

GATES OF WSB OF THE MAGDEBOURG (ROTHENSEE) LOCK SYSTEM

Alternative Conceptual Design of Pacific and Atlantic Post-Panamax Locks – 3x2 WSB -Contract SAA-150551

ATLANTIC LOCKS 3X2 wsb

TASK A4e-3x2 – CULVERT AND WSB CONDUIT GATES Rev A

TABLE OF CONTENTS

PREAMBLE

1	SUITABILTY OF DIFFERENT TYPES OF GATES	1
1.1	GENERAL	1
1.2	COMPARATIVE TABLE	2
1.3	Conclusions	4
2	DESCRIPTION AND DIMENSIONING	5
2.1	GENERAL	5
2.2	LAYOUT OF CULVERTS AND WSB CONDUITS	6
2.2.1 2.2.2	CULVERTS AND CULVERT GATES WSB CONDUITS AND CONDUIT GATES	6 8
2.3	BASIC DATA FOR DESIGN	9
2.4	ESTIMATED WEIGHTS	9
2.5	CONSTRUCTION DETAILS	11
3	REFERENCES	12

Annexes

- 1. Abacus of gate weight versus gate parameter (W, h, H), (1 page)
- 2. Preliminary calculations of a WSB gate (Hs=50 m),
- 3. Estimate weights for culvert and WSB conduit gates, taking into account maximum static head,
- 4. Cross section of a gate wheel of Berendrecht lock,
- 5. Typical gate structure,
- 6. Upstream and downstream sealing (Music note J-shape type),

VTECHNUM

- 7. Side and bottom seals (typical example).
- 8. Pictures Typical seals view (Zandvliet lock Belgium)

PREAMBLE

This report is for a triple lift lock (55 m width) at the Atlantic side equipped with 3x2 water saving basins.

There are no major changes compared with the triple lift lock (also 55 m width) equipped with 3x3 water saving basins except the number of WSB conduit gates.

The size of the gates is the following :

- width 4.5 m x height 6 m for culvert gates,
- width 4 m x height 5 m for WSB conduit gates.

The maximum static heads (resulting from the hydraulic study) on the sills are slightly different:

- for the culvert gates : 37.20 m (for triple lift, 3x2 WSB) instead of 37.03 m (for triple lift, 3x3 WSB),
- for the WSB conduit gates : 39.43 (for triple lift, 3x2 WSB) instead of 42.52 m (for triple lift, 3x3 WSB).

Nevertheless the weights of both culvert and WSB conduit gates have been computed for the static heads of the triple lift, 3x2 WSB configuration.

The weights are as follows:

- for one culvert gate :25.5 T (for triple lift, 3x2 WSB). It is still the same as the previous weight of 25.5 T (for triple lift, 3x3 WSB),
- for one WSB conduit gate : 19.9 T (for triple lift, 3x2 WSB) instead of 20.9 T (for triple lift, 3x3 WSB).

The number of culvert gates is the same. The number of WSB conduit gates is reduced from 36 to 24.

Therefore the total weight for both the culvert and WSB conduit gates (including bulkheads and slots) is reduced from 6,650 T to 5,035 T.

1 SUITABILTY OF DIFFERENT TYPES OF GATES

1.1 GENERAL

Throughout this report, the term "valve" will only be used in case of *butterfly valves* or of *cylindrical valves*. All other valves will be called gates. The culvert valves and conduit valves have then been replaced by *culvert gates* and *conduit gates*. The latter is also referred to as WSB gates (Water Saving Basins gates).

The analysis of the suitability of different types of gates is given in the report R4-E (Conceptual Design of Post Panamax locks – TASK 4 E - CULVERT AND CONDUIT VALVES), dated 15.11.2002.

In this report the different types of gates have been analyzed taking into account reliability, maintenance, manufacturing and construction costs, expected service life, design and construction, sensibility to cavitations and vibration.

In relation with the civil works, the overall size of the gates has also played a major role in determining the most suitable type of operating gate for filling and emptying the lock.

The types of gates/valves that have been examined are:

- Vertical-lift gates including:
 - fixed-wheel gates,
 - sliding gates
- Tainter gates including:
 - conventional tainter gates,
 - reverse tainter gates,
- Stoney gates,
- Butterfly valves,
- Cylindrical valves,
- Grid type gates.

1

To assess the most suitable type of gates/valves to be used for the Post Panamax locks, a comparative table has been elaborated. It is given in paragraph 1.2. below.

1.2 COMPARATIVE TABLE

The different types of lock gates/valves are listed in the table below. Several criteria are used to evaluate the gate/valve types. These criteria are linked with a weight factor, determined according to their importance.

The gates/valves are appraised on a 1 to 5 scale for each criterion. These scores are multiplied by the weight factor, resulting in a total evaluation for each type of gate/valve.

The fixed wheel gate obtained the best overall evaluation.

СРР	A4e-3x2-RevA 7/13/2005			Alternative A A4e-3x2 – C	tlantic Locks 3x2 <u>Julvert and WSB</u>	WSB gates 3			
		weight factor	Fixed-wheel gate (FW)	Sliding Gate (Sl)	Grid Type Gate (GT)	Tainter Gate (Tt)	Butterfly Valve (Bt)	Cylindrical Valve (Cy)	Stoney Gate (St)
Reliability		0.20	4	4	2	4	4	က	Ю
Maintenan	ICe	0.20	4	4	7	ო	ო	ε	7
Constructi	on cost	0.15	£	4	т	ы	ო	ε	ы
Service life	۵	0.15	4	ы	7	4	4	ε	7
Design an	d construction	0.15	4	с	7	4	с	ę	ы
Sensibility cavitation	to vibration /	0.15	က	4	ი	ო	Ν	ε	б
	F	Fotal							
	Total weight factors	1.00							
Tota	ıl evaluation (max 5)		4.00	3.7	2.30	3.5	3.20	3.00	2.65
	Total evaluation (%)		80	74	46	20	64	60	53
Note: the	results of this comp	arative t	able remain valio	d for both flow d	lirections throu	gh the gates/valves	(0)		

TECHNUM

1.3 CONCLUSIONS

CPP

The conclusions of the report R4E as referenced in §3 were as follows:

"Based on experience with Post Panamax locks and on engineering judgment there are only two types of gates that may realistically be used for the Post Panamax locks of the Panama Canal i.e. fixed wheel gates and sliding gates.

Nowadays vertical-lift gates are preferred for big locks because they are much cheaper to build and do not require the large space that is necessary (for example) for a tainter gate. Moreover, the hydraulic efforts are better distributed to the culvert walls and maintenance is easier.

Within this perspective the choice of fixed wheel gates seems obvious.

Another advantage of course is the actual know-how of ACP and the infrastructure for the maintenance of flat gates in use at the Panama Canal."

Moreover, the vertical lift gates have proven well for designs where sealing in both directions of water flow is required, such as between the lock chambers and the water saving basins.

2 DESCRIPTION AND DIMENSIONING

2.1 GENERAL

The analysis of the suitability of different types of gates has led to the conclusion that the most suitable type of gate is the fixed-wheel type.

For the 55 m lock chamber width (instead of 61 m previously), the dimensions of the lock culverts and water saving basins (WSB) conduits have been determined in the hydraulic study (report P4C).

The culvert dimensions are 9 (width) x 6 (height) m.

The WSB conduit dimensions are 4 (width) x 5 (height) m.

Redundancy (two gates for each culvert) has to be foreseen for the culvert gates, therefore the size of the culvert gates shall be $4.5 \times 6m$. For the WSB conduits, gate dimensions of $4 \times 5m$ are proposed.

Hence, on the Atlantic side all culverts and WSB conduits are equipped with gates of different size.

The height to width ratio is 1.33 for the culvert gates and 1.25 for the WSB conduit gates, which is quite acceptable.

For the culvert gates, the basic principle adopted for operation reliability is to work with two gates in parallel so that any incident to any gate will not stop the operation of the locks. Furthermore, it also reduces the required gate size.

However the **risk of an asymmetrical operation** of the gates (if one gate fails to open or remains open in an intermediate position) shall have to be assessed (in the preliminary and/or final design). If required, interlocking devices shall have to be foreseen.

Each of the six **water saving basins** is connected to the locks by four conduits. Two are connected on left hand (near to WSB) side of the corresponding lock chamber, two are connected to the right hand (far to WSB) side. **No** additional provision has been made for **redundancy** of the gates. In case of any trouble on a gate, one conduit will be out of order but the three remaining conduits of the concerned basin will be sufficient to operate the locks.

However the consequent **asymmetrical operation of the emptying and/or filling** of the lock chamber (if one gate fails to open or remains open in an intermediate position) shall have to be assessed during further design stages, especially as far as operating times and procedures are concerned.

2.2 LAYOUT OF CULVERTS AND WSB CONDUITS

Each culvert and conduit gate is equipped upstream and downstream with bulkhead gates allowing access to the gate(s) after emptying by pumping (by movable pumps) of the space on both sides.

The basins conduits have been arranged two by two (in total four per WSB). The arrangement, with one conduit located on top of the other as foreseen in the initial conceptual design has been abandoned. It makes the WSB gates arrangement much easier and the operation much more reliable.

2.2.1 CULVERTS AND CULVERT GATES

There are two culverts running along each side of the locks. Their sill is at the sill level of the lock chamber. However, the bottom of the rolling gates chambers prevents the culverts from remaining horizontal. Therefore, the culverts are diverted under the rolling gates and the culvert gates are implemented between the main rolling gates.

As mentioned here above, the culvert dimensions are W x H = 9m x 6m. The culverts are locally divided into two sections of W x H = 4.5m x 6m where the culvert gates are to be installed. At full opening of the gate, the total size and thus the mean water velocity remains unchanged.

The next figure shows a basic layout for a culvert gate with two isolating bulkheads. There is only one flow direction from the left to the right.

For emptying both sides of the culvert gate, the sealing conditions are to be as follows:

ECHNUM

- the upstream bulkhead has to be tight on its upstream side,
- the downstream bulkhead has to be tight on its downstream side,
- the gate has to be **tight on its downstream side**.

That design has the advantage (regarding civil works) that only one vertical separation wall is required.

7

2.2.2 WSB CONDUITS AND CONDUIT GATES

The arrangement of the gates and bulkhead gates is shown on the civil works drawing (ref D4-A-403).

The fixed-wheel gates are designed with upstream and downstream sealing.

Their leaf structures (and therefore the corresponding slots) are dimensioned to support the maximum static pressure on both sides corresponding to following pressure conditions:

- maximum lock chamber level on one side and WSB completely empty on the other side,
- maximum WSB level on one side and lock chamber completely empty on the other side.

