no vari-
ation of aerosols acting as CCN but with the 10-fold variation
of aerosols acting as IN between the high- and low-aerosol
runs. These simulations show that 2% of the increased neg-
ative SCF is offset by increased LCF at high aerosol. This
offset is∼ one order of magnitude smaller than those shown
in simulations with both of the CCN and IN variations con-
sidered. However, another set of repeated simulations only
with CCN variation (with no variation of IN) shows the off-
set of∼25%. Hence, these repeated simulations demonstrate
that the results here are strongly sensitive to CCN variation
and their dependence on IN variation is negligible.
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4 Summary and discussion

Cloud and aerosol effects on radiation in a deep MCS
(DEEP) and warm stratocumulus clouds (SHALLOW)
were investigated using double-moment bulk microphysics.
Aerosol mass, CDNC, cloud-ice number concentration, and
cloud particle size were predicted. For the nucleation of
cloud particles, the chemical composition, size spectrum, and
number concentration of aerosols were considered.

In SHALLOW, less than 20% of SCF is offset by LCF,
whereas, in DEEP, the offset is 45% at high aerosol and as
much as 81% at low aerosol at the top of the atmosphere. It
is notable that ice clouds contributed to the offset as much as
liquid clouds in DEEP. Ramanathan et al. (1989) also found
that SCF was substantially counterbalanced by the reduction
of outgoing LW in deep convective regions: (i) the tropi-
cal Pacific and Indian oceans surrounding Indonesia and the
Pacific ITCZ north of the equator; (ii) the monsoon region
in Central Africa and the northern third of South America;
and (iii) the mid-latitude storm tracks in the Pacific and At-
lantic oceans. The counterbalance is most significant in trop-
ical convective regions where the reduction of outgoing LW
nearly cancelled SW cloud forcing. They also found cirrus
in those regions provided a significant contribution to the re-
duction of outgoing LW as diagnosed here. However, the
reduction of outgoing LW relative to increases in outgoing
SW due to clouds in the regions of stratiform clouds is not as
significant as in deep convective regions. Hence, their study
indicates that deep convective clouds affect radiation quite
differently in terms of the modulation of LW as compared to
shallow stratus- or stratocumulus-type clouds as simulated in
this study.

An additional set of idealized simulations of warm strat-
iform clouds (SHALLOW (IDEAL)) with the similar envi-
ronmental conditions (except for the CAPE level due to the
presence of the inversion layer imposed to generate the shal-
low clouds) to those in DEEP was carried out. This was to
isolate better the mechanisms leading to differences in cloud
and aerosol effects on radiation between deep convective
clouds and warm stratiform clouds. This set of simulations
showed that differences in cloud-top height played a critical
role in differences in the offset of SCF by LCF between deep
convective clouds and warm stratiform clouds. This depen-
dence of the relative magnitude of LCF to SCF on cloud-
top height indicates changing environmental conditions due
to climate changes may impact the global offset of SCF by
LCF as briefly mentioned in Ramanathan et al. (1989). As an
example, increases in temperature around the Earth’s surface
due to increases in green house gases can increase the surface
humidity, and, thereby, CAPE; the Clausius-Clapeyron equa-
tion indicates that saturation water-vapor pressure increases
exponentially with increasing temperature. As indicated in
Weisman and Klemp (1982) and Bluestein (1993) and sim-
ulated in DEEP (CU) and DEEP (LOW-CU), CAPE plays
an important role in the determination of cloud-top height.

This is because CAPE basically determines the intensity of
updrafts (and thus of the convection). High (low) CAPE gen-
erally leads to high (low) updrafts, increasing (reducing) ver-
tical transport of hydrometeors and, thus, cloud-top height.
This relation between CAPE and cloud-top height was sim-
ulated in Lee et al. (2008b). Lee et al. (2008b) showed the
transition of the cloud type from high-level cumulonimbus to
low-level cumulus to warm stratiform clouds with decreas-
ing CAPE caused by decreasing surface humidity. Thus, it
is expected that the offset of SCF by LCF can be larger with
increasing green house gases based on the comparisons of
radiation among DEEP, DEEP (CU), and DEEP (LOW-CU)
where CAPE (and thus cloud-top height and the offset) in-
creased with the increased surface humidity. The evaluation
of this changing offset can be critical to the assessment of
the response of climate to green house gases, considering the
strong sensitivity of the offset to cloud-top height simulated
here.

