

Time Resolved Tools for the APS Renewal

Klaus Attenkofer, XSD-CEP Alec Sandy, XSD-TRR

January 9, 2009

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Introduction

- Time-resolved capabilities figure prominently in the "Renewal of the APS" white paper (ANL-08/38)
 - "Real Materials at Real Conditions in Real Time"
- Many (7 of 10) of the October 2008 APS Renewal Workshop Science Reports include significant time-resolved components
- 3 LOI's contain significant time resolved components (SPX, AXI and DC)
- APS strengths today
 - High peak power per pulse (large charge per bunch)
 - Special timing modes
 - High energy x-rays
 - Established and productive user communities
 - Established experimental expertise

Introduction: Classification & Overview

Instrument	Field	Time Res.	Capabilities	Existing Community
Ultrafast and single shot imaging	Engineering and life sciences	> 300 ns (hard) > 300 ns	APS APS	Academic/Industry /National Security
Short pulse x-rays	Dynamics at quantum length scales	100ps 1 ps – 100 ps	APS LCLS XFEL	Academic
TR HEX scattering	Mechanical behavior of materials	1 s 1 μs – 1 ms	APS ESRF APS ESRF Petra-III	Academic/Industry
XPCS	Dynamics in soft matter	10 ms – 1,000 s 1 µs - 1,000 s	APS ESRF APS ESRF Petra-III LCLS XFEL	Academic
TR MX	Macromolecular dynamics	1 ns – 100 μs 30ps – 100 μs	APS ESRF SPRING8	Academic
TR WAXS/SAXS and spectroscopy	Chemistry and energy conversion /storage	30 ps - 100 μs 30 ps - 100 μs	APS ESRF SPRING8 SLS APS ESRF SPRING8 SLS	Academic

Introduction: Ultrafast and Single Shot Imaging

Field: Engineering and life sciences

Status (today): •Other Sources: ESRF

•Sectors involved: 32-ID, 7-ID, 7-BM (soon)

•Sectors dedicated: 1

Existing user community: yes (academic, industry)

In 5 years? •Potential Competitors: ESRF, Petra-III

•Action Items: Flexible bunch structure

High current bunches

Efficient, fast integrating area detectors

Long beamlines

Specific Requests: Ultrafast and Single Shot Imaging

Specific Request:

Sectors: 2 ID beamlines-long straight sections and long beamlines

•End stations:

Sector A: Wider field, high resolution ultrafast imaging

and single shot imaging

Sector B: Wider field, higher resolution, fast imaging

and single shot imaging

White and pink beam capable

•ID-configuration: Narrower band tunable helical undulators

Additional Support:

•Detectors:

•Fast framing, gateable, integrating area detector

•Ultrafast area detector for diffracted beam monitoring

Data Analysis and visualization:

Object tracking, quantitative PCI, hydrodynamic modeling & simulation

•Sample environment: Gases, fluids, chemicals, extreme environments

•Lab space: Laser imaging, hydrodynamic testing

•Experiment Apparatus: Cloneable and rapidly deployable for single shot

Required Partnerships:
•NNSA: Extreme environments

NNSA: Extreme environments
 ALCF: Simulations and modeling

•EERE •EFRC

Summary: Ultrafast and Single Shot Imaging

Correlation with White-Paper:

- •Key-Problems: Energy, environment, technology development (3/4)
- •Scientific Vision: Real materials in real condition and real time

- Key aspects already demonstrated
- Unique
- •Relation to proposed DC-CDT

Introduction: Short Pulse X-Rays

Field:

- Quantum control of atomic and molecular dynamics
- •Chemical reaction dynamics transition state structures
- •Response of materials and devices to external fields
- Dynamics of photo-excited materials

Ultra-Small Ultra-Fast

Introduction: Short Pulse X-Rays

Status (today): •Other Sources: ESRF (partial), (ALS)

•Sectors involved: 7-ID, 11-ID-B

•Sectors dedicated: 1.5

Existing user community: yes (academic)

In 5 years? •Potential Competitors: LCLS, XFEL

Action Items:* Develop and deploy CW RF cavities

* Develop and deploy applicable high

rep rate lasers

* Integrating ultrafast area detectors

Specific Requests: Short Pulse X-Rays

Specific Request:

