

... for a brighter future







A U.S. Department of Energy laboratory managed by The University of Chicago

### **Overview of SR Upgrade Options**

Louis Emery, November 15th 2006 Operations and Analysis Group Accelerator Systems Division

## Outline

- Strength of storage ring option
- Summary of APS present performance
- Upgrade constraints
- Lattice design concepts
- Damping wiggler option
- Ultimate SR studies literature search
- Brightness curves
- Conclusion



### **Demonstrated Strength of Storage Rings**

- High brightness (e.g., APS, ESRF, SPRing-8)
- High current and flux (e.g., 1 A is not out of the question)
- Stable and reliable
- Well known technology
- Safety issues well understood and controlled
- Relatively inexpensive



### **Present Performance of APS**

- Stored current, emittances, brightness
- Orbit stability
- Bunch patterns
- Topup: Lifetime, current stability
- Multiple users in straight sections: three canted undulator sectors
- Customized two sectors with reduced horizontal beam size



### **Performance Parameter Table**

| Energy                              | 7 GeV                |          |
|-------------------------------------|----------------------|----------|
| Horizontal Emittance                | 2.5 nm-rad           | -        |
| Effective Horizontal Emittance      | 3.1 nm-rad           |          |
| Vertical Emittance                  | 0.025 nm-rad         | Ν        |
| Momentum Spread                     | 9.6x10 <sup>-4</sup> | Tobe     |
| Total Current                       | 100 mA 🗲             |          |
| Single bunch current                | 16 mA                | Improved |
| Available straight sections for IDs | 34                   | _        |
| Space for IDs                       | 5 m                  |          |
| 1-mrad canted undulator sectors     | 3                    |          |
|                                     |                      |          |

| Orbit Stability, H/V 100Hz BW | 4.4/1.9 μm |
|-------------------------------|------------|
| RMS beam size H/V             | 275/8.5 μm |



### **Brightness**





## Bunch Patterns (T=3.68 µsec)





### **Upgrade Constraints and Parameters**

Energy 7 GeV

Retain user sectors, i.e. no additional sectors for rf cavities

- Retain straight section centers and ID beam ports and alignment. Allow BM ports to move a bit if necessary.
- Keep "same" rf frequency, circumference, cell length
- Straight section length can be increased up to some limit
- Keep bunch patterns; use 200 mA instead of 100 mA



## **Upgrade Constraints and Parameters**

- Lattice Nonlinearities
  - Dynamic aperture (with errors) must be large enough for 100% injection of a booster bunch
    - APS presently has a hor. dynamic aperture of 10 mm ( $\beta_x=20$  m)<sup>1</sup>
      - Model matches measurement
      - Inject 100% with an injection oscillation of 6 mm (stored beam oscillates with 2.0 mm of opposite phase)
  - Momentum aperture large enough for lifetime
- Not too low momentum compaction factor ( $\alpha_c$ ), which controls single bunch instabilities (present APS value 2.8x10<sup>-4</sup>)

<sup>1</sup>V. Sajaev and L. Emery, "Dynamic Aperture Study and Lifetime Improvement at the APS," PAC 2005, p. 3632



## Lattice design concepts

Reduce emittance through increased number of dipoles per sector

$$\epsilon_x \sim \theta^3 \sim N_d^{-3}$$

- Optimize dynamic aperture with families of sextupoles
- Stop increasing N<sub>d</sub> when dynamic aperture gets too small
- $N_d=3$  or  $N_d=4$  is probably the only practical change for a 27-m cell, based on reduction of dispersion function and increasing sextupole magnet strengths.  $N_d=9$  is used in a 60-m cell in a recent Spring-8 proposal<sup>1</sup>.
- Check dynamic aperture with errors and with errors plus correction

<sup>1</sup>K. Tsumaki and N. Kumagai, "Very low emittance light source storage ring," NIM A 565 (2006), p. 394



## Lattice design concepts (cont'd)

Decide whether dispersion should be present in ID section

- Add gradient to dipole to reduce the number of quadrupole magnets
- Longer straight sections
  - Limited because of  $\beta$  functions (physical acceptance, source size)
  - Triplet in middle of straight section, e.g. for  $\beta_y = 1$  m and  $L_{ID}=2$  m.<sup>2</sup> (not used here)
- Add straight section in middle of arc for extra ID
- Check that reduced-horizontal-beam size matching works in all respects

<sup>2</sup> A. Ropert, "Towards the ultimate Storage-ring based light source," EPAC 2000, p.83



