

APS Renewal: Imaging Instruments

Barry Lai and Jörg Maser

Charge to Instrumentation Group Organizers

- Gather and organize information regarding instrumentation
- Synthesize proposals into a coherent picture that describes the instruments and techniques
- Indentify instruments and techniques that should be built and developed
 - We will present a summary of the instrumentation/techniques and put these in perspective.
 - We will not make recommendations as to what should and should be built in this forum. This will be part of the ongoing discussion
 - We will point out where we see current strength, needed investments, and potential overlaps.
- <u>Disclosure:</u> Of course we have prejudices nanofocusing, tomography, coherent techniques. We tried to be balanced. This forum will provide added balance

Imaging Instruments

- Scanning Probes
 - Microprobe
 - Nanoprobe
- Full Field Imaging
 - Micro-imaging
 - Nano-imaging
- Support and Infrastructure

Current Capabilities and Proposed Upgrades - Microprobes

System	Spatial Resolution	Science Thrust	Comments
* 8-BM: High throughput trace element analysis	~ 30 µm	Life sciences	Complementary to: 2-ID, BioCAT, Bio-Nanoprobe
* 13-ID-C: Dedicated microprobe (2.3-23 keV, canted ID)	0.25-4 μm	Geo-science	
* 16-ID: HP microprobe, (canted ID)	0.5-1.0 μm	Geo-science, materials science	Complementary to: S6, S13, S11, S20, S30
* 18-ID: second tandem undulator for bio microprobe	~ μm	Biology	Main thrust of 18-ID: fiber diffraction, SAXS. XRF μ-probe complementary to other XRF/XANES microprobes
* 20-ID: Dedicated micro -XAFS, canted ID, spectroscopy emphasis	0.5-10 μm	Environmental science, Geo science, materials science	Complementary to 13-ID

^{*} Proposal submitted

Current Capabilities and Proposed Upgrades - Nanoprobes

System	Spatial Resolution	Science Thrust	Comments
* 7-ID-C: Nanoprobe with ps resolution	100 nm	Materials science, chemistry	Unique capability
* 2-ID Nanoprobes: cryo-XRF (2-20 keV), XRF (5-30 keV), XRD (5-30 keV)	50 nm	Life/environmental science, materials science	Cryo-XRF complementary to proposed BNP. μ-XRD complementary to 26-ID, 34-ID.
* 26-ID: Nanoprobe Heating/cooling stage	30 nm	Materials/Nanoscience	Unique capability.
* BNP (5-30 keV)	20 nm	Life science	Unique capability.
* 34-ID: 3D diffraction micro- and nanoprobe (canted ID)	20 nm	Materials science	Unique capability. Complementary to 2-ID, 26-ID
+ X-STM	20-70 nm	Materials science	Unique capability.
* 26-ID: MLLM	Sub-10 nm	Materials/Nanoscience	Unique capability.

^{*} Proposal submitted + Current capability

Current Capabilities and Proposed Upgrades – Micro-imaging

System	Spatial Resolution	Science Thrust	Comments
* 1-ID: High energy diffraction microscopy	∼ µm	Materials sciences	40-90 keV
* 32-ID-B: Ultra-fast imaging (second ID)	~ μm	Materials sciences	Complementary to 7-ID
+ 32-ID-C: Phase contrast imaging	~ μm	Life science, materials science	Unique capability
* AXI CDT: long beamline for phase contrast imaging	~ μm	Life science, materials science	200-m long beamline, possibly by extending 32-ID
* 7-ID-B: Pump-probe phase-contrast imaging	~ μm	Materials science, chemistry	100-ps resolution. Unique capability
+ 13-BM: microtomography	$\sim \mu m$	Geo/environ. science	Dedicated facility
* 2-BM: Micro and nano tomography	0.1-1.0 μm	Life science, materials science	Dedicated facility
* BM: High energy tomo.	$\sim \mu m$	Materials science	White or multilayer mirror
* 5-BM-C: Microtomo.	$\sim \mu m$	Materials science	

^{*} Proposal submitted + Current capability

Current Capabilities and Proposed Upgrades – Nano-imaging

System	Spatial Resolution	Science Thrust	Comments
+ 32-ID: TXM	30 nm	Life science, materials science	Dedicated facility
+ 26-ID: Nanoprobe	30 nm	Materials science /Nanoscience	
* 33-ID: x-ray reflection interface microscopy	30 nm	Surface/interfacial science	Unique capability
* 34-ID-C: dedicated Bragg CDI facility	5-50 nm	Life science, materials /nano science	Unique capability
* AXI CDT: intermediate energy forward CDI, hard x-ray Bragg CDI	5-50 nm	Life science, materials /nano science	34-ID-C may move to AXI
+ 4-ID-C: time-resolved cryo-PEEM	10-50 nm	Materials science	Unique capability

^{*} Proposal submitted + Current capability

Support and infrastructure

- Sample environment (HP, cooling/heating, magnet, in-situ.....)
 - High pressure, high fields
 - Cooling/heating
 - In-situ...

X-ray Optics R&D:

- Continued fabrication/modeling/testing R&D for diffractive, reflective optics
- Characterization capability: beamtime for testing/Characterization beamline

Nanopositioning R&D

- Develop approaches for Nanometer-level positioning
- Integrate positioning and controls aspects
- Tunr R&D systems into engineered and deployable designs

Support and infrastructure, cont'd

Detectors:

- Higher Efficiency, larger solid angle, higher throughput
- Detector support (calibrated I₀ detectors, software support)
- Correlative imaging
 - Electron, optical, IR
 - Immunolabeling
 - Scanning Probe
- Software, Software, Software

Comments

- High pressure sample environment has proliferated to many existing beamlines and proposed upgrades.
- APS offers unique timing structures for imaging of dynamics.

Summary

- APS has a strong microscopy and imaging community. Proposed upgrades and existing facilities will:
 - offer complementary and unique suites of imaging instruments
 - cover length scale from cm to nm, with different modality, sample environment,
 and time resolution
 - critical for the two Renewal themes and many of the science cases
- It is important to <u>extend our lead in nanofocusing and nanoimaging</u> (nanopositioning), while incorporating more 3D capabilities.
- It is important to <u>strengthen imaging programs</u> (propagation/phase and coherent diffraction) to be worldwide competitive
- The success of imaging programs at the APS will depend in part on the availability of customized sophisticated software for image reconstruction, processing, and analysis.

