

APS Renewal Crystallography Instrumentation

R. Von Dreele & B. Toby

Mostly powder diffraction

Why powder diffraction? "Real samples/real time/real environments" *In situ* structure analysis

"Powder diffraction is the structural tool for materials science."

"Definitive knowledge of the crystal structure of a material - inorganic, organic, or biological - is the gateway to understanding its physical properties, its chemical reactivity, and/or its biological functionality."

Buzz words: Oxides, intermetallics, high T_c super conductors, minerals, pharmaceuticals & proteins; resonant scattering, parametric studies, phase relationships, polymorphism, *ab initio* structure determination, PDF analysis, Rietveld refinement, complex formation, *in situ* reactions, etc.

Fundamentally a simple experiment – at "low resolution" NOT optimized!

Full pattern in one exposure – time 1-30s

Complex experiment: Crystal/analyzer system – high resolution (11BM-B)

 $\Delta2\Theta$ resolution ~0.005° Essentially the "ultimate" (at sample limits)

Sequential data collection

- a "scan"

Time 2-60min

Suffer time dependent effects:
Radiation damage
Kinetics studies not possible
limited in situ studies

Data comparison

11BMB – part of 10min scan

1BM/MAR345 – 1sec exposure **3-4X broader peaks!**

Powder pattern - rings Typical 2Θ scan – analyzer/detector diffractometer very small solid angle Rest is wasted! (especially at high angles) Worse – sample damage during scan Strip detectors no real solution

Instrumentation challenge – high res. area detector

Current: MAR345 IP 300μm spatial resolution

Wish ©: 30µm resolution match analyzer/detector resolution & sample contribution

Powder Instrument design

Need: Design "state of the art" high resolution imaging powder diffractometer

- Optimize for high resolution area detector
- Guinier geometry vertical & horizontal beam focusing
- Optimal detector surface curved over 3D?
- Optimal detector coverage mostly vertical?
- Other considerations special environment issues different instrument?

Impact: "Real samples/real time/real environments" (even for proteins)

In situ reactions/kinetics; phase changes, small samples, controlled sampling volumes (develop 2D collimation)

Instrument Operations

Need: Facility wide automation & design support

- Current status wide range of capabilities at APS
 - High level of automation ← → almost no automation
 - Macromolecular beam lines high automation
 - Simple energy change enter value/select element edge
 - Fast! & User selected
 - Auto optimization during operation
 - Heavy investment in mechanicals & engineering
 - Materials beam lines little automation
 - Manual energy changes not user controlled
 - Excruciatingly slow & error prone
 - No optimization
 - Done cheap as possible & little cross-sector common design effort

MM payoff of attention to design:

User Needs Drove Development of the Mini-beam - Radiation Sensitivity

S. G. F. Rasmussen, H.-J. Choi, D. M. Rosenbaum, T. S. Kobilka, F. S. Thian, P. C. Edwards, M. Burghammer, V. R. P. Ratnala, R. Sanishvili, R. F. Fischetti, G. F. X. Schertler, W. I. Weis, B. K. Kobilka, "Crystal structure of the human β_2 adrenergic G-protein-coupled receptor", *Nature* **450**, 383-387 (2007).

"I'd like to see" - Bluice (MM data acquisition) equivalent

Requires – careful mechanical & controls design

Future at APS? - from current trends

Increased Use of Automounter – MM experience; 11BM

similar

23-ID-D - ALS-style pucks only: ~50% automounter use in 2008-1.

23-ID-B - Rigaku-style pucks only: ~19% automounter use in 2008-1.

Less need for users to shop up at APS!

Remote beamline control with NX implemented

Todd Geders using remote controls at U. Michigan

- Same technology as at SSRL & others
- Two computers open per beamline (one for data collection & one for processing)
- Extra controls for remote operation in Blulce

Compliance with Argonne's enhanced security requirements: access is restricted not only to the time of an experiment and specified user name, but also to a list of IP domains from which users work.

Future of APS science – remote experiments!