The hydraulic cylinders operating the gates have been pre dimensioned for two cases:

- for the normal operation with the locks and basins filled with water,
- for the maximum static head.

The power required for the gate operation in the most critical case, is the one taking into account maximum static head.

The bulkhead gate (WSB side) is of the sliding type in two or three elements and is designed with a double sealing system which allows to:

- empty the WSB while keeping the locks in operation,
- empty the space between the two bulkhead gates to give access to the conduit gate and slots for maintenance.

The bulkhead gate on the lock chamber side is also in two or three pieces and is designed with a sealing system which allows to:

- empty either the lock chamber or the WSB (for the emptying of the WSB it makes a redundancy while keeping the locks in operation),
- empty the space between the two bulkhead gates to give access to the conduit gate and slots for maintenance.

The basic data for designing the gates (dimensions and maximum static head) are the same as those of the bulkhead gates.

The bulkhead elements can be lowered or removed by means of a mobile gantry crane equipped with an automatic lifting beam.

The 24 conduit gates are also the same. They are dimensioned for the maximum head of 39.43m.

CPP

2.3 BASIC DATA FOR DESIGN

The values indicated below provide, for the culvert and WSB gates as well as for the bulkhead gates, the maximum static heads of water which have been taken into account for the estimation of the weight of the moving parts.

Maximum head on sill level of culvert gates:	37.20 m
Maximum head on sill level of WSB gates:	39.43 m

The weight of the gates has also been estimated taking into account the operating heads. The values indicated below provide the maximum operating heads of water which have been taken into account.

Maximum head on sill level of culvert gates:	25 m
Maximum head on sill level of WSB gates:	10 m

For each shaft (culvert or WSB conduit), the calculation of the weight of the gate and its related bulkheads has been computed using the same water heads.

2.4 ESTIMATED WEIGHTS

A reliable determination of the moving part of a fixed-wheel gate by a comprehensive study based on preliminary data and admissible stresses is a quite long and difficult exercise. To determine an approximate weight, it is common practice to make a comparison with existing gates, of course, of the same type.

Estimation of the weight is based on the main parameters, i.e.:

- the dimensions (width and height);
- water pressure on the sill.

It can be developed by a formula based on statistical data. The weight of the slot embedded fixed parts has then to be added.

This procedure gives an acceptable approach for conceptual design.

The formula used here (see Water Power and Dam Construction by P.C. Erbiste May 1984) is a function of W, h, and H where:

- W is the span,
- h is the gate height,
- H is the static head on the gate bottom seal.

The weight of the gate leaf is given by the formula (see abacus – annex 1):

Weight of a fixed-wheel gate: = $0.706 (W^2.h.H)^{0.7}$

Given the static heads are the highest ones (compared to the operating heads), only them have been taken into account for the calculation of the weights.

Span width, height, static head on seal bottom and weight of gate or bulkhead leaf are given in annex 3.

The estimated weight of the culvert gate is 25.5 tons and the estimated weight of the WSB conduit gate is 19.9 tons. The weights of the culvert and WSB conduit gates are very close to each other. At this conceptual stage, it clearly appears that the same design should be used for both gates.

The incurred costs/benefits that will result are the following :

- From the standardization point of view : same drawings, same manufacturing processes, erection procedures, ...
- From the operational and maintenance point of view : reduced amount of spare parts, better material knowledge from the maintenance people, ...

It is reminded that to check the procedure, a preliminary calculation of a WSB fixed-wheel gate structure has been performed (see Annex 2). The calculation has confirmed the results of the above formula.

Moreover, the weight of **one meter** of embedded fixed parts is estimated to:

- Culvert fixed-wheel gates at the bottom of the slot:	$800 \text{ kg} (\text{last } 12\text{m}^1)$
- Culvert fixed-wheel gates at the upper part of the slot (only for guiding):	200 kg
- Culvert sliding bulkhead at the bottom of the slot:	500 kg (last $9m^2$)
- Culvert sliding bulkhead (only for guiding)	200 kg
- WSB fixed-wheel gates at the bottom of the slot:	1,000 kg (last 12m)
- WSB fixed-wheel gates at the upper part of the slot:	200 kg
- WSB sliding bulkhead at the bottom of the slot:	500 kg (last 9m)
- WSB sliding bulkhead (only for guiding)	200 kg

FCHNUM

Note: Lintel and sill embedded parts have been added separately. For the gates the weight of said parts is taken as 800 kg/m, for the bulkheads, it has been taken as 500 kg/m.

² One time first leaf plus two times second leaf (3+2x3=9m)

¹ Two times the height of the gates (2x6=12m)

2.5 CONSTRUCTION DETAILS

Hydraulic servomotor operated, the fixed wheel gates are equipped with wheels revolving on fixed axles cantilevered from the gate frame (see annex 4 for typical example of a sectional view of one wheel of the Berendrecht culvert gates). Wheels can be of the flat type (rolling on stainless steel tracks) or of the flanged type (rolling on rails). Tracks must withstand the bearing pressures and distribute them to the concrete structure behind. The **number of wheels** will be based on the steel characteristics. It shall **not be less than 6 wheels**.

A typical horizontal sectional view of a gate (or bulkhead) welded structure is shown in Annex 5. Horizontal plate girders or standard T or I-shape beams are the main force resisting members of the gate.

The distance between horizontal girders may vary according to the hydrostatic pressure. Diaphragm plates and intercostals are also used as reinforcement to distribute loads more uniformly.

WSB fixed-wheel gates have to resist to water pressure and **be tight in both directions** as for the locks submitted to tidal effects.

The access shaft for maintenance will be used as surge chambers during operation of the gates.

Tolerances must be adequate to ensure watertight seals. That is the reason why it is recommended to use very rigid U-shape steel guiding for the gates to avoid any movement during embedding of the fixed parts.

The gate and wheels are permanently under water. Maintenance of these wheels and bearings is possible by lifting the moving parts out of water. Wear of these elements can be considerably reduced by using **self lubricating** material.

SEALING SYSTEM

Seals are usually made of rubber with or without a PTFE (Teflon) overlay (**PTFE overlay is preferred**). The seals are often of the music note shape or lip type.

For the WSB gates being tight for water flowing in both directions, the lip seals adopted for Berendrecht (see sectional view of the wheel) should be convenient.

Lintel seal and side seals: can be of the upstream or downstream type (see figure - Annex 6)

Bottom seal can be flat or also of the J-shape type.(see figure – Annexes 6 and 7)

MAINTENANCE OF THE GATES AND BULKHEADS

Maintenance work on gates and bulkheads (as wheels and relevant slots) consists mainly in the replacement of rubber seals and painting. Overhaul and/or replacement of wheels could also be foreseeable. Moreover, the maintenance works will have to include the replacement of the sacrificial anodes whenever necessary.

A4e-3x2-RevA 15/07/20057/13/2

005

During normal operation, any trouble with one culvert or WSB gate (blocking or incident on the oil system) will not interfere on the ship transit except concerning the operation time. Every gate can be isolated and maintenance people can reach the upstream or downstream side of the gate by use of bulkheads after emptying of the space between them.

In case of planned replacement of seals or painting, the gate will be lifted out by use of a 100 tons gantry crane moving on rails. This crane will be provided by truck, assembled and installed on the railway located above the gate slot. After dismantling of the gate, the work will be carried out in good conditions in the maintenance building. Two mobile cranes will be necessary for the 40 gates and 12 bulkheads. Rails will be installed between and outside of all the rows of WSB and culvert slots.

For the culverts, 8 (4 x 2) bulkheads are foreseen. It enables to close completely one culvert using 2×2 bulkheads at each of the culvert extremities.

For the WSB conduit, 6 (2 x 3) bulkheads are foreseen. It enables to close completely one conduit.

Bulkheads gates can be stored outside or suspended into the slots (one piece of bulkhead gate per slot). To remove a bulkhead gate, the cranes will be equipped with an automatic lifting beam. Planned maintenance will also be done in the maintenance building.

3 REFERENCES

- Hydraulic gates and valves in free surface flow and submerged outlets by Jack Lewin
- Water Power and Dam Construction (review)
- Final report of the International commission for the study of locks (PIANC)
- Engineer manuals
- CCP (2002) "Diseño conceptual de las esclusas Post Panamax Triple Lift Lock System, Task 4"

Abacus of gate weight versus gate parameter (W, h, H)

ANNEX 2 (Remind of report R4-E date 15.11.2002)

TYPICAL CALCULATION OF A WSB GATE (Hs = 50m)

This calculation is the same as the one included in the report mentioned at the beginning of paragraph 1.1 of this report. The only goal of this calculation is to prove that the use of the general formula (see page 2-6) is relevant for weight calculation.

SKIN PLATE

The estimated skin plate thickness corresponds to a distance of 1.5m between the horizontal I beams and 1m between the vertical T shape intercostals is 4cm

STEEL PLATE		Mesh 1.00 x 1	.50 m		LOAD : 50 t/m2	
· · · · · · · · · · · · · · · · · · ·		span maximu	m bending m	oment (tm) :		3.71333
		edges and co	rners maximu	um bending mom	ent (tm) :	5.11170
thickness	l/v	relative displa	acement	maximum stres	sses	
		span	corner	span	corner	
(m)	(m3)	(mm)	(mm)	(kg/mm2)	(kg/mm2)	
0.040	0.0002667	0.880	1.540	12.55	19.17	
0.035	0.0002042	1.314	2.300	16.39	25.04	
0.030	0.0001500	2.087	3.653	22.30	34.08	
0.025	0.0001042	3.605	6.312	32.12	49.07	
0.020	0.0000667	7.042	12.328	50.18	76.68	

choosen thickness: 4 cm

MAIN BEAMS

The horizontal main beams size depends on the span between them and load. According to the I/v required, alternatives were investigated i.e.:

- HE 1000 A
- W 1100 x 400 x 433

MAIN GIRDERS		length (m) : 5.7	distance (m):	1.5 load (t/m):	75	Moment (Im):	304.59375
DISPLACEMENT	vs INERTIA	E (1/m2): 21000000 STRESS va 1/v					
l (m4)	f (m)	l/v (m3)	STRESS (1/m2)				
0.0005	0.098177093	0.005	60918.75				
0.0007	0.070125495	0.007	43013.392657 33843.75				
0.0008	0.061360683	0.011	27690.340909				
0.0009	0.054542829	0.013	23430.288462				
0.0011	0.044625951	0.015	17917.279412				
0.0012	0.040907122	0.019	16031.25				
0.0013	0.03776042	0.021	14504.464286				
0.0015	0.032725698	0.025	12183.75				
0.0016	0.030680341	0.027	11281.25				
0.0018	0.027271415	0.029	9825.6048387				
0.0019	0.025836077	0.033	9230.1136364				
0.002	0.024544273	0.035	8702.6785714				
0.0022	0.022312976	0.039	7810.0961538				
0.0023	0.021342846	0.041	7429.1158537				
0.0025	0.019635419	0.045	7083.5755814 6768.75				
0.0026	0.01868021	0.047	6480.7180851				
0.0027	0.018180943	0.049	6216.1989796 5972 4264706				
0.0029	0.016927085	0.053	5747.0518868				
0.003	0.016362849	0.065	5538.0681818				
0.0031	0.015835015	0.057	5343.75 5182.6059322				
0.0033	0.014875317	0.061	4993.3401639				
0.0034	0.014437808	0.063	4834.8214286				
0.0036	0.013635707	0.065	4546.1753731				
0.0037	0.013267175	0.069	4414.4021739				
0.0038	0.012918039	0.071	4290.0528169				
0.004	0.012272137	0.075	4061.25				
0.0041	0.011972816	0.077	3955.762987				
0.0042	0.011687749	0.079	3855.6170885 3760.4166667				
0.0044	0.011156488	0.063	3669.8042169				
0.0045	0.010908666	0.085	3583.4558824				
0.0047	0.010444372	0.089	3422.4016854				
0.0048	0.01022678	0.091	3347.1840659				
0.0049	0.009817709	0.093	3275.2016129 3206.25				
0.0061	0.009625205	0.097	3140.1417526				
0.0052	0.009440105	0.099	3076.7045455				
0.0054	0.009090472	0.103	2957.2208738				
0.0055	0.00892519	0.105	2900.8928571				
0.0057	0.008765812	0.107	2846.6705607 2794.4380734				
0.0058	0.008463542	0.111	2744.0878378				
0.0059	0.008320093	0.113	2695.5199115				
0.0061	0.008047303	0.117	2603.3653846				
0.0062	0.007917507	0.119	2559.6113445				
0.0064	0.007670085	0.121	2517.303719 2476.3719512				
0.0065	0.007552084	0.125	2436.75				
0.0066	0.007437659	0.127	2398.3759843				
0.0068	0.007218904	0.131	2325.1431298				
0.0069	0.007114282	0.133	2290.1785714				
0.0071	0.00691388	0.136	2206.20 2223.3120438				
0.0072	0.006817854	0.139	2191.3219424				
0.0073	0.006724468	0.141	2160.2393617 2130.0262238				
0.0075	0.00654514	0.145	2100.6465517				
0.0076	0.006459019	0.147	2072.0663265				
0.0078	0.006293403	0.149	2044.2033007				
0.0079	0.00621374	0.153	1990.8088235				
0.008	0.006136068	0.155	1965.1209677				
0.0082	0.005986408	0.159	1915.6839623				
0.0083	0.005914283	0.161	1891.886646				
0.0084	0.005775123	0.163	1846.0227273				
0.0086	0.005707971	0.167	1823.9146707				
0.0087	0.005578244	0.169	1002.3296817				
0.0089	0.005515567	0.173	1760.6575145				
0.009	0.005454283	0.175	1740.5357143				
0.0091	0.005394346	0.177	1701.6410615				
0.0093	0.005278338	0.181	1682.8383978				
for a deformation		To keep a stre					
span/1000 (.005)	7).	< 15 kg/mm2,	l/v				
l must be > 8600	000 cm4	must be > 200	00 cm3				

 W 1100 x 400 x 433
 Image: Constraint of the program with the program withe program withe program with the program withe program withe pr

433.24 kg/m² deform

etress

314.44 kg/m' deformation : stress:

7.6136E-11 m 23.6211473 kg/mm2 ok steel yield strength 36 kg/mm2

el yield strength 24 kg/mm2

Tractebel Development Engineering

644748.07 cm4 12894.96 cm3

With a HE1000B: f = l/v =

TECHNUM

4.3612E-11 m 14.991901 kg/mm2

15

SECONDARY BEAMS

CPP

T beams coming from HE 600 A were considered

DispLACEMENT vs INERTIA STRESS vs (/v 1 (mi) f (m) I/v (m3) STRESS ((m2) 1 EC65 0.00313985 0.00002 37500 2E565 0.00164832 0.00003 37500 4E565 0.00082719 0.00004 23437.5 5E565 0.0009277 0.00005 17515 8E565 0.000277 0.00005 17615 9E565 0.000051705 15250 1 0.0001 0.0003139 0.00005 17625 9E565 0.000051705 12500 1 0.0001 0.00028536 0.0007 13322.85714 0.0001 0.00028536 0.0007 13322.85714 0.0001 0.00028536 0.0007 13322.85714 0.00011 0.00028536 0.0007 1332.8171 0.00011 0.00028536 0.0007 132.222 3.2757 1.3 27 35.1 13.5 473.85 12.2425 1.3 12 -2 -240	SECONDARY	GIRDERS	length (m):	1.5	distance (m):	1	load (t/m):	50	M (tm):	9.375
l (m4) f (m) /v (m3) STRESS (m2) 1E-05 0.00313895 0.0002 46875 2Z-05 0.00194532 0.0002 37500 3E-05 0.00074174 0.00025 22785.71429 5E-05 0.00052316 0.00005 17750 5E-05 0.0003237 0.00005 17750 5E-05 0.0003477 0.00005 17525 0.0001 0.0002856 0.00005 1752 0.0001 0.0002856 0.00005 1752 0.0001 0.0002856 0.00007 1392.85714 0.0001 0.0002856 0.00007 1392.85714 0.0001 0.0002856 0.0007 1392.85714 0.0001 0.00028556 0.0007 1392.85714 0.0001 0.00028556 0.0007 1392.85714 0.0001 0.00028556 0.0007 1392.85714 0.0001 0.00028556 0.0007 1392.85714 0.0001 1.02028556 0.0007 1392.85714 1.0 4 5.00 4787 1.1 4 4500.412774 stress: 2.962761416 kg/mm2 total length 5 x 5.7 m 12.34734 main girder 1/2 HE500A total length 5 x 5.7 m 12.34734 secondary girders 1/2 HE500A total length 5 x 5.7 m 12.34734 secondary girders 1/2 HE500A total length 5 x 5.7 m 12.34734 secondary girders 1/2 HE500A total length 5 x 5.7 m 10.362 1 suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	DISPLACEM	ENT vs INERT	IA	STRESS vs	l/v					
EC-05 0.00024 46875 EC-05 0.0015844 0.00025 37500 SE-05 0.00078474 0.0003 31250 4E-05 0.00078779 0.0004 2247.5 SE-05 0.00022158 0.00057 17053.45455 SE-05 0.0003139 0.00065 17045.45455 SE-05 0.0003139 0.00065 1423.07692 0.00011 0.00026158 0.00071392.85714 0.0007 0.00012 0.00026158 0.00071392.85714 12500 I/v should be > 600 cm3 HEE000A 1/2 b h S y S.1 13.5 473.85 213.2775 376.64161104 Jiii 1.3 27 55.1 13.5 473.85 213.2775 376.64161104 Jiiii 1.3 473.55 230.1 10.22425033 2352.6 2331.3875 42678.091183 Jiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	l (m4)	f (m)		l/v (m3)	STRESS (t/m2)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1E-05	0.00313895		0.0002	46875					
SE-05 0.00076474 0.00005 23437.5 SE-05 0.00062179 0.0004 23437.5 SE-05 0.000216 0.0005 2755 SE-05 0.0003442 0.0005 2755 SE-05 0.0003477 0.0006 16250 SE-05 0.000319 0.0006 1423.07692 0.00012 0.00026158 0.00075 12500 I/v should be > 600 cm3 HE600A 1/2 base 30 2.5 75 28.25 2118.75 39.0625 -8.0277 24369.573448 wall 1.3 27 35.1 13.5 47.385 112.22425 1.757 376.86141104 1.3 27 35.1 13.5 47.385 122.2425 1.757.5 376.875524 2.301.1 1.02.425033 2352.6 231.3875 42678.091183 1.4 45009.4767 1.014935467 kg/mm2 1.1 42678.091183 1.9 4.64.27774 stress: 4.014935467 kg/mm2 1.2.34734 main girder H100008 yield point 36 kg/mm	2E-05	0.00156948		0.00025	37500				4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3E-05	0.00104632		0.0003	31250					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4E-05	0.00078474		0.00035	26785.71429				•	
8E-05 0.00048 2083.3333 7E-05 0.0004842 0.0005 9E-05 0.00038277 0.0006 0.00011 0.00028516 0.0007 0.00012 0.0002856 0.0007 0.00012 0.0002856 0.0007 0.00012 0.0002856 0.0007 0.00012 0.0002856 0.0007 1.00028576 0.0007 12500 //v should be > 600 cm3 HEBOOA 1/2 base b h S y S,y bh3/12 d S.d2 base b h S y S,y bh3/12 d S.d2 base b h S y S.y bh3/12 d S.d2 Jander Strate yail 1.3 27 35.1 13.5 473.85 12.22425 32.7575 376.64181104 yail 1.3 27 35.6 2331.3875 42678.091183 I = 45006.47877 Vy1 = 3164.27	5E-05	0.00062779		0.0004	23437.5					
72-05 0.00044442 0.0005 18750 8E-05 0.000028477 0.0006 15825 0.0001 0.00028139 0.00065 14423.07692 0.00012 0.00028158 0.00075 12500 I/v should be > 600 cm3 HE600A 1/2 b h \$ b h \$ y S.y bh3/12 d \$.d2 b h \$ \$ y \$.y bh3/12 d \$.d2 Live should be > 600 cm3 HE600A 1/2 b h \$ y \$.y \$.y \$.h30,90,625 \$.3275 \$7348 wall 13 27 35.1 13.5 473.85 2132.325 3.275 \$7348 wall 13 4 120 -2 -240 160 12.2425 17931.875524 I/vit= 3164.27774 stress: 2.962761416 kg/mm2 10.3427 10.3427 10.34275 10.34	6E-05	0.00052316		0.00045	20833.33333				Ì	
BE-05 0.00059237 0.00055 17045,545455 BE-05 0.000011 0.0003139 0.00065 14423,07692 0.00011 0.00028518 0.0007 1392,85714 0.00011 0.00028518 0.0007 1392,85714 0.00012 0.00026158 0.00075 12500 I/v should be > 600 cm3 HE600A 1/2 base 30 2.5 75 28.25 2118,75 39,0625 -18,0257 2389,573848 wall 1.3 27 35.1 13.5 473.85 2132,325 3.27575 376,64181104 plate 30 4 120 -2 -240 160 12.22425 17931,875524 1 = 45009,4787 I/v1 = 2336,03129 stress: 2.962761416 kg/mm2 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 12.34734 I/w1 = 3164.27774 stress: 4.014935487 kg/mm2 1 I/w1 = 3164.27774 stress: 1.04935487 kg/mm2 <td< td=""><td>7E-05</td><td>0.00044842</td><td></td><td>0.0005</td><td>18750</td><td></td><td></td><td></td><td></td><td></td></td<>	7E-05	0.00044842		0.0005	18750					
9E-05 0.00048977 0.0006 15625 0.00011 0.0002836 0.0007 13392.85714 0.00012 0.00026158 0.00075 12500 I/v should be > 600 cm3 HEB00A 1/2 base 30 2.5 75 28.25 2118.75 39.0625 -8.0257 24396.57848 wall 1.3 2.7 35.1 1.3.5 473.85 2132.225 -3.27575 376.64181104 plate 30 4 120 -2 -240 160 12.22425 17931.875524 200.1 10.24245033 2352.6 2331.3875 42678.091183 I/v1= 3164.27774 stress: 2.962761416 kg/mm2 I/v1= 3164.27774 I/v1= 3164.27774 stress: 4.014935467 kg/mm2 I/v1= 3164.27774 Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W1100 x 400 x 433 yield point 24 kg/mm2 8.96154 total length 5 x 5.7 m 12.34734 sec	8E-05	0.00039237		0.00055	17045.45455					
0.0001 0.0003139 0.00065 14423.07692 0.00011 0.0002556 0.0007 13392.65714 0.00012 0.00026158 0.0007 13392.65714 HE500A 1/2 //////////////////////////////////	9E-05	0.00034877		0.0006	15625					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0001	0.0003139		0.00065	14423.07692					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00011	0.00028536		0.0007	13392.85714					
I/v should be > 600 cm3 HEBOOA 1/2 base 30 2.5 75 28.25 2118.75 39.0625 -18.0257 24369.573848 plate 1.3 27 35.1 13.5 473.85 2122.325 -3.27575 376.64181104 plate 230.1 10.22425033 2352.6 2331.3875 42678.091183 I = 45009.4787 10.22425033 2352.6 2331.3875 42678.091183 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 12.2425 17931.875524 I/v1 = 2305.03129 stress: 4.014935487 kg/mm2 13.4235 t I/w = 6.974E-05 13.4235 t 13.4235 t WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t 12.34734 main girder W 1100 x 400 x 433 yield point 24 kg/mm2 t 12.34734 8.96154 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t axtis, wheels 2.4 t 45.819	0.00012	0.00026158		0.00075	12500					
HE600A 1/2 base 30 2.5 75 28.25 2118.75 39.0625 -18.0257 24369.573848 wall 1.3 27 35.1 13.5 473.85 2132.325 -3.27575 376.64181104 plate 30 4 120 -2 -240 160 12.22425 17931.875524 230.1 10.22425033 2352.6 2331.3875 42678.091183 I = 45009.4787 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 I/v1 = 2335.03129 stress: 4.014935487 kg/mm2 f (m) = 6.974E-05 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 1 49.20534	-			l/v should b	e > 600 cm3					
b h S y S.y bh/12 d S.d2 base 30 2.5 75 28.25 2118.75 39.0625 -18.0257 24369.573848 wall 1.3 27 35.1 13.5 473.85 2132.252 3756.4181104 plate 30 4 120 -2 -240 160 12.22425 17931.875524 230.1 10.22425033 2352.6 2331.3875 42678.091183 1 I = 45009.4787 10.22425033 2352.6 2331.3875 42678.091183 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 1 42678.091183 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 1 10.14935487 kg/mm2 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 1 1 10.2425034 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t 1 1 12.34734	HE600A 1/2	-	-							
base 30 2.5 75 28.25 2118.75 39.0625 -18.0257 24369.573848 wall 1.3 27 35.1 13.5 473.85 2132.325 -3.27575 376.64181104 plate 30 4 120 -2 -240 160 12.22425 17831.875524 230.1 10.22425033 2352.6 2331.3875 42678.091183 I = 45009.4787 I/V1 = 3164.27774 stress: 2.962761416 kg/mm2 I/V h = 2235.03129 stress: 4.014935487 kg/mm2 f (m) = 6.974E-05 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954		ь	h	S	У	S.y	bh3/12	d	S.d2	
wall 1.3 27 35.1 13.5 473.85 2132.325 -3.27575 376.64181104 plate 30 4 120 -2 -240 180 12.22425 17931.875524 230.1 10.22425033 235.6 2331.3875 42678.091183 I = 45009.4787	base	30	2.5	75	28.25	2118.75	39.0625	-18.0257	24369.573848	
plate 30 4 120 -2 -240 160 12.22425 17931.875524 230.1 10.22425033 2352.6 2331.3875 42678.091183 I = 45009.4787 stress: 2.962761416 kg/mm2 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 I/v h = 2335.03129 stress: 4.014935487 kg/mm2 f(m) = 6.974E-05 13.4235 t wEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 8.96154 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	wall	1.3	27	35.1	13.5	473.85	2132.325	-3.27575	376.64181104	
230.1 10.22425033 2352.6 2331.3875 42678.091183 I = 45009.4787 stress: 2.962761416 kg/mm2 I/v1 = 3164.27774 stress: 2.962761416 kg/mm2 I/v h = 2335.03129 stress: 4.014935487 kg/mm2 f(m) = 6.974E-05 4.014935487 kg/mm2 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 12.34734 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A 8.96154 total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	plate		4	120	-2	-240	160	12.22425	17931.875524	
I/v1= 3164.27774 stress: 2.962761416 kg/mm2 I/v1= 2335.03129 stress: 4.014935487 kg/mm2 f(m)= 6.974E-05 f(m)= 6.974E-05 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension suspension 6 t 2.4 t 1 variante 1 49.20534 2.4 t 1		I =	45009.4787	230.1	10.22425033	2352.6	2331.3875		42678.091183	
I/v h = 2335.03129 stress: 4.014935487 kg/mm2 f (m) = 6.974E-05 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension axis, wheels 2.4 t 1 variante 1 49.20534 yariante 2 45.81954		l/v1=	3164.27774	stress:	2.962761416	ka/mm2				
f (m) = 6.974E-05 WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 12.34734 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A 4.672 total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954		l/v h =	2335.03129	stress:	4.014935487	kg/mm2				
WEIGHTS: Steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 12.34734 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A 4.672 total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954		f (m)=	6.974E-05			, ,				
steel plate 40 x 7500 x 5700 mm 13.4235 t main girder W 1100 x 400 x 433 yield point 24 kg/mm2 12.34734 total length 5 x 5.7 m 12.34734 main girder HE 1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A 4.672 total length 5 x 7.5 4.672 border plate 5 cm 10.362 t 5.4 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	WEI	GHTS:				-				
main girder W 1100 x 400 x 433 yield point 24 kg/mm2 total length 5 x 5.7 m 12.34734 main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t	Stee	i plate 40 x	750	00 x 5700 mm		13.4235	t			
main girder HE1000B yield point 36 kg/mm2 8.96154 secondary girders 1/2 HE600A 4.672 total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	mair total	n girder W 110 length 5 x 5.7	0 x 400 x 433 y m	ield point 24 k	kg/mm2			12.34734		
secondary girders 1/2 HE600A total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	mair	girder HE100	0B yield point :	36 kg/mm2				8.96154		
secondary griders 1/2 FEODA 4.672 total length 5 x 7.5 4.672 border plate 5 cm 10.362 t suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954		ndanı oladara	1/0 4150004							
border plate5 cm10.362 tsuspension6 taxis, wheels2.4 tvariante 149.20534variante 245.81954	total	length 5 x 7.5	1/2 HE600A							4.6725
suspension 6 t axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	bord	er plate	5 cm		10.362 t					
axis, wheels 2.4 t variante 1 49.20534 variante 2 45.81954	susp	ension			6 t					
variante 1 49.20534 variante 2 45.81954	axis,	wheels			2.4 t					
variante 2 45.81954	varia	inte 1		49.20534						
	varia	inte 2		45.81954						

CONCLUSION:

The estimated weight by 1^{st} calculation is 46 or 49 tons according to the beam choice (HE 1000 A or W 1100 x 400 x 300 according to the ARBED catalogue (see extract hereunder). These values are to be compared with the 51 tons found by the above statistical formula.

ECHNUM

		r	Listing with r Ly must be t W.y must be t G ascending Search in: IF	Profiles acco between 500 E, IPN, HE	ording to th 00,00 cm4 000,00 cm3 , HL, HD, H	le following and 30000 3 and 7100 HP, HP(US	nule: 000,00 cm4 00,00 cm3), W, UB,	UBP, UC, F	-				
Profile						G [kg/m]	A [cm2] A.vz [cm2]	I.y [cm4] i.v [cm]	W.y [cm3] W.y.b [cm3]	I.z [cm4] i.z [cm]	W.z [cm3] W.z.ol [cm3]	.T [cm4]	i.T [cm] meda (cm6)
W 1000 X 300 X	00'086	300,000	16,50	26,00	30,00	249,04	316,85	481 078,52	9817,93	11 754,44	783,63	584,40	66.7
2	928,00	868,00	103,65	3,08	12,37		180,74	38,97	11 346,88	60'9	1 244,71		26 620 893
HE 900 A	890,00	300,000	16,00	30,00	30,00	251,93	320,53	422 074,83	9 484,83	13547,46	903,16	736,77	7,63
	830,00	770,00	111,15	2,90	11,51		163,33	36,29	10 811,04	6,50	1 414,48		24 961 500
JB 914 X 305 X	918,40	305,50	17,30	27,90	19,10	253,74	322,83	436 304,46	9501,40	13 301,11	870,78	630,51	12'2
20	862,60	824,40	95,48	2,99	11,80		167,85	36,76	10 942,00	6,42	1 370,54		26 284 181
N 920 X 310 X	919,00	306,00	17,30	27,90	19,00	254,02	323,18	437 456,16	9520,26	13 366,25	873,61	630,91	7,72
S	863,20	825,20	95,36	2,99	11,80		167,86	36,79	10 962,73	6,43	1 374,80		26 449 053
N 920 X 310 X	923,00	307,00	18,40	30,00	19,00	272,03	346,09	471 573,42	10 218,28	14518,01	945,80	775,02	7,76
24	863,00	825,00	100,66	3,00	11,06		178,81	36,91	11 782,87	6,48	1 490,95		28 842 178
N 1000 X 300 X	00'086	300,000	16,50	31,00	30,00	272,62	346,85	563 846,02	11 188,81	14 004,44	903,603	822,41	7,55
212	928,00	868,00	113,65	3, 10	11,37		184,56	39,96	12 824,38	6,35	1 469,71		32 073 875
HE 1000 A	00'086	300,000	16,50	31,00	30,00	272,62	346,85	553 846,02	11 188,81	14 004,44	900,603	822,41	7,56
	928,00	868,00	113,65	3, 10	11,37		184,56	39,96	12 824,38	6,35	1 469,71		32 073 875
1 900 X 300 X 18	912,00	302,00	18,00	34,00	18,00	283,01	360,06	401 010,69	10 767,78	15 654,09	1 036,69	980,82	7,77
34	844,00	808,00	107,09	2,97	10,49		173,06	36,93	12 337,07	6,59	1 622,45		30 079 980