Lohmann (2008) examined the effects of changes in green-
house gas since industrialization on precipitation using a
GCM coupled with double-moment microphysics for both
convective and stratiform clouds. She reported the invig-
oration of convective clouds in a warmer present-day cli-
mate, leading to increased precipitation in convective re-
gions. Hence, her results appear to support the hypothesis
about the changing relation between CAPE and the convec-
tion intensity (and thus cloud-top height) with global warm-
ing, suggested above. However, the implications for large-
scale aspects of this study will require further study with
larger-domain models which is coupled with advanced mi-
crophysics and able to resolve convective cells. Also, it
should be pointed out that feedbacks between clouds and
their environment for longer time period than that in this
study can lead to different cloud and aerosol effects than
shown here. Clouds here are simulated only for one day,
which is much shorter than the time needed for a radiative-
convective equilibrium state (∼30 days) according to Tomp-
kins and Craig (1998). Hence, it is likely that the study here
is only able to represent short-term transient behaviors of
cloud and aerosol effects. This indicates the need to perform
long-term simulations to draw robust climatic implications
of this study.

Increases in negative SCF due to aerosol increases were
found to be offset by increases in LCF more significantly in
deep convective clouds than in warm shallow clouds. This
was mainly due to larger increases in cloud mass (both in liq-
uid and ice water) in deep convective clouds than in shallow
clouds due to stronger feedbacks between dynamics and mi-
crophysics. SHALLOW and SHALLOW (IDEAL) showed
that shallower cloud depth led to less intense feedbacks be-
tween dynamics and microphysics by providing shorter path
to the surface for descending downdrafts in warm stratiform
clouds than in deep convective clouds. Even among the con-
vective clouds with different cloud depth, the offset of in-
creased negative SCF by increased LCF at high aerosol was
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different. These indicate the critical role the cloud depth
plays in aerosol-induced cloud mass and LCF changes. How-
ever, it should be pointed out that the feedbacks between mi-
crophysics and dynamics in convective clouds (DEEP, DEEP
(CU), DEEP (LOW-CU)) are associated with the changes
in the intensity of the gust front (i.e., the near-surface con-
vergence), whereas they are associated with the changes in
the PBL growth rate, static stability, and thus cloud-top en-
trainment in the shallow stratiform clouds (SHALLOW and
SHALLOW (IDEAL)). Hence, while differences in those
feedbacks, leading to large differences in the responses of
cloud mass to aerosol changes, are basically explained by the
differences in cloud depth and convective intensity between
convective clouds and the shallow clouds, feedbacks in each
of convective clouds and the shallow clouds are governed by
fundamentally different mechanisms.

As found and suggested in Rosenfeld et al. (2008) and
Seifert et al. (2005), increased cloud liquid due to increased
aerosols can increase the freezing of cloud liquid when it is
transported to the freezing level. This increased freezing in-
creases the latent heat release, intensifying convection (and
thus updrafts) which can lead to further increases in cloud
liquid. However, Lee et al. (2008a) showed that the effect
of increased freezing played a minor role in increasing up-
draft and cloud mass with increasing aerosols. A comparison
between simulations with and without ice physics in Lee et
al. (2008a) indicated that∼20% of increases in updrafts and
cloud mass were attributable to those increases in the freez-
ing. In other words, most of increases in updrafts and cloud
mass are due to interactions between microphysics and dy-
namics described in Sect. 3.2.

