

... for a brighter future

Ultimate Storage Ring Light Sources

Michael Borland Operations and Analysis Group Accelerator Systems Division January 29, 2008

A U.S. Department of Energy laboratory managed by The University of Chicago

Outline

- Strengths of storage rings
- Performance of rings: present and near future
- "Ultimate" SR designs
- Operations concepts and issues for ultimate rings
- Outlook for further improvements
- Sub-picosecond pulses from storage rings
- Conclusion

Demonstrated Strength of Storage Rings¹

- High brightness (e.g., APS, ESRF, SPRing-8)High current
 - 100~200 mA is typical
 - Provides high flux
- Stable and reliable
 - Excellent position and angle stability
 - Top-up mode improves optics stability
 - 98% availability and ~100 hour MTBFs
- Well developed technology
 - Rings are relatively affordable
 - New rings commission very quickly
- Safety issues well understood and controlled.
- ¹L. Emery, "Overview of SR Upgrade Options," APS MAC Review, 11/15/06.

Brightness of Present and Planned Rings

PETRA case uses hypothetical 5-m APS U27 undulator.

Ultimate Storage Ring Light Sources LSU Grand Challenge Workshop

M. Borland, 1/29/2008

Approaches Used by Near-Future Rings

NSLS II¹: 0.6 nm emittance at 3 GeV

- Double-bend achromat (DBA) lattice with 30 alternating long/short straights
- Large ring (800m) for the beam energy (3 GeV)
- Weak dipoles and damping wigglers
- PETRA III²: 1 nm emittance at 6 GeV
 - Retrofit of a high-energy physics ring
 - Existing FODO lattice in 7/8 of the ring
 - New DBA lattice in user section (1/8)
 - Alternating high/low betax
 - 13 beamlines, including one 20-m-long ID
 - Large circumference (2304m) leading to weak dipoles
 - Damping wigglers

¹NSLS-II CDR, www.bnl.gov/nsls2/project/CDR

²K. Balewski *et al.*, "PETRA III: A New High Brilliance Synchrotron Radiation Source at DESY," EPAC 2004, www.jacow.org.

End of the Road for Rings?

- ERLs and FELs promise spectacular x-ray properties
- Can storage rings compete?
 - Weakness is the difficulty of improving emittance, energy spread
 - Cannot provide extremely short time resolution with high flux
- ESRF, APS, and SPRing-8 have looked at "Ultimate Storage Rings"^{1,2,3}
- Possible approach
 - Build a "large" ring
 - E.g., a 2 km ring has \sim 1/8 the emittance of a 1 km ring
 - Multi-bend achromats instead of double-bend⁴
 - Potential improvement up to ~100-fold
 - Use damping wigglers
 - Potential improvement ~3 fold (e.g., for NSLS-II)
- Naively, a multi-kilometer ring could be several orders of magnitude better than APS.

¹A. Ropert, "Towards the ultimate storage-ring based light source," EPAC 2000, www.jacow.org.

²M. Borland, "A super-bright storage ring alternative to an energy recovery linac," NIM A 557 (2006) 230-235.

³K. Tsumaki and N. Kumagai, "Very low emittance light source storage ring," NIM A 565 (2006), p. 394

⁴D. Einfeld *et al.*, "A Lattice Design to Reach the Theoretical Minimum Emittance for a Storage Ring," EPAC 96, www.jacow.org.

Ultimate Storage Ring Light Sources LSU Grand Challenge Workshop

A 7-GeV, 40-Sector Ultimate Storage Ring: USR7

Quantity	Value	Unit
Energy	7	GeV
Circumference	3.16	km
Natural emittance	0.030	nm
Energy spread	0.079	%
Maximum ID length	8	m
Number of dipoles	10	per sector
Horizontal/vertical tune	183.1/36.1	
Horizontal/vertical chromaticity	-495/-166	
Energy loss	3.6	MeV/turn
Beta functions (x/y) at ID	7.58/6.56	m