A4e-3x2-RevA 15/07/20057/13/2 005

CPP

17

Ĩ												
-	3230	isting with y must be V.y must b	between 11	cording to th 125000,00 c 10000,00 cn	e following m4 and 30 n3 and 100	J rule: 000000,00 c 0000,00 cm	3 3					
	Ŭ Ŵ	s ascendin search in: l	и РЕ, РN, Н	Е, НС, НО,	HP, HP(US	s), W, UB, -	JBP, UC, F	Ŧ				
h [mm] b [r h.i [mm] d [n	[mm]	t.w [mm] S.s [mm]	t.f [mm] A.L [m2/m]	r [mm] A.G [m2/t]	G [kg/m]	A [cm2] A.vz [cm2]	I.y [cm4] <i>i.y [cm]</i>	W.y [cm3] W.y.pl [cm3]	l.z [cm4] i.z [cm]	W.z [cm3] W.z.pl [cm3]	I.T [cm4]	i.T [cm] omega [cm6]
1 108,00 402	2,00	22,00	40,00	20,00	433,24	561,19	1 125 573,94	20 317,22	43 409,79	2 159,69	2 129,54	10,40
1 028,00 985	8,00	125,43	3,75	8,66		254,39	45, 19	23 160,71	8,87	3 361,78		123 500 699
1 108,00 40.	2,00	22,00	40,00	20,00 8.66	433,24	551,19 254 30	1 125 573,94	20 317,22	43 409,79 8 87	2 159,69 3 361 78	2 129,54	10,40 123 500 600
1118.00		26 CD	AF CO	wuc	80.001	635 21	1 201 050 56	7314054	AD 08/17	2 AGR 25	3 13/05	10.45
1 028,00 986	8,00	139,43	3,77	7,56	07'004	300,41	45,14	26 599,48	8,87	3 870,29	02-to-0	143 405 493
1 118,00 405	6,00	26,00	45,00	20,00	409,28	636,21	1 294 059,56	23 149,54	49 984,12	2 468,35	3 134,95	10,45
1 028,00 985	8,00	139,43	3,77	7,56		300,41	45,14	26 599,48	8,87	3 870,29		143 405 493
1 030,00 40 927,80 867	7,80	28,40 165,75	51,10 3,58	30,00 6,64	540,12	687,17 316,39	1 202 537,90 41,83	23 350,25 26 823,86	57 631,92 9,16	2 832,04 4 435,56	4 546,45	10,60 137 552 834
1 032,00 40	8,00	29,50	52,00	30,00	554,76	705,81	1 232 371,55	23 883,17	59 098,19	2 896,97	4 859,98	10,61
928,00 868	8,00	168,65	3,59	6,47		328,03	41,79	27 496,21	9,15	4 546,53		141 326 871
1 056,00 316	6,00	35,00	64,00	30,00	579,29	737,01	1 245 718,26	23 593,15	34 037,38	2 154,26	7 102,05	8,06
928,00 868	8,00	198,15	3,25	5,63		393,33	41,11	27 950,86	6,80	3 498,29		82 804 383
1 056,00 31- 928,00 865	4,00	36,00 199,15	64,00 3,24	30,00 5,56	584,57	743,73 403,25	1 246 071,34 40,93	23 599,84 28 039,18	33 433,46 6,70	2 129,52 3 474,83	7 230,02	7,98 81 242 078

A4e-3x2-RevA

15/07/20057/13/2

A4e-3x2-RevA 15/07/20057/13/2 005

Alternative Atlantic Locks 3x2 WSB A4e-3x2 - Culvert and WSB gates

19

ANNEX 3

ESTIMATION OF WEIGHT FOR CULVERT AND CONDUIT GATES TAKING INTO ACCOUNT 3 X 2 WATER SAVING BASINS ATLANTIC SIDE : TRIPLE LIFT (W=55m) **MAXIMUM STATIC HEADS**

			Width(m)	height(m)	Hmwc(m)	Hsécurité	Htot	T/m L	. tot(m)	Estimated weight (T)	<u> </u>	Total weight (T)	
S	Culvert gates		4,5	9	37,2					25	,5 16	40	6(
E.	Culvert gates slots 2*2	gate height		12				0,8	24	19	,2 16		
Ľ∀	2*[]	Htot-(2gate height)]		12	37,2	1,5	38,7	0,2	53,4	10	,7 16		
′9	2*&	vidth	4,5					0,8	6	7	,2 16		
L	tot (culvert gates slots										293	33
Я	Culvert bulkhead equ	ial to culvert gate - 3T								22	,5 8	18(000
3/	Culvert bulkhead slots 2*2	bulkhead height		12				0,5	24		12 32		
٦/	2*[]	Htot-(2bulkhead height)]		12	37,2	1,5	38,7	0,2	53,4	10	,7 32		
	2*&	vidth	4,5					0,5	б О	4	,5 32		
С	tot (culvert bulkhead slots										87(0
S	Conduit gates		4	5	39,43					19	,9 24	47	7
Э.	Conduit gates slots 2*2	gate height		10				-	20	,	20 24		
L∕	2*[]	Htot-(2gate height)]		10	39,43	1,5	40,93	0,2	61,86	12	,4 24		
ีย	2*&	vidth	4					-	8	80	,0 24		
T	tot (conduit gates slots										96	39
IC	Conduit bulkhead equ	ual to conduit gate - 3T								16	,96	10.	1
D	Conduit bulkhead slots 2*2	bulkhead height		10				0,5	20		10 48		
N	2*[J	Htot-(2bulkhead height)]		10	39,43	1,5	40,93	0,2	61,86	12	,4 48		
03	2*w	vidth	4					0,5	80	4	,0 48		
C	tot (conduit bulkhead slots										126	90

СРР

CPP

ANNEX 5

TYPICAL GATE STRUCTURE

CPP

ANNEX 6

UPSTREAM AND DOWNSTREAM SEALING (Music not J-shape type)

UPSTREAM SEALING

DOWNSTREAM SEALING

CPP

ANNEX 7

SIDE AND BOTTOM SEALS (BERENDRECHT)

ANNEX 8 : Pictures – typical seals view (Zandvliet lock, Belgium)

Side seal left position (angular music note type)

Front seal (simple music note seal)

CPP

Side seal right position (angular music note type)

Bended music note seal - Pressing plate and protecting device

Double bottom seals

Detail of a gate slot

26

Handling device details

General view of culvert gate

CPP

Alternative Conceptual Design of Pacific and Atlantic Post-Panamax Locks – 3x2 WSB -Contract SAA-150551

ATLANTIC LOCKS 3x2 wsb

Task A4f-3x2 – OPERATING MACHINERY Task A4g-3x2 – LIGHTING Task A4h-3x2 – ELECTRICAL AND POWER REQUIREMENTS Task A4j-3x2 – OPERATING STRUCTURES Rev A

in association with

TABLE OF CONTENTS

1	INTRODUCTION	1
2	Operating machinery (Task A4f-3x2)	2
2.1	MACHINERY OF THE (MAIN) ROLLING GATES	2
2.2	MACHINERY OF THE CULVERT AND WSB CONDUIT GATES	2
2.3	CONTROL SYSTEM ARCHITECTURE	3
3	Lighting (Task A4g-3x2)	4
3.1	OUTSIDE LIGHTING	4
3.1.1 3.1.2	Lock chamber walls Lighting poles	4 4
3.2	INTERNAL LIGHTING	5
4	Electrical and power requirements (Task A4h-3x2)	6
5	Operating structures (Task A4j-3x2)	7
6	References	7

Annexes

- Estimation of gate engine power for culvert and conduit gates taking into account 1. operating heads
- 2. Estimation of gate engine power for culvert and conduit gates taking into account maximum static heads

i

1

1 INTRODUCTION

The original conceptual design of the Atlantic side of the third Post Panamax lock lane (made by others, it means not by CPP) has been made for a triple lift lock with a width of 61m and 3x3 WSB.

For the Atlantic harmonization study, a 55m triple lift lock has been considered (with 3x3 WSB). Vessel positioning was foreseen by tugboat assistance.

The Atlantic locks harmonization has been based entirely on Pacific Locks Actualization.

The present document gives the impact on the previous study of the replacement of the 3x3 WSB option by the 3x2 WSB one on the following subjects:

- the gates and valves operating machinery (Task 4 F-3x2). This corresponds to the operating machinery of the main lock gates and of the culvert and conduit gates,
- the control system architecture (including SCADA¹), which includes the monitoring of the whole lock system (the control system architecture is part of Task 4F-3x2),
- the lighting system (Task 4 G-3x2),
- the electrical and power requirements (Task 4 H-3x2),
- the operating structures (Task 4 J-3x2), which deals with the arrangement of the various technical buildings².

² Electrical rooms, Maintenance building, Rolling gates technical rooms, WSB technical building, Culvert technical building, Emergency Diesel Room and (Main) Control room

¹ SCADA = System Control And Data Acquisition

CPP

2 Operating machinery (Task A4f-3x2)

2.1 MACHINERY OF THE (MAIN) ROLLING GATES

Reference is made to Task P4f (3x2 WSB).

2.2 MACHINERY OF THE CULVERT AND WSB CONDUIT GATES

The calculation of the rated output of the motor of the main oil pumps mounted on the hydraulic power pack is enclosed in Annexes 1 and 2, respectively for operating and maximum static heads. This calculation takes into account the actual dimensions of the culvert and WSB conduit gates (see A4e-3x2).

