Title	Test-bed for Nanopositioning Technique				
	Enhancement				
Project Requestor	Deming Shu				
Date	03-23-2008				
Group Leader(s)	John Quintana				
Machine or Sector	Efim Gluskin and Gabrielle Long				
Manager					
Category	Accelerator hardware and insertion device upgrades and x-ray				
	science enablers				
Content ID*	APS_XXXXXX Rev. ICMS_Revision ICMS Document Date				

^{*}This row is filled in automatically on check in to ICMS. See Note ¹

Description:

Start Year (FY)	2009	Duration (Yr)	5
-----------------	------	----------------------	---

Objectives:

To construct an experimental test-bed for multidimensional nanopositioning technique enhancement with 30-pm special resolution laser interferometric diagnostic tools.

Benefit:

At APS, the required instrument nanopositioning performances and capabilities, such as resolution, dynamic range, repeatability, stability, and multiple axes synchronization, often exceed the limit of commercial availability. With brighter APS x-ray sources and novel x-ray focusing optics, scientists at the APS will need more customized advanced instruments with state-of-the-art nanopositioning capabilities in next five years. The proposed project will prepare a test-bed to support APS scientists and users to meet challenging nanopositioning needs for their scientific goals. The project will benefit APS users who may use x-ray nanoprobe, high-energy-resolution monochromators and analyzers, and sample manipulators with nanometer-scale resolution and stability. The project will also benefit the development of x-ray resonator for cavity FEL for APS ERL upgrade.

Risks of Project: See Note ²
NA

Consequences of Not Doing Project: See Note ³

NA

Cost/Benefit Analysis: See Note ⁴
NA

Description:

Supported by Argonne LDRD program, a 1-D nanopositioning system with laser Doppler displacement meter (LDDM) has demonstrated its 30-pm special resolution and 100-pm closed-loop positioning capability [1]. A prototype of hard x-ray nanoprobe, which is acting as a CNM early user instrument (EUI) with 2-D LDDM-based nanopositioning stages, has been constructed and demonstrated a relative mechanical stability and repeatability of better than 4 nm between its zone plate optics holder and sample holder [2]. The test results from these prototypes have demonstrated the system stability differences between 1-D and 2-D stages, and have showed that the stacked roller-bearing-based-stages are the major sources for higher vibration noise on a multidimensional nanopositioning system.

To overcome the obstacle of developing multidimensional nanopositioning system, an experimental test-bed is needed to explore novel design options and to diagnose and optimize their structural dynamics details.

The test-bed includes a 3-D high-resolution, high-stiffness nanopositioning system with six laser interferometric encoders with 30-pm special resolution. A metal base with acoustic-insulated housing is part of the construction. A sub-nanometer closed-loop resolution is expected for this 3-D nanopositioning test-bed. Cooperated with an existing atomic force microscope head, the test-bed will also have mechanical testing capabilities in subnanometer scale for various commercial and customized nanopositioning devices, such as sample manipulators in nanometer scale. References

- [1] D. Shu, Y. Han, T. S. Toellner, and E. E. Alp, Proc. SPIE Vol. 4771 (2002) pp.78-90.
- [2] D. Shu et al., Proc. 8th Int. Conf. X-ray Microscopy, IPAP Conf. Series 7, (July 2006) 56-58.

Funding Details

Cost: (**\$K**)

Use FY08 dollars.

Year	AIP	Contingency
1	60	9
2	80	12
3	80	12
4	50	7.5 4.5
5	30	4.5
6		
7		
8		
9		
Total	300	

Contingency may be in dollars or percent. Enter figure for total project contingency.

Effort: (FTE)

The effort portion need not be filled out in detail by March 28

	Mechanical	Electrical		Software				
Year	Engineer	Engineer	Physicist	Engineer	Tech	Designer	Post Doc	Total
1								0
2								0
3								0
4								0
5								0
6								0
7								0
8								0
9								0

Notes:

¹ **ICMS**. Check in first revision to ICMS as a *New Check In*. Subsequent revisions should be checked in as revisions to that document i.e. *Check Out* the previous version and *Check In* the new version. Be sure to complete the *Document Date* field on the check in screen.

² **Risk Assessment.** Advise of the potential impact to the facility or operations that may result as a consequence of performing the proposed activity. Example: If the proposed project is undertaken then other systems impacted by the work include ... (If no assessment is appropriate then enter NA.)

³ **Consequence Assessment.** Advise of the potential consequences to the facility or to operations if the proposal is not executed. Example: If the proposed project is not undertaken then ____ may happen to the facility. (If no assessment is appropriate then enter NA.)

⁴ **Cost Benefit Analysis.** Describe cost efficiencies or value of the risk mitigated by the expenditure. Example: Failure to complete this maintenance project will result in increased total costs to the APS for emergency repairs and this investment of ____ will also result in improved reliability of _____. (If no assessment is appropriate then enter NA.)