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I. INTRODUCTION II. ASSUMPTIONS 

The American Community Survey (ACS) component 
of the continuous measurement is designed to provide 
reliable direct estimates of the various population 
characteristics for substate areas. For small areas, 
such as census tracts, it is desirable to improve the 
ACS estimates by borrowing strength from other areas 
and other sources of data. In this project, we will 
develop procedures to derive indirect estimates of 
characteristics of interest by integrating ACS data with 
administrative records and the previous census data. 

Synthetic estimators which borrow strength from 
similar areas may be sensitive to the similarity 
assumption. Regression synthetic estimators based on 
auxiliary data taken from other sources for the same 
and similar areas will be less sensitive to this 
assumption. The composite estimation (Singh, 
Gambino and Mantel (1994)) combines direct and 
synthetic estimators, and thus balances the potential 
bias of synthetic estimators against the instability of 
the direct estimators. In addition, the procedure may 
provide estimators with between area variation much 
smaller than the prior known variance (Spjotvoll and 
Thomsen (1987)). 

However, composite estimators under fixed effect 
models provide best linear unbiased estimators which 
reduce to synthetic estimators for areas with small 
sampling fractions, irrespective of the size of between 
area variance relative to the within area variance. 
This limitation is avoided by using models which take 
into account random area effects (Chand and 
Alexander (1995), Cressie (1989, 1990, 1992), Datta et 
al (1992), Ericksen and Kadane (1985, 1987, 1992), 
Fay (1987), Fay and Herriot (1979), Ghosh and Rao 
(1994), and Prasad and Rao (1990)). 

The paper adapts the small area methods for 
application to the ACS variables of interest such as 
proportion of population below poverty level. The 
applications pertain to developing estimates and their 
mean squared errors of such proportions for census 
tracts. 

A large area A is composed of m small areas A i , 

i = 1, ..., m. The parameter of interest for A i is the 

true population proportion P i • 

A direct estimator pi of P i is available from the 

A C S .  T h e  a u x i l i a r y  d a t a  

Xi = ( X i l  ' . . . ,  Xis) T are 

available from administrative records and from 

previous censuses for each A i . These data are 

related to Pi " 

The transformation g is a function of a single variable 
and has a nonzero and continuous first derivative. Let 

gi = g(Pi), i = I, ..., m.. 

We consider the small area model, 

g = x~_ + _ ~  + _ e  , 

w h e r  e .g, ~ ,  a n d  _~ a r  e m x l  

v e c t o r s ,  22 r e p r e s e n t s  r a n d o m  a r e a  

effects, _~ represents random sampling errors, 

and g has a multivariate normal distribution. X is 

a mxs design matrix and ~ is a sxl vector of 

unknown parameters. _/2 and _~ are statistically 

independent. Let E and V be mxm diagonal 
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matrices with the (i, i)th elements respectively equal 

2 We also assume that to 1; 2 and 8 i . 

E ( e  [ ..q) = O,  Var(e [ _q) = V , 

and t - N ( O ,  E ) .  

In this paper, we consider two transformations. The 
first is the variance stabilization function given by 

gi = 2sin-1 (V~) • 

and the second is the logistic function given by 

gi = in[Pi/(l - Pi)], 

i = 1,..., m. (Cox and Snell (1989)). 

The FH estimator of 1; 2 is obtained by 

simultaneously solving 

(..q- X~.)T V-l(..q_ X~) = m-s ,and 

= (X  TV-1X) -1X T V - I ~ .  

The QM estimator of 1;2 is given by 

m 

i = I  
m 

2 T 
+ 6 ixi (x rx) - xi] 

i=i 

III. EMPIRICAL BEST LINEAR UNBIASED 
PREDICTORS (EBLUP) AND THEIR MEAN 
SQUARE ERRORS (MSE) 

We consider four estimators of the variance 

where /~ is the ordinary least square estimator 

of ~_ given by 

5_ : (x x)-zx g, 

c o m p o n e n t  72  under the model of the previous and x f is the ith row of the design matrix X. 
section. These are the maximum likelihood (ML) 
estimator, the restricted maximum likelihood (RML) 
estimator (Cressie(1989, 1992)), the FayandHerr io t  With 1; 2 estimated by one of the above four 

(FH) estimator (Fay and Herriot (1979)), and a 
quadratic moment (QM) estimator (Prasad and Rao methods, let j~ be the best linear unbiased 
(1990) and Ghosh and Rao (1994)). 