A summary of the output for different options is given hereafter:

55 m (operating heads)	culvert gates:	53kW,
	WSB conduit gates:	15kW.
(see annex 1 – Estimate of the gate	engine power taking into	account operating heads)

55 m (maximum static heads)	culvert gates:	77kW,
	WSB conduit gates:	56kW.

(see annex 2 – Estimate of the gate engine power taking into account maximum static heads)

Regarding the two last values, standardization of the servomotors is possible if we consider the operation under maximum static heads.

But, regarding the design of the motors (two per gates), another alternative could be envisaged in the next step of the studies:

- for the operating heads, one motor will operate the gate, one will remain on stand-by (one redundancy degree).

- operation under maximum static heads should be with the two motors in operation (no redundancy).

Of course the power output of the motors will have to be slightly adapted to fit the above operation procedures.

FCHNUM

2.3 CONTROL SYSTEM ARCHITECTURE

Reference is made to Task P4f-3x2.

CPP

For the drawings, reference is made to the 2002 report and its drawings.

3 Lighting (Task A4g-3x2)

3.1 **OUTSIDE LIGHTING**

3.1.1 LOCK CHAMBER WALLS

Reference is made to Task P4g-3x2.

3.1.2 LIGHTING POLES

The location of the lighting poles is slightly easier without the locomotive tracks.

The philosophy of the lighting is to have a lighting level along the lock chamber (both side) and decreasing lighting level after the fictive line running along the dead end of the main rolling gates recesses.

For the triple lift lock with 3x2 WSB, the length of the entrance wall is the same as for the triple lift lock with 3x3 WSB. However, the length of the entrance is shorter than for the Pacific locks. The number of lighting poles is 50 instead of 61.

Given there are now only $3x^2$ water saving basins, the number of floodlights has also decreased from 12 to 10 because 2 floodlights were foreseen for the lighting of the last water saving basin. The external lighting arrangement is summarised hereafter :

Side WSB - Gatun lake entrance :

- 3 lighting poles. _
- 60m between two LP _
- 6 floodlights of 1000 W

Side WSB – Chamber locks :

- 3 x 5 lighting poles. _
- 93m between two LP
- 10 floodlights of 1000 W

Side WSB – Atlantic entrance :

4 lighting poles.

CPP
5_

- 60m between two LP _
- 6 floodlights of 1000 W _

7/13/2005

Other side :

CPP

- 28 lighting poles _
- 59m between two LP -
- 6 floodlights of 1000 W

The number of floodlights has slightly decreased but the price is quite similar.

Estimated budget price for 50 high masts, 360 floodlights, lock chamber and gallery lighting : USD 2 millions.

Reference is made to the 2002 report. For the layout, reference is made to drawing D4-A-403.

3.2 **INTERNAL LIGHTING**

Reference is made to Task P4g-3x2.

4 Electrical and power requirements (Task A4h-3x2)

There is no major change in the estimate of power consumptions. The rated power of the various transformers remains the same.

Reference is made to Task P4h-3x2. For the general layout, reference is made to drawing D4-A-203.

5 Operating structures (Task A4j-3x2)

Reference is made to Task P4j-3x2.

6 References

- CPP (2002). Diseño conceptual de las Esclusas Post Panamax. Triple Lift Lock System, task 4.
- ALTERNATIVE PACIFIC LOCKS 3x2, Tasks P4f-3x2, P4g-3x2, P4h-3x2 and P4j-3x2.

ANNEXES

ESTIMATION OF THE GATE ENGINE POWER ATLANTIC SIDE : TRIPLE LIFT (W=55m) 3 X 2 WATER SAVING BASINS TAKING INTO ACCOUNT OPERATING HEADS

	LOCK	WSB
	CULVERT GATE	CONDUIT GATE
Maximum effort (T)	96	33
Oil pressure (bar)	200	200
Stroke (m)	6,00	5,00
Opening time (min)	2,00	2,00
Cylinder section (m ²)	0,048	0,017
Cylinder oil volume (m ³)	0,288	0,084
Oil flow (m³/min)	0,144	0,042
mechanical efficiency	0,9	0,9
POWER (kW)	53	15

Calculus of the forces on the gate

	Gate width (m) length of horizontal seal (m) Gate heigth (m) length of vertical seal (m) width of seal (cm)	4,5 4,9 6 6,3 3	4 4,4 5 5,3 3
Sealing friction forces Fs		a :-	· · -
Fs = f x 1,5 x p x A	f (friction coefficient) p (hydraulic pressure on the gate) (bar) A (Area of sealing contact) (m²) Fs (kg)	0,15 2,5 0,525 2953	0,15 1,0 0,45 1013
Wheel friction Fw			
Fw = Q x (fd x d + fr) / D (six wheels have been foreseen)	Q (max load on the gate) (kg) fd (friction coeff of the wheel bushings) fr (friction coeff of wheels rolling on slot rails) d (diameter of wheel shaft) (cm) D (wheel diameter) (cm) Fw (kg)	771750 0,12 0,2 20 80 25082	233200 0,12 0,2 20 80 7579
Hydraulic load F1 on the top seal of the gate $F1 = p x x s$	n (bydraulic pressure on the gate) (bar)	25	1.0
	I (width of the seal) (m) Is (length of the seal) (m) F1 (kg)	0,08 4,9 9800	0,08 4,4 3520
Hydraulic load F2 on the top of the gate			
F2 = p x gt x ls	p (hydraulic pressure on the gate) (bar) gt (gate thickness) (m) Is (length of the seal) (m) F2 (kg)	2,5 1 4,9 122500	1,0 1 4,4 44000
Hydraulic load F3 under the gate			
F3 = F2 x dlc	F2 (kg) dlc (dynamic load coefficient) F3 (kg)	122500 0,8 98000	44000 0,8 35200
Weight W (under water)			
W = rw x 6.85/7.85 x 1.05	rw (real weight) (kg) W (weight under water) (kg)	19345 17725	7603 6966
Maximum opening load F = Fs + Fw + F1 + F2 - F3 + W	F (T)	80	28
		1	
F's = 0.1 x p x A	p (hydraulic pressure on the gate) (bar)	2.5	1.0
	A (Area of sealing contact) (m²) Fs (kg)	0,525 1313	0,45 450
Wheel friction F'w			
$F'w = Q \times (f'd \times d + f'r) / D$	Q (max load on the gate) (kg) f'd (friction coeff of the wheel bushings)	0.08	233200
	fr (friction coeff of wheels rolling on slot rails)	0,1	0,1
	d (diameter of wheel shaft) (cm) D (wheel diameter) (cm)	20 80	20 80
	F'w (kg)	16400	4956
Hydraulic load F'1 on the top seal of the gate F'1 = 0.5 x F1	F1 (kg) F'1 (kg)	9800 4900	3520 1760
Hydraulic load F'2 on the top of the gate F'2 = 0.9 x F2	F2 (kg) F'2 (kg)	122500 110250	44000 39600
Hydraulic load F'3 under the gate			
F'3 = 0.5 x F3	F3 (kg) F'3 (kg)	98000 49000	35200 17600
Weight W' real weight of the gate	W' (kg)	19345	7603
Maximum braking force			
B = W' + F'1 + F'2 - F'3 - F'w - F's	В (Т)	68	26

OPENING

СРР

ESTIMATION OF THE GATE ENGINE POWER ATLANTIC SIDE : TRIPLE LIFT (W=55m) 3 X 2 WATER SAVING BASINS TAKING INTO ACCOUNT MAXIMUM STATIC HEADS

	LOCK	WSB
	CULVERT GATE	CONDUIT GATE
Maximum effort (T)	139	121
Oil pressure (bar)	200	200
Stroke (m)	6,00	5,00
Opening time (min)	2,00	2,00
Cylinder section (m²)	0,070	0,060
Cylinder oil volume (m ³)	0,418	0,302
Oil flow (m³/min)	0,209	0,151
mechanical efficiency	0,9	0,9
POWER (KW)	77	56

Calculus of the forces on the gate

	Gate width (m) length of horizontal seal (m) Gate heigth (m) length of vertical seal (m) width of seal (cm)	4,5 4,9 6 6,3 3	4 4,4 5 5,3 3
Sealing friction forces Fs Fs = f x 1,5 x p x A	f (friction coefficient) p (hydraulic pressure on the gate) (bar) A (Area of sealing contact) (m²) Fs (kg)	0,15 3,7 0,525 4394	0,15 3,9 0,45 3992
Wheel friction Fw Fw = Q x (fd x d + fr) / D (six wheels have been foreseen)	Q (max load on the gate) (kg) fd (friction coeff of the wheel bushings) fr (friction coeff of wheels rolling on slot rails) d (diameter of wheel shaft) (cm) D (wheel diameter) (cm) Fw (kg)	1148364 0,12 0,2 20 80 37322	919508 0,12 0,2 20 80 29884
Hydraulic load F1 on the top seal of the gate F1 = p x I x Is	p (hydraulic pressure on the gate) (bar) I (width of the seal) (m) Is (length of the seal) (m) F1 (kg)	3,7 0,08 4,9 14582	3,9 0,08 4,4 13879,36
Hydraulic load F2 on the top of the gate F2 = p x gt x ls	p (hydraulic pressure on the gate) (bar) gt (gate thickness) (m) ls (length of the seal) (m) F2 (kg)	3,7 1 4,9 182280	3,9 1 4,4 173492
Hydraulic load F3 under the gate F3 = F2 x dlc	F2 (kg) dlc (dynamic load coefficient) F3 (kg)	182280 0,8 145824	173492 0,8 138793,6
Weight W (under water) W = rw x 6.85/7.85 x 1.05	rw (real weight) (kg) W (weight under water) (kg)	25550 23410	19863 18199
Maximum opening load F = Fs + Fw + F1 + F2 - F3 + W	F (T)	116	101
Sealing friction forces F's F's = 0.1 x p x A	p (hydraulic pressure on the gate) (bar) A (Area of sealing contact) (m²) Fs (kg)	3,7 0,525 1953	3,9 0,45 1774
Wheel friction F'w F'w = Q x (f'd x d + fr) / D	Q (max load on the gate) (kg) fd (friction coeff of the wheel bushings) fr (friction coeff of wheels rolling on slot rails) d (diameter of wheel shaft) (cm) D (wheel diameter) (cm) F'w (kg)	1148364 0,08 0,1 20 80 24403	919507,6 0,08 0,1 20 80 19540
Hydraulic load F'1 on the top seal of the gate F'1 = 0.5 x F1	F1 (kg) F'1 (kg)	14582 7291	13879,36 6939,68
Hydraulic load F'2 on the top of the gate F'2 = 0.9 x F2	F2 (kg) F'2 (kg)	182280 164052	173492 156142,8
Hydraulic load F'3 under the gate F'3 = 0.5 x F3	F3 (kg) F'3 (kg)	145824 72912	138793,6 69396,8
Weight W' real weight of the gate	W' (kg)	25550	19863
Maximum braking force B = W' + F'1 + F'2 - F'3 - F'w - F's	В (Т)	98	92