Cirrus clouds regularly cover 20–25% of the globe and
as much as 70% over the tropics and, thus, can act as one
of major modulators of global radiation budget (Liou, 1986,
2005). Houze (1993) indicated that most cirriform cloud was
of the type that had its origin in the upper layers of deep,
precipitation cloud systems. Ice clouds played as impor-
tant roles as liquid clouds in the offset of SCF by LCF in
clouds in DEEP. Large increases in ice mass with increas-
ing aerosols in deep convective clouds simulated here im-
plies subsequent increases in cirrus clouds detrained from
parent deep convective clouds. Hence, this study suggests
the feedback in deep convective clouds depicted in Fig. 6 can
have a significant impact on global radiation budget by mod-
ifying thickness and coverage of cirrus clouds. Increasing
ice clouds simulated here accounted for∼30% of the offset
of increased negative SCF by increased LCF with increas-
ing aerosols in DEEP. Thus, increasing cirrus clouds with in-
creasing aerosols can enhance this so-called infrared warm-
ing effects, though its global impact will depend on the re-
lationship between aerosol distribution and deep convection,
a matter this study was not able to consider. So far, most
GCMs have not taken into account homogeneous freezing of
droplets and haze particles for sub-grid convective clouds,
playing important roles in the development of ice clouds in

deep convective systems, explicitly. Also, most GCMs have
mostly focused on low-level stratiform clouds for the eval-
uation of changes in cloud radiative forcing by aerosol in-
creases. They have not taken into account aerosol effects
on deep convection or the links of these effects on detrained
cirrus. These may contribute to the large uncertainties asso-
ciated with the effects of ice clouds on radiation and aerosol
indirect effects.

Additional simulations were performed. Those simula-
tions examined the sensitivity of results here to parameters in
the parameterization of the ice-crystal fall speed, the thresh-
old snow mixing ratio for the conversion of rimed snow
to hail, and the size distribution of precipitable hydrome-
teors. They showed that results in this study were robust
to those parameters. Also, it is not likely that the quali-
tative nature of results of this study depends on a crystal
habit assumed. However, we did not carry out sensitivity
tests for parameters such as those associated with autocon-
version and the accretion of cloud-droplets by rain. Re-
garding the autoconversion of cloud-liquid to rain, it is cru-
cial for aerosol effects on cloud systems, and there is much
uncertainty about how best to represent it. Autoconver-
sion acts as a “switch”, starting coalescence when the mean
size of cloud-droplets becomes larger than about 20 microns.
Khairoutdinov and Kogan (2000) showed that autoconver-
sion is a strongly increasing function of cloud-droplet mean
size, consistent with observations that drizzle is absent when
the average cloud-droplet size is less than about 20 microns
(Pawlowska and Brenguier, 2003). So, we have correctly
represented this “switching” property of autoconversion, de-
pending on droplet size. But of course, there is experimental
uncertainty about whether the switch ought to be 20 microns
exactly, or some value closer to 25 microns. Concerning the
accretion of cloud-droplets by rain, another uncertain param-
eter in our scheme is the cloud-droplet size threshold for
the transition of collision efficiency from zero to unity. In
nature, the collision efficiency rises gradually between zero
and unity with increasing droplet size. So this cut-off size is
uncertain. Despite such potential for errors in microphys-
ical parameters in the treatment of the warm rain process,
our scheme’s prediction of precipitation rates compares ad-
equately with observation (see Fig. 2 in Lee et al. (2008a)
who simulated the same ARM case as in DEEP). However,
it should be stressed that model results can also be sensitive
to other numerous parameters (See Phillips et al. (2007) and
Lin et al. (1983) for those other parameters) for which tests
are not carried out or discussions are not made here. This is a
cause of uncertainties of model results here. Further studies
using an advanced microphysics with minimized reliance on
those parameters are needed to examine these uncertainties
and draw more robust conclusions.

It was found that the role of CCN was much more impor-
tant than that of IN in the presented results here. Increased
cloud-liquid evaporation, near-surface convergence and thus
updrafts and ice formation around and above the level of
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homogeneous freezing determined the cloud-mass increase
at high aerosol. Those processes were mostly controlled by
the CCN increase and the IN increase played a negligible role
in changing cloud mass with changing aerosols.