While the calculations of the first three estimators 
require iterative solutions, the last one has an explicit 
solution. 

estimator of ~_ given by 

~_ -- ( X TU-1X) -1X TU-l q , 

where U is the mxm matrix obtained from V by 

The ML estimators of ~ and 1; 2 minimize the replacing 1; 2 by its estimator ~2 . 

expression 

in( Iv I) + (g - X~) r V-1(~ _ X~) 

where V is a mxm diagonal matrix with the (i, i)th 

element equal to 1;2 + 6i 2 . 

The RML estimators of ~_ and 1;2 minimize 

in([V l) + In([XTV-IXI) 
+ (g - xfi) v (g- xfi) 

The measure of uncertainty in the model relative to 
the total variance is defined as the ratio of the 
variance component of the random area effects to the 
total variance, and is given by 

7 i  -- T2 / (~2+~2 /)  . , i  = 1,. . . ,m. 

The regression synthetic estimator of the vector of 
outcome variables is the product of transpose of the 
design matrix and the best linear unbiased estimator 
of the vector of unknown parameters. Thus the 
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regression synthetic estimator of g ( P i ) is 

The EBLUP of the outcome variable is the weighted 
average of the transformed direct ACS estimate and 
the regression synthetic estimator, the weight being 
the estimated measure of uncertainty in the model. 

Moi (T : yi6  

+ ( 1 -? i) ~x~ ( X  rV-lX) -~_X_~" 

An approximately unbiased estimator of M/g 

(Prasad and Rao (1990)) is given by 

~f : So i (~2) + 2~ 4 2 a i( 2+8i)-3v 

Thus the EBLUP of g ( P i  ) is given by 

= q + ( z - q  x 13_ , 

where ~ i  is thevalueof Y i when 1:2 is replaced 

by its estimator $2 . 

The corresponding estimator P i of P i is taken 

g i  
as sin2(-- Z) for the variance stabilization model 

and as 
eO~ 

1 + e 0~ 
for the logistic model. 

The MSE of the EBLUP, defined as the expected 
value of its squared deviation from the true value, 
consists of three parts. Part one is the sampling error 
variance times the measure of uncertainty in the 
model relative to the total variance. The second part 
is due to estimating the unknown parameters in the 
model. The third part is due to estimation of the 
variance component of the random area effects. 

The MSE o f - ~ i  (Cressie (1992), Kackar and 

Harville (1984), and Ghosh and Rao (1994)) is given 
by 

2 a ) 

where v a  (.~2) is the asymptotic variance 

of ,~2 and 

This estimator of MSE, using the moment estimators 

of 1:2 , is valid under moderate nonnormality of the 

random effects t .  

IV. ADJUSTMENT OF EBLUP ESTIMATORS 

Since ACS is designed to provide unbiased estimates 
for large areas, we make an adjustment to the 

EBLUP estimators for each A i such that an 

appropriately weighted sum of these adjusted 
estimators equals the ACS estimate for the large area. 

m 

Let w i = B i / E B i  be the ratio of the base 
i=1  

population in A i with respect to Pi , to the total 

base population in A. 

Then the ACS estimate for A is the weighted sum of 

the ACS estimates for A i with weights w i ,  i = 1, 

, ,o ,  m o  

We def'me the modified EBLUP ~imod of P i in 

the following steps: 

This modification is similar to the one suggested by 
Battese, Harter, and Fuller (1988). Their model 
assumes that element- specific auxiliary data are 

available for each A i . 

Defining for i= 1, ..., m, 
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m 
^ 2 ^ 

i = 1  

Xi: = i, X i 2  = in[ 
c +.s 

B i -C i +.  5 
I 

A 
M i being MSE of /:3 i , we have, 

m 

: 

i=i 

If we thus define 

m 
-, mod 

: + w (p - 

i=i 

it follows that 

m 
E ^ mod 

WiP i = p. 
i=i 

Xi3 = in ( T  i ) ,  

Xi4 = i n  [ I4;  + .  5 ] , where, for area 

B i  - H i + . 5  

A i , B i is the base population, C i is the 

number of persons with a college degree, H i is 

number of persons with hispanic origin, and T i is 

the simulated median income of tax fliers, i = 1, ..., 
m .  

For the variance stabilization model, the design matrix 
This derivation of /:3~ °a does not require element- is defined with s = 4 as 

specific data. 
Xi: = 1 ,  X i 2  = 2sin-1(Ci/B i, 

V. ESTIMATION OF PROPORTION OF 
PERSONS BELOW POVERTY LEVEL 

We illustrate the above estimation procedures by 

taking{ A i ,  i = 1 ,  . . . ,  m } as the census 

tracts in Alameda County, California. 