OPENING

CPP Consorcio Post-Panamax

0

Alternative Conceptual Design of Pacific and Atlantic Post-Panamax Locks – 3x2 WSB – Contract SAA-150551

ATLANTIC LOCKS 3x2 wsb

Task A4m-3x2- QUANTITIES AND COST ESTIMATION Rev B

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	i
The second second			

1	QUANTITIES AND COST ESTIMATION	1-1
1.1	PREAMBLE	1-1
1.2	QUANTITIES	1-2
1.2.1 1.2.2 1.2.3 1.2.4	GENERAL LOCK WALLS & ENTRANCE WALLS LOCK OPERATING GATES. ELECTROMECHANICAL EQUIPMENT	1-2 1-2 1-5 1-6
1.3	COST ESTIMATES	1-7
1.3.1 1.3.2 1.3.3 1.3.4	INTRODUCTION COST ESTIMATE FOR CIVIL WORKS COST ESTIMATE OF THE ELECTROMECHANICAL EQUIPMENT COST ESTIMATE FOR LOCK GATES	1-7 1-7 1-10 1-13
1.4	TOTAL PROJECT COST	1-15

Appendix A - Quantities

Appendix B - Cost Estimates

Alternative Conceptual Dasign of Pacific and Atlantic Post-Panamix Locks – 3x2 WSB – Contract SAA-150551

REW SXC 8X30J OTTHAJTA ORAMITES TOO OFA CELTITIANO COST ESTIMATIO Neft

TECHNUM

Quantities and Cost Estimation

1.1 PREAMBLE

The harmonized Triple Lift Lock configuration for the new Post Panamax Locks at the Atlantic side of the Panama Canal is a huge construction project, probably one of the largest that are going to be built during the forthcoming decades.

A total construction cost for the **Pacific** Locks has already been quantified:

- for the Triple Lift Lock Configuration and presented by CPP in November 2002 in the Final Report 3 Steps Lock System Task 4 Chapter R4-M Cost Estimation.
- for the Single Lift Lock Configuration and presented by CPP in March 2003 in the Final Report -Single Lift Lock System - Task 4 Chapter R4-M Cost Estimation.
- for the Double Lift Lock Configuration and presented by CPP in May 2003 in the Final Report -Double Lift Lock System - Task 4 Chapter R4-M Cost Estimation.
- For the actualized Triple Lift Lock Configuration and presented by CPP in April 2005 in the Final Report Pacific Locks Actualization Task 4 Chapter P4m Quantities and Cost estimation.

A total construction cost for the harmonized Triple Lift Lock configuration with 3x3 WSB at the Atlantic side has also been quantified. It is presented by CPP in May 2005 in the Final report – Atlantic Locks Harmonization – Task 4 Chapter A4m Quantities and Cost estimation.

The present Report contains quantities and cost estimates of the Civil Works and Electromechanical Equipment required to build the Post Panamax Atlantic Locks of the Panama Canal in its harmonized Triple Lift configuration with 3x2 WSB.

The costs of the present project have been based on the same aggregated unit price list prepared and justified in the above first mentioned Report (3 Steps Lock System - Task 4 Chapter R4-M Cost Estimation). However it has to be mentioned that generally the steel prices have been increasing strongly since early 2004. For reasons of comparison between original and harmonization the prices have not yet been modified, which means that the new total cost is slightly underestimated.

CPP

CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-2	2
	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB		

The present Report consolidates individual reports prepared by the different CPP teams, each in accordance with their particular field of know-how. It groups the information provided in three Chapters: Quantities, Cost Estimates, and Total Project Cost. In addition, the Report includes two Appendices that contain detailed information on quantities of construction item (Appendix A) and project cost estimates (Appendix B).

1.2 QUANTITIES

1.2.1 GENERAL

According to the different tasks that have been undertaken during the harmonization study, it was possible to identify all new design criteria, , and determine the most suitable Lock siting and layout. Subsequently, the concept studies of the numerous elements of the new Locks were actualized, as there are:

- Lock walls;
- Filling and Emptying System, including Water Saving Basins;
- Lock Operating Gates;
- Culvert and Conduit Valves;
- Electromechanical Devices;

For each of these elements, studies and analysis results have been included in the preceding chapters of this final report. They have been sufficiently worked out by means of proper modern engineering design tools, shown on drawings with all required dimensions on a conceptual level of design, in order to allow calculating the quantities of materials involved. The Terms of Reference require an accuracy of 25% for the cost estimation; therefore it is necessary that the quantities are determined at a higher level of precision, which is most certainly being obtained.

All Quantities are summarized in a series of Tables presented in the Appendix A of the present report.

1.2.2 LOCK WALLS & ENTRANCE WALLS

Lock walls and entrance walls are gravity type retaining walls, which have to be constructed in an open excavation. Due to the enormous dimensions, especially in depth, they require very large excavations, mainly in Gatun rock.

A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-3

In the Task 3 Report of the Triple Lift Configuration (Pacific side), dealing with the excavation volumes for the new canal by-pass, an estimation of \$607,000,000 USD (based on unit prices communicated by ACP as to year 2000) has been put forward as a construction cost for the excavation of the new by-pass including the Locks excavations. Although the new alignment (Pacific and Atlantic side) needs considerable less excavation volumes, it is clear that excavation costs will be a very important factor in determining the total construction cost.

The excavation and backfill volumes have been determined using the digital map "*Curvas nivel*", the plan view D4-A-403 and the lock Profile Drawings D4-B-401 and 402. Generation of cross sections was done with the AutoCAD 2005 Autodesk Land Desktop software tool, which also calculates the volumes of excavation and backfill. *Excavation and backfill volumes are calculated in cubic meters* [m³].

As far as the entrance walls are concerned, the excavation include the entrance channel up to the outer corner of the east wall; from that point on the excavation for the west wall is restricted to the minimum profile required for the construction of the single wall, and does not include the volume of the canal situated in between the entrance wall and the eastern canal embankment, these volumes have to be considered in the total excavation required for the by-pass canal.

An attempt was also made to determine the type of excavation volumes [rock and common (overburden) excavation]. Common excavation refers to boulders of less than 1 m³ or to material that can be excavated using a maximum of three passes of a ripper. These assumptions have been based on the available information, which is in our opinion not sufficient to determine the quantities of the different materials with sufficient accuracy. However, the total calculated excavation volume is to be considered as a reliable estimation.

Nevertheless, it was noticed during the analysis of the geo-technical longitudinal profiles that the top levels of the overburden do not correspond with the data from the topographic survey "*Curvas nivel*". It is recommended that these profiles be modified as soon as possible, for instance, as a subject during further design.

As a subject during further design we also advise the execution of a bathymetric survey of the flooded areas located under the future WSB. This survey is important for the exact calculation of the backfill quantities. At the stage of conceptual design the water depth of these areas had to be estimated.

The following assumptions were made for quantity estimates:

Percentages of Gatun rock and overburden in different types of excavation:

Gatun rock	70 %
Overburden	30 %

During excavation, and afterwards during construction of the Lock and entrance walls, the excavated area will have to be dewatered to allow concrete works. As the Lock site is enclosed in a nearly impervious rock formation, the contractor will probably only have to inject some cracks to prevent too much water infiltration. However, care has to be exercised, especially with the many faults which were identified and

CPP

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-4

which could be important in the hydrological context. This problem might need further investigation; however, provision has been made by including lump sums to cover foundation treatment, such as grouting and drainage.

The construction of the walls and also the lock heads are to be considered as rather ordinary concrete works, although the applied volumes are rather gigantic and require concrete batching plants with a very high capacity.

In order to determine the concrete volumes with sufficient accuracy, it was necessary to make drawings for each lock partition, i.e. the 4 Lock heads, the Lock walls and the Entrance walls.

Reference is made to drawings D4-B-401 to 406 (lock walls), D4-B-207 to 219 (lock heads) and D4-I-201 (entrance walls).

These drawings contain the design details of the following:

- Lockwall Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill).
- Entrance:
 - Walls in rock- Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill)
 - Steel piles in muck Single option (steel piles filled with sand and concrete)

It is to be noted that contrary to the formerly studied Triple Lift Configuration, here, in this instance, only the best construction option which has been proved to be the most economical one in the corresponding former Cost Estimations, is designed and evaluated for each structure.

The concrete structures are of reinforced concrete, which requires a large amount of steel reinforcement.

The quantities (tons) of steel reinforcement have been determined as a fixed weight per m³ of concrete, based on the engineer's judgment and experience with similar constructions (Lock walls at Berendrecht which are also of reinforced concrete, quay walls). *Steel reinforcement is measured in tons [tons]*.

The following assumptions were made for quantity estimates:

 Quantity of reinforcement steel in reinforced concrete (RC) used for estimating purposes in the Post Panamax Pacific Locks Project: 75 kg/m³, according to the structure

according to the structure type, its role, and, of course, as required by the design

The longitudinal culverts at both sides of the Locks are integrated in the Lock walls and Lock heads; as such they do not appear separately in the quantity list.

The Lock walls and Lock heads, as well as the entrance walls are exposed to temperature variations, curing and shrinkage, and therefore they have to be subdivided in independent parts (segments). In this conceptual design the segments are 30 m in length, with some exceptions, for example, in the transition

000	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
СРР	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-5

between Lock walls and Lock heads. Each joint between the wall segments is made water and soil tight by means of a rubber joint, which is anchored in the concrete at both sides. *Rubber joints are measured in meters [m]*.

At the corner edge of the top of the Lock walls, a steel corner protection profile is provided to protect the concrete against damage from the towing cables. *The protective steel profile is measured in meters [m]*.

After construction the walls that require backfill, as shown on the drawings, are filled at the rear with crushed stone that can be recovered from the rock excavations, but the rock has to be crushed properly in a dedicated installation to obtain an acceptable size, suitable for backfilling and compaction in order to avoid settlements afterwards. *Backfilling in crushed stone is measured in cubic meters* [m³].

Roller compacted concrete (RCC) (*expressed in* $[m^3]$) is placed to protect the bottom of the Lock Chambers founded in Gatun rock formation and also at the culvert and conduit outlets to prevent erosion and weakening of the fractured rock bottom due to currents and exposure (see drawing D4-B-401 to 405). Holes in the RCC are foreseen to make the layer permeable to prevent uplift pressures caused by the lockages. A gravel layer $[m^3]$ is spread beneath the RCC layer and covered by a geotextile $[m^2]$.