Similar to Tsumaki and Kumagai, but

- Larger circumference (3.16 vs 2 km)
- Higher energy (7 vs 6 GeV) to make hard x-rays easier
- More sectors (40 vs 32)
- Longer straight sections (10 vs ~5m)

Lattice Functions

- Uses conventional magnets with workable strengths
- For 200 mA in 4000 bunches, emittance is 16 pm in both planes with full coupling
- With ten 4-m-long PETRA III damping wigglers, drops to 11 pm

USR7 Dynamic Aperture with Errors

- Nonlinear elements tuned using genetic optimization technique
- 4000-turn tracking with damping and synchrotron oscillations
- Dynamic aperture is small, but very large compared to ~10 µm beam size
- Momentum aperture about ±2%
 - 2 hour Touschek lifetime

Ultimate Storage Ring Light Sources LSU Grand Challenge Workshop

Brightness Predictions

Better than ERL due to higher current (200 mA vs 25 mA)
Might improve both with better beta matching, longer IDs

So What's Stopping Us?

- Ring is large and therefore expensive
 - Much smaller than Tevatron, LEP, LHC
- Very small dynamic aperture, small momentum aperture
 - Small momentum aperture makes lifetime poor
 - Small dynamic aperture makes accumulation of beam very difficult
- All ring light sources use beam accumulation
 - Each stored bunch/train is built up from several shots from the injector
 - Incoming beam has a large residual oscillation after injection
 - Requires large dynamic aperture ~10 mm
 - Partly driven by desire to reduce injector cost
- Doesn't top-up solve these problems?
 - No: even top-up injection relies on accumulation
- Fortunately, there appears to be a solution.

A Different Idea for Ring Operation^{1,2}

- Need to abandon accumulation in favor of "swap-out"
 - Kick out depleted bunch or bunch train
 - Simultaneously kick in fresh bunch or bunch train
- Several possible modes
 - Full beam replacement in one shot
 - Bunch train replacement
 - Individual bunch replacement using fast kickers
- Allows us to operate on the coupling resonance
 - Provide round beams
 - Reduce intrabeam scattering
- Several possible injectors
 - Booster + Accumulator ring
 - Low-emittance booster
 - Full-energy linac.

¹M. Borland, "Can APS Compete with the Next Generation?", APS Strategic Retreat, May 2002. ²M. Borland, L. Emery,"Possible Long-term Improvements to the APS," Proc. PAC 2003, 256-258 (2003).

Swap-Out Concept Using an Accumulator^{1,2}

Fill accumulator from linac/booster.

Transfer on-axis from accumulator to UR.

Fill accumulator, use top-up to maintain fill.

Swap beams when UR beam decays. Repeat from last step.

¹M. Borland, "Can APS Compete with the Next Generation?", APS Strategic Retreat, May 2002. ²M. Borland, L. Emery,"Possible Long-term Improvements to the APS," Proc. PAC 2003, 256-258 (2003).

Discussion

- Accumulation ring (AR) and user ring (UR) would occupy the same tunnel to reduce cost
- AR design easier than UR design
 - No user straight sections
 - May have comparable emittance and still allow accumulation
 - Damping wigglers in AR could be SR sources
- Need not swap the entire beam from ring-to-ring
 - Swapping a bunch train reduces transients seen by users and AR/UR systems
 - Would require increased swapping frequency
 - Would reduce need for a long kicker flat-top.

Low-Emittance Booster Injector

- A large-circumference booster emittance can be close to that of the ring (e.g., SLS booster)
 - Optics is "easy" since there are no user straights
 - Can occupy the same tunnel as the user ring to reduce cost
 - Can fill bunch trains at few Hz repetition rates
- This has advantages over accumulator concept
 - Booster emittance is lower since we needn't accumulate in it
 - Less costly since accumulator still needs booster to fill it
- Use "bunch train swap out" operating cycle rather than one-shot swap out
- Could also flat-top the booster ramp and transfer individual bunches using very fast (e.g., ILC-like) kickers.

