

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

APS Upgrade Options

Michael Borland for the APS Upgrade Team

October 20, 2008

ERL@APS¹

- Single-pass 7 GeV linac with 7 GeV turn-around
 - Short-pulse x-ray facility expansion -
 - Arc supports expansion w/new beamlines
- High-coherence mode²: ~140-fold boost in brightness and transverse coherent fraction
 - 0.06 nm emittance in both planes
 - 0.02% energy spread
 - 25 mA with 1.3 GHz bunch rate
- Long undulators give even higher brightness
- Drawbacks include cost, size, environmental impact, low flux
- Technical risk is very high
 - Ultra-low emittance gun
 - High average current gun
 - Parts-per-billion beam loss control
 - Very high Q cavities

¹M. Borland, G. Decker, A. Nassiri, Y. Sun, M. White, NIM A 582 (2007) 54-56. ²G. Hoffstaetter, "Status of the Cornell ERL Project," FLS2006 workshop. ³I. Bazarov et al., Proc. PAC 2001, 230-232 (2001).

APS 1nm Replacement Ring Design¹

With 200 mA and 8m optimized IDs, about 40-fold brightness increase

- Transverse coherent fraction improves ~5-fold
- Flexible bunch patterns as in APS today²
- Main drawbacks: 1 year dark time for installation, disappointing transverse coherence improvement
- Moderate technical risk, related to control and correction of magnet and alignment errors

¹A. Xiao, M. Borland, V. Sajaev, Proc. PAC07, 3447-3449. ²Y. Chae, Y. Wang, A. Xiao, Proc. PAC07, 4330-4332.

APSx3 Replacement Ring Design¹

- Evolved from APS1nm design following user feedback
 - 1.7 nm effective emittance
 - Main straight accepts 8m ID (increased from 4.8m)
 - Two short straight sections per sector with ~1m available for ID
 - One is parallel to present BM beamline
 - Three-pole wiggler option for bending-magnet-like source
- Performance midway between APS today and APS1nm
- Drawbacks: 1 year dark time for installation, disappointing transverse coherence improvement
- Moderate technical risk

¹V. Sajaev, M. Borland, and A. Xiao, Proc. PAC07, 1139-1141.

cAPS: APS with sector-by-sector customization

- This option capitalizes on flexibility built into APS
 - Individual quadrupole and sextupole power supplies
 - Trim windings on all dipoles
- Customizations could include
 - Long straight sections (LSS), perhaps 11 m for IDs
 - LSS (8m for IDs) with reduced horizontal beamsize (120 microns instead of 280)
 - Reduced horizontal beamsize, perhaps down to 40 microns¹
 - Split dipoles to turn BM beamline into ID beamline (1m device)²
 - High-field dipoles for harder bending magnet radiation³
- Drawbacks
 - Emittance will go up depending on what's requested
 - Not hard to imagine ending up at 4~5 nm
- Technical risk is low to moderate
 - Broken symmetry can lead to poor lifetime and injection efficiency
 - Crotch absorber redesign needed; may limit improvements, beam current

¹Y.-C. Chae, ASD/APG/2008-01, March 6, 2008. ²M. Borland, OAG-TN-2008-010, April 1, 2008. ³M. Borland, OAG-TN-2004-003, Feb. 9, 2004.

APS-LSS: Ring with all Long Straight Sections

- In this option, we lengthen every straight section by 2.9m
- Emittance increase from 3.1 to 3.4 nm¹ (probably more)
- Drawbacks
 - Reduced flexibility for lattice functions
 - May choose to leave a few sectors unaltered
- Technical risk is very low
 - Can be mocked up prior to any hardware changes by just turning off the Q1 quadrupoles
 - Actual mechanical changes can be staged
- More about LSS options in R. Gerig's talk tomorrow.

¹V. Sajaev, "Post ERL Ring Lattice," ASD/APG/2007-06.

USR7: Ultimate Storage Ring at 7 GeV

- Preliminary 40-sector, ten-bend-achromat design shows promise¹
 - 3.1 km circumference
 - 0.016 nm emittance in both planes (fully coupled)
 - Could go lower with damping wigglers
 - Space for 8m insertion devices
 - Higher brightness and flux than ERL@APS, assuming 200 mA
 - ~80-fold increase in transverse coherent fraction

Drawbacks:

- Cost and size
- ~4000 bunches
- Doesn't use existing beamlines
- Technical risk appears moderate
 - Conventional magnet technology
 - Must use "swap-out" operation to replace depleted bunches²
 - Errors must be well controlled to achieve acceptable lifetime, injection

¹M. Borland, "Ultimate Storage Ring Light Sources," Workshop on Enabling Grand Challenge Science, LSU, January 2008. ²M. Borland, "Can APS Compete with the Next Generation?", APS Strategic Retreat, May 2002.