Xi3 = in ( T  i ) ,  Xi4 = 2sin-a(Hi/Bi 

2 
The variance components 8 i are estimated by the 

Jackknife method using the VPLX program (Fay 
(1990)). 

There are a total of 291 tracts in the above ACS 
sample for Alameda County, giving m = 291. The 

The direct estimate P i of the proportion below suitability of the assumed models is verified by 

demonstrating that the standardized residuals are 
poverty level in A i is calculated as the ratio of approximately normally distributed with mean zero 

and variance one. 
weighted number of persons below poverty level to the 

total weighted ACS population, simulated from the VI. A COMPARISON OF THE VARIANCE 
1990 census long form data. The function g is chosen COMPONENT ESTIMATION METHODS 
as described in Section II. The sources of auxiliary 

data are the simulated administrative records data The four estimation methods, when applied to the 
such as income of tax tilers in the tract, and the Alameda County data, gave the following estimates 
census data such as number of persons with hispanic 
origin, of 1;2 . 

For the logistic model, the design matrix X is defined 
with s = 4 as 

Variance Stabilization Model (VSTM) 

RML ML FH QM 

~2 .0688 .0678 .0696 .0710 
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~2 

Logistic Model (LGM) 

RML ML FH QM 

.7416 .7300 .7636 .7960 

TABLE A2 (Continued) 

4087 19.3 19.2 19.2 19.2 19.2 

4101 06.7 07.3 07.3 07.3 07.3 

Tables A1-A2 show the four sets of EBLUP 4229 30.7 27.9 28.0 28.0 28.1 
estimators of percent of persons below poverty level 
along with the weighted ACS estimates, for five of the TABLE B1 
291 tracts. The four methods of variance component Percent Below Poverty, Alameda County (VSTM) 
estimation provide similar results for each of the two (MODIFIED) 
models. Tract ACS RML ML FH QM 

Tables B1-B2 show the modified EBLUP estimators 4004 18 .1  18.1 18.1 18.1 18.1 
of percent below poverty level. An appropriately 
weighted sum of these estimators equals the ACS 4052 08.1 08.0 08.0 08.0 08.0 
estimate of the percent below poverty level for the 
whole county. This latter percent is equal to 11.01. 4087 19 .3  19.7 19.7 19.7 19.7 

For comparison, the weighted average of the 4101 06.7 07.3 07.3 07.3 07.3 
unadjusted RML for the county is 10.73 under VSTM 
and is 10.94 under LGM. 4229 30.7 27.0 26.9 27.0 27.0 

Tables C1-C2 give MSE estimates associated with the TABLE B2 
four EBLUP estimators. The tables show the small Percent Below Poverty, Alameda County (LGM) 
levels of MSE of the EBLUP estimators for each of (MODIFIED) 
the estimation methods. Tract ACS RML ML FH QM 

SIMULATED ACS SAMPLE 4004 18.1  18.0 18.0 18.0 18.0 

TABLE A 1 
Percent Below Poverty, Alameda County (VSTM) 
Tract ACS RML ML FH QM 

4052 08.1 07.8 07.8 07.8 07.8 

4087 19 .3  19.3 19.3 19.3 19.3 

4004 18.5 17.8 17.8 17.8 17.8 4101 06.7 07.3 07.3 07.3 07.3 

4052 08.1 07.9 07.9 07.9 07.9 4229 30.7 28.1 28.1 28.2 28.3 

4087 19.3 19.1 19.1 19.1 19.1 

4101 06.7 07.3 07.3 07.2 07.2 

TABLE C 1 
Proportion Below Poverty, Alameda County 

(MSExlO000- VSTM) 

4229 30.7 26.6 26.6 26.5 26.5 Tract RML ML FH QM 

TABLE A2 
Percent Below Poverty, Alameda County (LGM) 
Tract ACS RML ML FH QM 

4004 18 .5  17.9 17.9 17.9 17.9 

4052 08.1 07.8 07.7 07.8 07.8 

4004 07.0 07.0 07.0 07.0 

4052 02.6 02.6 02.6 02.6 

4087 06.4 06.4 06.4 06.4 

4101 02.2 02.2 02.2 02.2 

4229 16.5 16.4 16.5 16.5 
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TABLE C2 
Proportion Below Poverty, Alameda County 

(MSExlO000- LGM) 

Tract RML ML FH QM 

4004 07.1 07.1 07.1 07.1 

4052 02.4 02.4 02.4 02.4 

4087 06.5 06.5 06.5 06.5 

4101 02.4 02.4 02.4 02.4 

4229 17.3 17.3 17.4 17.5 
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