Full-Energy Linac Injector

- In principle, could fill the ring in one shot or using trains
 - Single-shot filling promises better bunch pattern stability
 - Single-shot filling would result in a large emittance transient
- Probably not the optimum choice
 - Emittance would be \sim 70 nm for typical \sim 0.5 nC bunches
 - Short bunches are not desirable
 - Long linac requires a separate tunnel, driving up cost
 - Linac structures, rf systems more costly and less reliable than booster
 - Full energy extracted beam must be dumped, increasing radiation
 - Could perhaps use the linac to decelerate the extracted beam

Bunch Pattern and Fill Rate

If we inject bunch trains, the fractional droop in intensity among trains is

$$D \approx \Delta T_{inj} N_{trains} \frac{1}{\tau}$$

The required injector current is

$$I_{inj} \approx \frac{I_{ring} L_{ring}}{c \, \tau \, D}$$

- We probably want D<0.1</p>
- We are considering a very large ring (3.16 km) with up to 200 mA
- For 4000-bunch beam, 20 bunches per train, and 2 hour lifetime
 - Inject a bunch train every 3.6 s
 - 3 nA average current from the injector (APS injector: 4 nA)
 - Each train has 11 nC (APS injector: 3 nC/bunch).

Radiation Issues (For Example Parameters)

- We worry about radiation from two sources
 - Extracted beam (if not decelerated)
 - Losses in the ring
- The beam dump power is only ~20W for a 7 GeV beam
- The losses in the ring are ~2 W total
 - In APS today, have 0.1 W
 - Can design collimation system to intercept these losses

Outlook for Further Improvements

It may be possible to increase the beam current above 200 mA

- Lifetime will drop as we can't easily have more bunches
- Emittance will increase for same reason
- Beamlines/front-ends may not be feasible
- 7 GeV is not the optimum energy for emittance
 - Natural emittance drops with energy ($\sim E^2$)
 - Intra-beam scattering worse at lower energy
 - Optimum seems to be \sim 5 GeV (25% less than 7 GeV value)
- Ring DA is ~20x larger than needed: can push lattice harder.
- Ring is not fully optimized for damping wigglers
 - Reducing beta functions in straights will help ($\sim \beta_x$)
- ~5-fold gain in brightness with optimized beta functions at IDs
 - Very difficult with long straight sections
 - Could explore alternating long/short straight sections

Supporting Time-Resolved Studies

- Rings have inherent difficulties supporting timeresolved studies
 - Electron bunch duration ~40 ps FWHM
 - ~500 MHz bunch repetition rate
 - Fill almost all rf buckets to get low emittance, acceptable lifetime
 - Hybrid or camshaft modes problematic
- A concept¹ by Zholents *et al.* promises a means of providing picosecond x-ray pulses with good intensity
 - Uses superconducting deflecting rf cavities
 - Requires insertion of a long straight section into ring.

¹A. Zholents *et al.*, NIM A 425 (1999) 385-389.

Zholents' Scheme in a Long Straight Section

Ultimate Storage Ring Light Sources LSU Grand Challenge Workshop

Conclusion

- Storage rings appear to have a bright future using
 - Large circumference
 - Multi-bend achromat lattice with conventional magnets
 - Operation on coupling resonance
- Swap-out operation must be used
 - Allows operation on coupling resonance
 - Allows pushing ring further into low-emittance territory
 - Injector requirements not dramatically harder than top-up
- Results are very promising
 - Brightness increase of about two orders of magnitude
 - Very competitive with proposed ERLs
 - Like ERL, high repetition rate (~500 MHz)
 - Zholents' scheme provides CW short x-ray pulses
- Two examples of comparable, workable ring designs
 - Tsumaki and Kumagai: 2-km, 32-sector ring
 - Present contribution: 3.2-km, 40-sector ring
- Improvements beyond those shown here are conceivable.

Acknowledgements

- We acknowledge valuable discussions with and information from
 - Klaus Balewski (DESY)
 - Roger Dejus (ANL)
 - Louis Emery (ANL)
 - Efim Gluskin (ANL)
 - James Murphy (BNL)
 - Vadim Sajaev (ANL)
 - Aimin Xiao (ANL)