•Sectors: 2 (long straight section)

• A: Variable polarization ID, 4-35 keV

•Diffraction: <≈ 50 nm spot size

Spectroscopy and scattering

Catalysis, geochemistry and surfaces

• B: Variable polarization softer x-ray ID

•Soft x-ray spectroscopy

•SR/RF-configuration: CW RF cavities with variable pulse lengths (1-100 ps)

Additional Support:

•Detectors:

Integrating ultrafast area detectors with gating < pulse separation

•Fast, pixellated, energy resolving large area counting detectors

•Lasers: High-rep rate lasers in shared generation and delivery facs.

•Lab space: Co-located ultrafast laser and target development lab

•Sample environment: Synchronized excitation sources

Required Partnerships:

•High rep rate lasers: Argonne CSE

•Integrating detectors: Sol Gruner, Cornell University

Summary: Short Pulse X-Rays

Correlation with White-Paper:

•Key-Problems: Energy, technology development (2/4)

•Scientific Vision: Real materials in real condition and real time

- Complements FEL capabilities
- Unique
- •More information required on very hard and/or softer x-ray applications

Introduction: TR HEX Scattering

Field: Time resolved studies of mechanical behavior of materials (dedicated)

Status (today): •Other Sources: ESRF

•Sectors involved: 1-ID; 11-ID-C; 16-ID (?); (HP-sync ?)

•Sectors dedicated: 0.5

Existing user community: yes (academic)

In 5 years? •Potential Competitors: ESRF, SPRING8, Petra-III

•Action items: Optimized ID's (small gap) and FE

Tiled fast detectors

Expand user community to industry and defense

Specific Requests: TR HEX Scattering

Specific Request:

•Sectors: One (long straight section)

Endstation: Combined SAXS/WAXS and Imaging

•ID-configuration: Multiple narrow gap ID's

•Energy-span: 45 keV-120 keV continuously tunable

•Frontend: High heatload per narrow gap

•Optics-configuration: 2d-focusing

Additional Support:

•Detectors:

Tiled HEX sensitive area detector (fast readout)

HEX imaging detector

•Data processing: Fast and "live" data reduction and visualization

•Sample environment: Furnaces, cryogenics, dynamic compression

Required Partnerships:

•Risoe National Lab: Scintillators suitable for HEX imaging

•Perkin Elmer: Tiled, fast HEX area detectors

•NNSA: Extreme/transient environment development

Summary: TR HEX Scattering

Correlation with White-Paper:

•Key-Problems: Energy, technology development (2/4)

•Scientific Vision: Real materials in real condition and real time

- Potential for large economic and security importance
- •Relation to proposed DC-CDT

Introduction: XPCS

Field: Dynamics in soft matter (dedicated)

Status (today): •Other Sources: ESRF

•Sectors involved: 8-ID

•Sectors dedicated: 1

Existing user community: yes (academic)

In 5 years?

•Potential competitors: ESRF, Petra-III, LCLS, XFEL

•Action items: µs-ms capable XPCS-appropriate area detectors

Specific Requests: XPCS

Specific Request:

•Sectors: One (long straight section)

•End station: Small (and wide angle) XPCS

Long experiment station and exit flight path to resolve speckle

• Mechanically and thermally stable experiment environment

•ID-configuration: Long, short period device

•Frontend: Compatible with long, short period device

•Optics-configuration: Virtual vertical source via diffraction-limited optics

•2-D focusing

Brilliance and coherence preserving optics

Beam deflection optics for liquid-like surfaces

Additional Support:

•Detectors:

•Fast (µs), high-resolution photon counting area detector

•Data reduction: On-the-fly compression and correlations

•Sample environments: Ovens, cryogenics, stress rigs, troughs

•Lab space: Light scattering characterization

Required Partnerships:

•Peter Siddons-BNL and FNAL: µs high-res photon counting area detector

Summary: XPCS

Correlation with White-Paper:

•Key-Problems: Technology development (1/4)

•Scientific Vision: Mastering hierarchical structures

- Complements accessible times at LCLS
- •High current bunches and higher energies provide unique strengths