APS Upgrade Options

XPS: eXtreme Photon Source in APS Tunnel

- Attempt to design the lowest-emittance 7-GeV, 40-sector ring that will fit in the APS tunnel
- Six-bend achromat concept¹
 - 0.2 nm emittance
 - Space for 8m insertion devices
- Drawbacks:
 - Requires long dark time for installation
 - Inflexible bunch patterns (fill most buckets)
- Technical risk is very high
 - Sextupole strengths unrealistic, no solution evident
 - Alignment tolerances correspondingly difficult
 - Many quadrupole magnets must have sextupole component
 - Dynamic aperture adequate only for on-axis injection (swap-out mode)

¹M. Borland, "A 0.2 nm Lattice for APS Upgrade with Long Straights," OAG-TN-2006-022.

XFEL-O: X-ray FEL Oscillator^{1,2}

Use Bragg mirrors to make x-ray cavity for oscillator FEL at 3~30 keV

- Promises >10⁵ times average brightness of other proposed sources
- Need same high beam quality as ERL@APS, but low average current
- 10-GeV four-pass superconducting linac with few MHz beam rate
- Drawbacks: size, cost, single- or few-user facility
- Technical risk is high
 - Ultra-low emittance electron beam required
 - Very high timing stability (20 fs)
 - Development of sufficiently stable, efficient x-ray cavity

¹K.-J. Kim, "1A FEL Oscillator with ERL-Like Beams," April 2008, Shanghai.
²K.-J. Kim, Y. Shyd'ko, S. Reiche, "An X-ray Free-Electron Laser Oscillator with an ERL," submitted to PRL.

APS Upgrade Options

Summary of Options

Option	Flux (relative)	Max. Ave. Brightness (relative)	Time Required	Approximate Dark Time	Cost	Technical Risk
APS today	1	1 (2.4m U33)	N/A	N/A	N/A	N/A
ERL@APS	0.5	140 (4.8m U33)	10 years, including R&D	6 months	\$\$\$	Very high
APS 1nm	7	40 (8m U33)	5 years, including R&D	1 year	\$	Moderate
APSx3	7	18 (8m U33)	5 years, including R&D	1 year	\$	Moderate
cAPS	3	2 (8m U33)	5 years, including R&D	0 (use periodic shutdowns)	\$	Moderate
APS-LSS	3~7	4~10 (8m U33~special ID)	6 years	0 (use periodic shutdowns)	\$	Very low
USR7	7	400 (8m U33)	5 years, including R&D	N/A	\$\$\$\$	Moderate
XPS	7	75 (8m U33)	7 years, including R&D	2 years	\$\$	Very high
XFEL-O	1 to 100	10^7 to 10^9	5 years, including R&D	N/A	\$\$	High

APS Upgrade Options

A Few Configuration Options for ERL@APS

Best: 7 GeV linac, new Basic: Two 3.5 GeV Better: Two-pass linac, user arc, straight-ahead hall linacs, budget turnnew 7GeV user arc; around system; upgradeable upgradeable inject dump 25~100mA APS APS APS

Based on ideas from M. Borland, G. Decker, N. Sereno

APS Upgrade Options

What are ESRF and SPring-8 Considering?

ESRF¹

- Pursuing something very similar to APS-LSS
 - Have already implemented new optics in operation
 - Will remove quadrupoles and replace chambers as needed
- Also pursuing reduced vertical emittance (factor of 2.5) and higher beam current (300mA)
- Long term, looking into TBA replacement ring or damping wigglers to reduce emittance below 1 nm
- SPring-8
 - X-ray FEL under construction
 - Considering coupling linac to ring, but benefit is unclear
 - Have design for 0.08-nm emittance replacement ring²
 - Eliminates half the straight sections
 - Remaining straights accommodate 5-m undulators
 - Also have design for 6 GeV ultimate storage ring at new site³, comparable to USR7

¹ESRF Science and Technology Program 2008-2017, volume 1, Sept. 2007.
²K. Tsumaki, N. Kumagai, Proc. EPAC06, 3362-3364.
³K. Tsumaki, N. Kumagai, NIM A 565 (2006) 394-405.

APS Upgrade Options