Lee et al. (2008a) showed that differences in the mass of
ice particles (and thereby the offset of SCF by LCF) be-
tween the high- and low-aerosol runs were not significant
before stronger updrafts were triggered by enhanced evap-
orative cooling of cloud liquid at high aerosol. The more
intense feedback between updrafts and depositional heating
after the development of stronger updrafts played a crucial
role in the substantially increased ice mass at high aerosol.
However, this does not preclude other interactions as con-
trols on the responses of ice mass to aerosols. For exam-
ple, Lohmann and Diehl (2006) indicated that the responses
of ice mass to aerosol increases were significantly different
with different assumptions of IN compositions of internally
mixed chemical materials in mixed-phase and ice clouds;
changes in ice nucleation due to increasing aerosols were
significantly different for different IN chemical composition
assumed. Those interactions between IN chemical compo-
sitions and responses of ice particles to aerosols deserve the
further study.

Cui et al.’s (2006) study indicated that the immersion
freezing was most dominant among ice-nucleation paths and
less vigorous near the top of clouds at their mature stages at
high aerosol due to more rapid evaporation of smaller drops
in the CCOPE case. This process reduced the buoyancy at
cloud top and produced stronger downdrafts flanking the up-
draft core of the high-aerosol clouds, cutting off the inflow
within the boundary layer to lead to weaker near-surface con-
vergence, updrafts, and cloud mass at high aerosol. Cui et
al.’s (2006) study simulated clouds existing predominantly
below the homogeneous freezing level whereas convective
clouds in this study grow above the homogeneous freez-
ing level except for DEEP (LOW-CU) where clouds grow
to just below the homogeneous freezing level as shown in
Figs. 3 and 9. Note that greater homogeneous freezing of
aerosol (haze) particles and droplets contributed to larger
mass of ice crystals around the top of clouds at their ma-
ture stages by boosting the buoyancy and, thereby, deposi-
tion more at high aerosol than at low aerosol in this study.
Also, it should be stressed that Cui et al.’s (2006) study con-
sidered the case of weak wind shear. As simulated by Cui et
al. (2006) and found by Weisman and Klemp (1982), when
wind shear was weak, downdrafts destroyed the updrafts.
However, in this study with moderate wind shear accord-
ing to Bluestein’s (1993) definition, downdraft regions were
separated from updrafts cores, as shown in Fig. 8 in Lee et
al. (2008a). This led to the updraft-increasing mechanisms
via the developments of stronger downdrafts and thereby
low-level convergence, initiating larger condensation in liq-
uid clouds and deposition in ice clouds (mostly around and
above the homogeneous freezing level) at high aerosol. Al-
though the homogeneous freezing is absent in DEEP (LOW-

CU) as in the CCOPE case in Cui et al. (2006), these mecha-
nisms enable the increased cloud mass in DEEP (LOW-CU)
with increasing aerosols mostly by increasing condensation.

Generally, sub-grid convective clouds in climate models
have been represented by cumulus parameterization which
is not able to simulate microphysics explicitly. Hence, it is
hard to expect that varying modulation of LCF with vary-
ing cloud-top height in convective clouds has been reason-
ably simulated in climate models. This is because cloud-
top height is determined by the upward transportation of
hydrometeors by updrafts and microphysical properties of
hydrometeors affect the transportation significantly. Those
properties of hydrometeors affect microphysical processes
such as nucleation, phase transition, and collision having a
substantial impact on latent heat distribution, cloud particle
and precipitation mass, which, in turn, affect the intensity of
updrafts. Also, it is hard to expect that the important roles ice
clouds, associated with microphysical processes such as het-
erogeneous and homogeneous nucleation, play in the mod-
ulation of LCF have been reasonably simulated in climate
models. Moreover, cumulus parameterization is not able to
represent aerosol-induced intense interactions between mi-
crophysics and dynamics in convective clouds. Consider-
ing that increasing green house gases can lead to changes in
cloud-top height and increasing aerosols can modify aerosol-
induced interactions between microphysics and dynamics
and thus the property of ice clouds in convective cloud sys-
tems, more accurate and explicit representation of convective
clouds in climate models is needed.