Introduction: Macromolecular Dynamics

Vukica Srajer

Field: Time resolved studies of a reaction pathway in macromolecular systems

Status (today): •Other Sources: (ESRF)

•Sectors involved: 14ID

•Sectors dedicated: 1

Existing user community: yes (academic)

In 5 years? •Potential Competitors: ESRF, SPRING8, PETRA, (FEL's)

•Action item: Detector development

Partners: •Technical: (Detectors)

•Strategic: Phil Anfinrud

Specific Requests: Macromolecular Dynamics

Specific Request:

•Sectors: One (existing sector)

•Endstation: One (new optimized hutch)

• station1: *crystallography*

•ID-configuration: Energy-span: 6KeV-16KeV

•Frontend: High Heatload; (specific undulator)

•Optics-configuration: 2d-focusing (30x90µm²/ 5x10µm²)

Additional Support:

Detectors:Fast readout

•Multiple memory-blocks per pixel

•Multi-photon mode

•Software & IT: data reduction & visualization (significant effort done)

Sample environment: insitu characterization

•Lab-availability: optical characterization; chemical treatment

Required Partnerships:

•Detectors?

Summary: Macromolecular Dynamics

Correlation with White-Paper:

•Key-Problems: Human health, Environment, Energy (3/4)

•Scientific Vision: Real materials in real condition and real time

- •One of the well established programs for time dependent measurements
- •Increase of productivity by collaboration with non x-ray facilities

Introduction: Chemistry & Energy Conversion/Storage

Field: Time resolved studies of molecular system in hierarchical structures

Status (today): •Other Sources: ESRF (TR-WAXS), SLS (TR-XAFS)

•Sectors involved: 11-ID-D; 7-ID; 14-ID;

•Sectors dedicated: 1(WAXS/XAFS); 1/2(XAFS);1/4(WAXS)

Existing user community: yes (academic)

In 5 years? •Potential Competitors: ESRF, SLS, NSLSII, SPRING8, (FEL's)

•Action item: Detector development (XAFS)

Partners: •Technical: Detectors?

•Strategic: ANL, CMM

Specific Requests: Chemistry & Energy Conversion/Storage

Specific Request:

•Sectors: One
•Endstation: One

•station1: XAFS/WAXS/SAXS (GI)

•ID-configuration: Energy-span: 4.5KeV-35KeV

•Frontend: High Heatload; 2 optimized undulator

•Optics-configuration: 2d-focusing (30x90µm²/ 500x500nm²)

Additional Support:

•Detectors: •Multi-photon detection system (XAFS)

with energy resolution ("crystal optics")

Commercial 2d detector (2M Pilatus)

Software & IT: visualization & simulation software

•Sample environment: fast sample exchange

•Lab-availability: optical characterization; chemical treatment

Required Partnerships:

•Technical: detectors?, excitation-mechanism

•Strategic: ANL, CMM

Summary: Chemistry & Energy Conversion/Storage

Correlation with White-Paper:

- •Key-Problems: Energy, Technology Development, Environment (3/4)
- •Scientific Vision:
- •Real materials in real condition and real time
- •Mastering hierachical structures through x-ray imaging

- Good established user community
- •Increase of productivity by collaboration with non x-ray facilities

Summary

- Time dependent programs covers a wide range of length and time scales
- Strong established programs
- Most of the experiments require strong user support (often collaboration effort)
- Efficiency (scientific output) can be significantly increased with link to non-x-ray user-facility (model like CNM)
- Strong points of APS:
 - Timing structure (large charge per bunch)
 - High rep-rate (in contrast to FEL's)
 - "Known experimental techniques" (in contrast to FEL's)
 - High energies available (>20KeV)
 - High through-put experiments possible (many users)

Supplementary Materials

- Proposals explicitly not considered
 - Increased time resolution to increase beamline throughput
 - IXS and NRS
- Other Existing Experiments Considered
 - Solid state TR-XAFS (20-ID, 11-ID-D)
 - Time-resolved surface scattering (11-ID-D, 33-ID)
 - Time-resolved SAXS (12-ID)
 - Polymer/materials processing (5-ID)