# Triple-Bend Ring Design (APS1nm)





# **Another Option: APSx3**





## **Gradient in Dipoles**

Adds complexity to compact designs but is feasible

Existing ring with gradients:

Gradient (1/m2) Aus. LS "modest" ALBA -0.58 ALS -0.81 CLS -0.39 -0.43 Elettra MAX II -1.62 NSLS X-ray -0.05 SPEAR III -0.33 -0.37 SRRC

Ring with no gradient dipoles: APS, BESSY II, CAMD, DLS, ESRF, MAX I, PAL, Shanghai, Soleil, Spring8



## **Damping wiggler option**

Wiggler magnets in zero-dispersion straight sections can increase damping term D through emission of much more synchrotron radiation than regular bends  $\langle H/\rho^3 \rangle$ 

$$\epsilon_x = C \gamma^2 \frac{\langle H/\rho^3 \rangle}{D}$$

PETRA III and ILC damping ring get low emittance using lots of wigglers

|                                 | PETRA III <sup>1</sup> | ILC DR <sup>2</sup> |
|---------------------------------|------------------------|---------------------|
| Energy (GeV)                    | 6                      | 5                   |
| Circumference (km)              | 2.4                    | 6.6                 |
| Total wigglers (m)              | 80                     | 196                 |
| Emittance (nm-rad)              | 1                      | 0.5                 |
| Emittance w/o wigglers (nm-rad) | 4                      | 5                   |

<sup>1</sup>K. Balewski et al, "PETRA III: A New High Brightness Synchrotron Radiation Source at DESY," EPAC 2004

M. Tischer et al, "Damping Wigglers for the PETRA III Light Source," PAC 2005

<sup>2</sup>A. Xiao, L. Emery, private communication



## **Damping wiggler option**

Factor of two in existing light sources difficult<sup>3</sup>

- not enough room for wigglers
- need more rf sectors, no room for that either!

<sup>3</sup> M. Borland, L. Emery, OAG-TN-2006-033



## **Ultimate SR Studies**

ESRF<sup>1</sup>, Spring8<sup>2</sup>, APS XPS<sup>3</sup> design studies with various combinations of free parameters and constraints

- Number of straight sections x 2, or new number
- Circumference x 2, or new number
- Straight section length
- Common specification: much lower emittance for coherent x-rays
- Limitations are magnet strength, nonlinearities, lifetime for reasonable bunch charge, and possibly single bunch charge limit (never reported)
  - Usually one show-stopper among the above

- <sup>2</sup>K. Tsumaki and N. Kumagai, "Very low emittance light source storage ring," NIM A 565 (2006), p. 394
- <sup>3</sup> M. Borland, "A 0.2 nm lattice for APS upgrade with long straights," OAG-TN-2006-022



<sup>&</sup>lt;sup>1</sup>A. Ropert, "Towards the ultimate Storage-ring based light source," EPAC 2000, p.83

# Ultimate SR (cont'd)

|                       | ESRF              | Spring-8                 | APS XPS                     |
|-----------------------|-------------------|--------------------------|-----------------------------|
| Design type           | 4-bend achromat 🤇 | 10-bend achromat         | 4-bend achromat             |
| Energy (GeV)          | 7                 | 6                        | 7                           |
| Circumference (m)     | 2000              | 1999                     | 1104                        |
| Sectors               | 50                | 32                       | 40                          |
| Sectors for IDs       | 40                |                          | 34                          |
| Space for IDs (m)     | 7                 | 5 est.                   | 8                           |
| Emittance (nm-rad)    | 0.3               | 0.034                    | 0.2                         |
| Momentum spread (%)   | 013               | 0.09                     | 0.16                        |
| Ideal DA (mm)         |                   | 5 (β <sub>x</sub> =25 m) | 0.75 (β <sub>x</sub> =12 m) |
| Momentum aperture (%) |                   | 15 est.                  | 1.5                         |
| Momentum compaction   | 3-6x10⁻⁵est.      | 8x10 <sup>-6</sup>       | 3.7x10 <sup>-5</sup>        |



#### **Brightness curve**

10<sup>22</sup>

APS: present APS, 100 mA, 1% coupling iAPS (APS1nm): 200 mA, 1% coupling







### Conclusions

Two lattice options with reduced emittance and more space for IDs

- Emittance is reduced by factor 2-3 relative to present 3 nm-rad
- Space for IDs increase 60% or more
- Upgrades proposed lie between present APS and "ultimate" ring designs
- Uses conventional technology that is pushed to a "realistic" limit.
- Following talks cover the details of the two ring options