The study here does not exclude the possibility of impacts
of environmental conditions on cloud- and aerosol-induced
infrared warming effects. Even in similar types of clouds
with similar cloud-top height and cloud depth, slightly dif-
ferent environmental conditions such as humidity and large-
scale subsidence above the PBL, sea surface temperature
(SST), and surface sensible and latent heat fluxes can change
cloud development and aerosol-cloud interactions (Jiang et
al., 2002; Ackerman et al., 2004; Guo et al., 2007; Khain
et al., 2008). Hence, more case studies of various types of
clouds under various environmental conditions are needed
to address those impacts of environmental conditions and to
better establish the generality of results here in future studies.

A given value of CAPE is not unique with respect to
thermodynamic structure. For example, CAPE can be in-
creased by increasing near-surface humidity or by increas-
ing the middle-tropospheric lapse rate. The former approach
has been used to generate the idealized CAPE variations
in this paper. Increasing the CAPE in this way particu-
larly favors increased condensate production with increasing
aerosols and the subsequent interactions described here.

Use of a two-dimensional, rather than three-dimensional,
cloud-system model affords substantial computational ad-
vantages but, as Phillips and Donner (2006) note, some as-
pects of the dynamics and microphysics in deep convection
differ in two- and three-dimensional models. Phillips and

www.atmos-chem-phys.net/9/2555/2009/ Atmos. Chem. Phys., 9, 2555–2575, 2009



2572 S. S. Lee et al.: Aerosol effects on radiation

Donner (2006) found that vertical velocities and mass fluxes
in deep convective updrafts, and downdraft mass fluxes, were
larger in three dimensions than two dimensions. Downdrafts
play an important role in the interactions among dynam-
ics, microphysics and radiation in deep convection described
in this paper. Phillips and Donner’s (2006) results suggest
that this mechanism may have been underestimated in two
dimensions. Conversely, Phillips and Donner (2006) also
found that comparatively weak convective clouds were more
numerous in two dimensions. To the extent these clouds
play a role, they may be overestimated in two dimensions.
Guo et al. (2007) showed that basic features of the integra-
tions (e.g., the CDNC, LWP and effective size) were simi-
lar for two and three dimensional simulations of warm stra-
tocumulus clouds. The results of Guo et al. (2007) suggest
that responses of radiation to clouds and aerosols in warm
stratiform clouds are robust to dimensionality of domain. A
three-dimensional version of simulations of the same cases
of deep convective system (the 1997 ARM case) and warm
stratiform clouds (the 2002 case off the coast of Virginia)
as simulated here has also been conducted. For this simu-
lation, single-moment microphysics, similar to Phillips and
Donner (2006), was used. The radiation in each of the high-
and low-aerosol run in these cases behaved similarly to that
in this study. Also, the high-aerosol runs in these cases be-
haved relative to the low-aerosol runs similarly to the high-
aerosol runs in this study with similar radiation responses to
aerosols. Although the microphysics is highly simplified in
the three-dimensional experiments, this result suggests that
the qualitative character of the results here does not depend
on the dimensionality of the experiments.

