

Interfacial Science

Panel Members:

Paul Fenter (ANL, Chair)
Mike Bedzyk (Northwestern)
Joel Brock (Cornell)
Paul Zschack (APS/ANL)
Hoydoo You (MSD/ANL)
Mike Toney (SSRL)
Ron Pindak (BNL)
Roy Clarke (Michigan)

Contributions from: Kent Blasie; Michael Pierce

Interfacial Science – From Processes to Properties

Physical Properties

Structural, Electrical, Chemical, Thermal, Optical, Magnetic

Interfacial Science: Challenges:

Small signal strength (R $\sim 10^{-5}$ to 10^{-10})

Grazing angles of incidence (small effective sample area)

Lateral heterogeneity: structures, reactivity averaging over large areas (mm's)

Complex environments liquid-solid, vapor-solid, solid-solid, liquid-liquid

Structural/compositional evolution during reactions

Multi-element materials

Chemical state changes

Major science themes:

Emergent Materials Behavior at Interfaces:

- metal insulator transition
- interface superconductivity
- 'colossal' magneto-resistance

Structure imaged using CoBRA algorithm: 4-layer film of LaAlO₃/SrTiO₃

Wilmott et al., *Phys. Rev. Lett.* **99** 155502 (2007)

Currently: only understand laterally averaged static structure

- → Need to image structure and element-specific sub-structure
- → Real-time measurements during film growth

Major science themes:

Interfacial Chemistry: Spatio-temporal dynamics at interfaces

www.fhi-berlin.mpg.de/surfimag (Nobel Prize in Chemistry 2007)

Jiang et al., PRL 101, 086102, 2008

Interfacial reactivity is both spatially and temporally variable!! Currently: only probe spatially averaged behavior vs. time

- → Need sensitivity to changes in oxidation states
- → Need to understand connection between molecular structure and transport

Major science themes:

Soft-material interfaces: organization and complexity

Control of long-ranged orientational and positional order in organic films:

Membrane science: temporal/structural response of voltage-gated ion channels:

Stein et al., Phy. Rev. Lett. 98, 86101 (2007)

Interfacial Science: Challenges:

Small signal strength (R $\sim 10^{-5}$ to 10^{-10})

Grazing angles of incidence (small effective sample area)

Lateral heterogeneity: structures, reactivity averaging over large areas (mm's)

Complex environments liquid-solid, vapor-solid, solid-solid, liquid-liquid

Structural/compositional evolution during reactions

Multi-element materials

Chemical state changes

Interfacial Science: Current Opportunities:

High flux sources/advanced detectors

High brilliance source

Real-space imaging (nm to mm) laterally heterogeneous structure, reactivity

In-situ measurements liquid-solid, vapor-solid, solid-solid, liquid-liquid

Temporal sensitivity (ps to hours)

Elemental sensitivity

Chemical sensitivity (e.g., oxidation states)

What we cannot do: multi-dimensional imaging

Observe elementary reactions in:

- real-space (nm → mm)

AND/OR

- real-time (ps → hours)

AND/OR

- in-situ (liquid-solid, solid-solid, solid-gas)

AND/OR

- elemental specificity/sensitivity

AND/OR

- chemical specificity/sensitivity

Requirements and Capabilities (short term):

Detectors:

CCD area detectors
Pixel array detectors (e.g., pilatus)
Fluorescence detectors

Raw CCD images:

 $Q_{z}\left(\mathring{A}^{-1}\right)$ $Q_{//}(Å^{-1})$

→ Make better use of existing sources

High energy:

E>40 keV

- penetration through complex environments
- large Ewald sphere: can probe relevant reciprocal space in single image

Requirements and Capabilities (long term):

Imaging: Full field X-ray microscopy

- → Implement as a general capability
- → Significant improvements possible with new optics/detectors:
 - resolution (~5x better to ~ 30nm)
 - image rate (>100x better to < 1 sec)

Hard X-ray Nanoprobe: Combined Analytic and Imaging Mode

→ Imaging fast-dynamics of individual nano-particles

Requirements and Capabilities (long term):

Coherence:

Coherent Diffraction Imaging:

- photon correlation spectroscopy
- coherent diffraction imaging

Au(001) Hexagonal reconstruction peak: Pierce et al., unpublished results (2008)

-robust phasing transforms scattering data to microscopic images

Fienup, Opt. Lett. 3, 27 (1978)

Requirements and Capabilities (long term):

Temporal resolution: Short Pulse X-ray facility:

~1 ps time resolution (pump-probe; photo-excited processes)

Lattice excitations:

Ultrafast measurement of lattice potentials of (111) Bismuth [Fritz et al., *Science*, **315**, 633-636 (2007)]

→ Application to interfaces opens up new dimension in temporal sensitivity

Needs for Interfacial Science:

Implementing new or anticipated capabilities:

- ~10's of nm spatial resolution new *interfacial* microscopes; nanoprobe
- ps temporal resolution (SPS facility)
- imaging elemental/chemical sub-structures
- detectors (rapid data acquisition)
- software (phasing algorithms and visualization)

New Beamlines:

- -Proposed X-ray Interfacial Science sector (Bedzk, PI)
 - new capabilities
 - increase in capacity
 - a home-base for interfacial science

Complex instruments (PLD, MOCVD, MBE...)

Multi-dimensional, multi-scale imaging:
- an "interfacial observatory"

 $\rho(x, y, z, t, Z, oxidation state)$

Energy Storage (stability of interfaces):

- more stored energy, longer lifetime, safer batteries

Catalysis:

-observe the reactivity of supported nano-particles

Materials Growth:

- create novel materials
 - electronic materials
- solid-state lighting

Materials Chemistry:

- corrosion

Geochemistry:

- sequestration of energy by-products:
 - spent nuclear fuel, CO₂
- transport of contaminants in the environment

Actinide Science

- reprocessing nuclear fuel

The Chevy Volt:

Nuclear repository (geological sequestration) and reprocessing (separations)

On-board computer (electronic materials)

The Chevy Volt:

Catalytic converter (supported catalysts)

Corrosion

Energy Storage

- interfacial stability
- safe operation

CO₂ repository (carbonate nucleation and growth)

Solid-state lighting (??) (materials growth)

Agenda For Breakout Session:

1:00 Introduction/Charge (Fenter)
- feedback on report

Technical Frontiers and Discussion

1:15 Phasing Scattering Intensities (Pindak)

1:30 Coherent surface diffraction (You)

1:45 Interfacial microscopy (Fenter)

2:00 Scanning Probes/X-ray science (Rose)

2:10 Membranes (Blasie)

2:20 General Discussion

3:30 Preparation for Summary