As does the choice of two dimensions, the choice of res-
olution (2 km horizontal, 500 m vertical) affords substantial
computational advantages. Donner et al. (1999) reported a
series of test calculations with a similar cloud-system model
with resolutions ranging from 500 m to 5 km. They found
basic features of the integrations (e.g., patterns of vertical ve-
locity) were similar for horizontal resolutions of 2 km or finer
for convective clouds. Phillips and Donner (2006) showed
that, compared to aircraft observations of convective cores
in the mid-troposphere in the Global Atmospheric Research
Program (GARP) Atlantic Tropical Experiment (GATE), the
frequency of vertical velocity is correctly predicted with the
resolutions adopted here. Simulations in DEEP are repeated
with the vertical resolution of 100 m to test the sensitivity of
results to the vertical resolution. It is found that the princi-
pal aspects of results with the 100-m vertical resolution are
similar to those with the 500-m vertical resolution. Similarly,
Bryan et al. (2003) reported that basic deep convective circu-
lation features did not change significantly when horizontal
and vertical resolution increased from the order of 1 km to
the order of 100 m. However, Bryan et al. (2003) reported
that precipitation distribution and amount, system propaga-
tion speed, cloud depth, mesoscale flow pattern, and stabil-
ity structure in deep convection changed with the change in

grid spacing. Due to better resolved turbulent motions with
gird spacing on the order of 100 m, there were modifications
on the updraft, entrainment, and detrainment of liquid water,
leading to those changes. Hence, their study suggests that
the detailed turbulent structure and thereby evaporation and
interactions between evaporation and dynamics can be sen-
sitive to grid spacing, though their study also suggests that
the qualitative nature of the simulations here is not expected
to change with grid spacing substantially. Nevertheless, a
100 m grid-spacing for both horizontal and vertical resolu-
tions would have been preferable, so as to resolve turbulence
that is important especially in the boundary layer, if it were
computationally feasible for our study. Shallow convection
in the boundary layer is important to treat for correct predic-
tion of cloud statistics. However, Pauluis and Garner (2005)
showed that only at resolutions coarser than a few km does
a serious bias develop in the domain-wide cloud statistics
(e.g. average cloud-liquid content) due to shallow convection
being unresolved. We want to add that it would also have
been preferable to adopt a three-dimensional domain with
the 100 m grid-spacing for a more realistic simulation of the
shallow convection in the boundary layer. This is because
the simulation of three-dimensional turbulence motions are
expected to be more critical in the simulation of the shal-
low convection in the 100 m spacing than that adopted in this
study.

Guo et al. (2008) found that cloud-top entrainment in the
simulation of stratocumulus clouds decreased with increas-
ing vertical resolution from 40 m to 5 m. However, the sen-
sitivity of entrainment to horizontal resolution is not signifi-
cant once the horizontal resolution is finer than 100 m. Mod-
els with resolution finer than 40 m (adopted in this study for
stratocumulus clouds) enable more detailed simulation of en-
trainment and detrainment processes at cloud top, which play
important roles in the evolution of shallow clouds and may
not be well-represented with a model whose resolution is as
coarse as that employed here. Therefore, the quantitative
details of the cloud-mass changes associated with changes
in aerosol concentration in SHALLOW are of limited real-
ity. Conceding this, experiments in this study still demon-
strate that interactions between microphysics and dynamics
whose strength is controlled by cloud vertical extent can vary
widely. These variations, which are related to stability char-
acteristics in which clouds form, are large enough to lead
to the substantial differences in cloud-mass changes with in-
creasing aerosol concentration.

When Hong and Pan’s (1996) PBL scheme (adopted in
this study) is used for the horizontal resolution of 4 km or
finer, it is reported that the PBL heights are predicted deeper
by ∼500 to∼600 m as compared to those predicted by the
turbulent kinetic energy scheme (Deng and Stauffer, 2006).
This implies that the cloud-base height may have been over-
estimated in the cases of convective clouds. However, the
uncertainty of the location of cloud bases nearly within the
500 m-layer is not likely to affect the qualitative nature of
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the results here. This is because condensation and deposi-
tion from mid-level of liquid clouds (about 2–3 km above the
bases) to the top of ice clouds play crucial roles in the de-
termination of cloud mass and thus radiative properties of
convective clouds.

The identical surface fluxes from observation are pre-
scribed for high- and low-aerosol runs. Therefore, surface
fluxes do not contribute to different near-surface convergence
and radiation. In this study, we focused on how aerosols af-
fect clouds and radiation for an identical observed net heat
and moisture supplied to or removed from the domain by
large-scale flow and surface fluxes. Although feedbacks from
differences in clouds onto the large-scale flow and surface
fluxes cannot be captured by this design, this isolates inter-
actions between aerosols, microphysics, and local dynam-
ics (e.g., convergence fields within the model domain with
zero domain-mean average) and enables the identification of
microphysics-aerosol interactions on the scale of cloud sys-
tems.

Grabowski (1999) reported the increase in the intensity
of low-level convergence of deep convective clouds with in-
creasing surface fluxes. Hence, the cloud mass is expected to
be higher (lower) with higher (lower) surface fluxes through
the more (less) intense near-surface convergence, leading to
more (less) offset of SCF by LCF than in DEEP in each of
the high- and low-aerosol runs.

This study does not take into account the removal of
aerosols by precipitation (impaction scavenging). Impaction
scavenging does not impact in-cloud nucleation strongly, but
it can impact ice formation by reducing available IN. It is
most effective when clouds develop heavy precipitation at
their mature stages as shown by Ekman et al. (2004, 2006).
The key mechanisms leading to larger cloud mass with in-
creasing aerosols begin to operate before heavy precipitation
develops in the case of deep convection here (cf., Figs. 3
and 5 in Lee et al. (2008a), which show the domain-mean
convergence magnitude increases before the onset of heavy
precipitation). Also, as stated in Sect. 3.2, the precipitation is
very small in the case of stratiform clouds, implying that the
impaction scavenging is not significant. Thus, the neglect of
impaction scavenging is not expected to change the qualita-
tive nature of the results.

Lee et al. (2008b) reported that in general, increasing wind
shear led to the increasing intensity of near-surface conver-
gence and thus cloud mass; also with larger wind shear, the
magnitude of cloud-mass increase with increasing aerosols
was larger. However, they also showed that the intensity of
the convergence could decrease with increasing wind shear
at extremely high wind shear. When they increased wind
shear to∼0.013 s−1 (a maximum value used in Weisman
and Klemp, 1982) as a extremely high shear, the convergence
weakened leading to smaller cloud mass at both high and low
aerosol. This also led to smaller increase in cloud mass with
increasing aerosols than that shown with a comparatively low
shear. Hence, it is expected that increasing (decreasing) wind

shear increases (decreases) the offset of SCF by LCF in each
of high- and low-aerosol runs and that of increasing nega-
tive SCF by increasing LCF at high aerosol unless the shear
is extremely high. This is consistent with findings of pre-
vious studies (e.g., Rotunno et al., 1988; Lafore and Mon-
crieff, 1989 and references therein). Those studies indicated
the important role of interactions between wind shear and
near-surface convergence in the intensity of deep convection
and an optimal value of wind-shear magnitude for the inten-
sification of deep convection.

Homogeneous freezing of haze particles in this study
is assumed to occur instantaneously when a size- and
temperature-dependent critical supersaturation with respect
to ice is exceeded. The critical supersaturation is determined
by a look-up table also used in Phillips et al. (2007). For the
construction of the look-up table, aerosols dissolved in haze
particles are assumed to be ammonium sulfate. Mangold et
al. (2005) reported that the critical supersaturation could be
lowered by 30% from that for the ammonium sulfate maxi-
mally with varying chemical compositions of aerosols. With
a lower critical supersaturation, more aerosol particles can
be nucleated for the identical size distribution of haze par-
ticles and ambient temperature. Repeated simulations with
the critical supersaturation, which is forced to be lowered by
30% (every time there is the homogeneous freezing of haze
particles), showed that more ice particles were formed than
shown in Sect. 3.2. This led to more offset of SCF by LCF
than that with the ammonium-sulfate haze particles in each
of the high- and low-aerosol runs. This increase in the off-
set was larger at high aerosol than at low aerosol. This led
to larger offset of the increasing negative SCF by increasing
LCF than that shown with ammonium-sulfate haze particles
at high aerosol.
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