The sills and the vertical bearings in the Lock heads that make the sealing surface of the gate are constructed with hard rock-like basalt, granite or prefabricated hard concrete blocks. They have to be anchored in the concrete by means of steel anchors. *The blocks are measured in* $[m^3]$.

The gates move with the carriage wagons over rails anchored in the bottom floor of the Lock heads and the sidewall recesses of the recess chamber. Other rails are fixed on the recess walls to guide the gate when moving. *The rails are measured in meter* [m].

Drawing D4-A-403 shows a general plan view of the Locks. It has been used to indicate a number of accessories, such as bollards, fenders, light poles, cable-ducts equipped with steel cover (not indicated), etc... Such items are always expressed in pieces [pcs].

The result of quantity estimates for different items is given in the Appendix A.

1.2.3 LOCK OPERATING GATES.

The rolling gate type has been selected for use in the recent triple lift configuration. The layout of the rolling gate is shown on drawings D4-D 200 to 205. Report A4d on Lock gate design gives unit weight of Lock gates for the different sizes according to the Lock head position.

The unit weight allows determining the total weight of each gate, and an additional weight has to be taken into account for wheelbarrow wagons and steel auxiliaries. *The steel weight of the total gate structure is expressed in [tons]*.

000	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	1 (
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-6

The sealing of the gate against the basalt or granite blocks is obtained with exotic wooden (azobé) beams that are fixed by bolting to the Lock gate. These wooden beams are expressed in $[m^3]$.

In order to use the Lock gate chambers as a place to maintain the gates, a slot bulkhead is required. The *bulkhead is a steel construction, expressed in tons [tons]*.

1.2.4 ELECTROMECHANICAL EQUIPMENT

Quantities of mechanical equipment, expressed in tons, were based on the experience of the Consultants in large hydropower projects, using graphs and charts relating the weight of equipment with the size and the pressures handled by the proposed equipment. Electrical and power equipment quantities have been based on the conceptual design projects and on the experience provided by the existing Panama Canal Locks.

The games mover with the duringe wayons driver rails anothered in the borhour flore of the flock heads and he substaint recesses of the means chantler. Out er muss are fixed on the increase while to guide the game substance. The tasks are meanwork in mean fluct.

Denvine DeA 403 sixtys a general plan view of firs I ocks. It has been used by redicing a number of accessives, such as policids, fender, light poles, eable-durts equipped with shell of vertical indiceed); then, black down are charge expressed in precess (reg).

is insuff of quantity estimates for delivery incide is griven in the Appendix .

12.3 LOOK OF ENTING GATES,

Ho rolling guo type has been wheeled for use inclue count apple life configuration. **He layed of the rolling gue is** shown on drawings D'telt 201 to 203: Report A46 on Lock gub delign gives and weight of Lock gates for the dra different vises according to the Lock band coshoo.

The units weight allow the testiming the anti-weight of such gate, and the additional weight has to be fillen a into account for wheeling now in your and shell similaries. The search of the and gate arrithme in appreciated in panel.

1.3 COST ESTIMATES

1.3.1 INTRODUCTION

Reference is made to Configuration 1 (Pacific side) -"**3 Lift Lock System**"- Report R4-M. For this Configuration, the cost estimation for the Civil Works was based on the **aggregation method** in which a cost database is created by analyzing the price/costs of similar work (type/volumes) obtained from international past and present market prices, and adjusting them to obtain current prices. These prices, called aggregate prices, include direct and indirect construction costs. The aggregate prices as of the Year 2002 thus obtained are then applied to the Post Panamax Locks Project to establish its cost. This aggregation method is normally applied by the firms constituting the Consortium, and is of common use in Europe to estimate the cost of projects at a conceptual design stage and even in more detailed study stages. As already explained in the fifth paragraph of the Preamble to the present Report, the same unit prices from the Table 2.1 Aggregate Unit Price of the above mentioned Triple Lift Lock System-Report R4-M, have been used to establish costs for the harmonized Triple Lift Lock system. Once again the attention is drawn to the fact that the increased steel prices since early 2004 have not yet been taken into account.

1.3.2 COST ESTIMATE FOR CIVIL WORKS

As explained in Paragraph 1.2, the present report presents for each structure of the harmonized Triple Lift Configuration with 3x2 WSB only a single construction option that has been proved to be the most economical one in the former cost estimates. These are the following:

- Lockwall Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill).
- Entrance:
 - Walls in rock- Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill)
 - Steel piles in muck Single Option (steel piles filled with sand and concrete)

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-8

The Water Savings Basins layout presents as well one single scheme with two adjacent basins for each chamber. The first basin is the one with the highest bottom level and closest to the Eastern Lockwall.

As it has been shown in the former Triple Lift Configuration Cost Estimation Report R4 M, the Aggregated Unit Prices are related to the global quantities involved in the Project for the main items. This relation between prices and volumes has been represented by trend graphs presented in the Appendices B of the former cost estimate reports. Considering that it has been proved in the Single Lift Configuration Cost Estimation Report that the differences in quantities between different lock configurations are not significant enough to justify a revision of the formerly selected unit prices and observing that the quantities for the harmonized Triple Lift Configuration with 3x2 WSB are again in the same order of magnitude, it can be finally concluded that, the same series of selected prices remain also valid for calculating the cost of the harmonized Triple Lift Lock Configuration with 3x2 WSB.

The following Table 2.1 presents the complete list of Aggregate Unit Prices used to estimate the cost of the Project.

Table 2.1 Conceptual Design Post-Panamax Lock Structure Harmonization Atlantic 3x2 WSB Aggregate Unit Price

Item	Description	Unit	Selected Unit Price USD 2002
an and	the Intercased steel processing since any 2004 have	act the	
1	Excavations		
1,1	Overburden	m ³	3,50
1,2	Atlantic muck	m ³	0,00
1,3	Gatun rock	m ³	4,75
2	Fill		
2,1	Backfill	m ³	3,00
2,2	Gravel layer	m ³	6,00
2,3	Bank protection WSB1	m²	13,00
2,4	Overhaul for spoil (10 km)	m³km	0,30
3	Concrete	2101 003	
3,1	RC	m ³	120,00
3.2	RCC	m ³	28,00
3.3	Lean Concrete	m²	9,00
3.4	Pavement	m²	24,00
3,5	Concrete layer chamber bottom	m ³	90,00
4	Reinforcement	Single	
4,1	Steel reinforcement	tons	875,00
5	Other	N-18200	
5.1	Steel corner protection	m	73,00

ECHNUM

PP	A4m 15	3x2-RevB Al 5/07/2005 A4m-3x	ternative Atlantic Loc 2-Quantities and Cost	ks 3x2 WSB Estimation 1-
	5,2	Rubber joint	l m l	71.00
	5,3	Geotextile	m²	1.80
	5,4	Liner HDPE (WSB)	m²	13.31
	5,5	Underlaying protective geotextile (WSB)	m²	1.88
	5,6	Geotextile for drainage (WSB)	m²	4.71
	5,7	Rails	m	280.00
	5,8	Wooden vertical guidances	m	400.00
	5,9	Steel for support rail and frames	ton	2,400.00
	5,10	Vertical element for seals east/recesses	m ³	3.050.00
	5,11	Vertical element for seals west	m ³	2.700.00
	5,12	Horizontal elements for seals lock chaml	ber m ³	2.700,00
	5,13	Elements for placement habitat	m ³	275,00
	5,14	Horizontal elements for seals gate reces	ses m ³	1.520.00
	5,15	Technical building	m²	300
		ab gout highly been availed at	NUMBER OF STR. 74	Setto Service 44
	6	Accessories		
	6,1	Bollards 1500kN	pcs	4.900,00
	6,2	Wheel fenders	pcs	540.000
	6,3	Roller fenders	pcs	540.000
	6,4	Fenders Atlantic side	pcs	50.000
	6,5	Fenders Gatun Lake side	pcs	40.000
	6,6	Ladders	m	100,00
	6,7	Mooring bits	pcs	950,00
	7	Steel piles		
	7,1	Procurement of steel piles	tons	1 200 00
	7,2	Driving of steel piles	pcs	7,500,00
	7,3	Sandfill steel pile	m ³	25.00
	7,4	Concrete fill steel pile	m ³	120,00
	7,5	Steel reinforcement BE500	tons	875.00

Cost Estimates of Civil Works are summarized in the following Table. Detailed information is presented in Appendix B.

C

Tractebel Development Engineering

Costs of the Civil Works Summary

Item	Description	Selected Cost
	2000.1911011	USD - 2002
1	Lock only	304.362.970
2	Water Savings Basins only	114.646.080
3	Lock and WSB`s	419.009.050

COYNEET BELLIER

TECHNUM

1.3.3 COST ESTIMATE OF THE ELECTROMECHANICAL EQUIPMENT

1.3.3.1 CULVERT AND CONDUIT VALVES

A4m-3x2-RevB

15/07/2005

Estimated Weights of the Culvert and WSB Valves and Bulkheads

The following Table (Ref. Report A4e- $3x^2$) is the base for estimating the price of the valves and bulkheads. The price for welded construction is usually estimated by multiplying a weight by a kg price. That kg price has been estimated at 5 USD/kg, all-inclusive.

Rei and	Number	Unit weight (tons)	Total weight (tons)
Culvert valves	16	25.5	408
Culvert bulkheads	8	22.5	180
Culvert valves slots	16	37	592
Culvert bulkhead slots	32	27.1	867
WSB valves	24	20.9	502
WSB bulkheads	6	17.9	107
WSB valves slots	24	41.6	998
WSB bulkhead slots	48	27.6	1325
TOTAL			4980 tons

The total price for the 52 fixed-wheel valves and related bulkheads and slots is estimated to:

4980000 x 5 =

USD 24.90 Million

That price is including transport, erection and commissioning. It does not include either the operating machinery (cylinders, oil hydraulic unit, etc) and the maintenance cranes or the control boards.

\$5/kg is a usual price "all included" considered for similar valves of welded construction in the hydro field. Welded construction kg price ex-works is considered to be normally in a range of \$3 to \$3.5. Transportation and erection are estimated to vary between 30 and 40%. The top of the range has been preferred for the valves due to some machining and stainless material (wheels, sealing systems).

CPP

Valve operating machinery and local control boards:

The valve operating machinery price has been based on a preliminary budget price given by an important supplier (Bosch Rexroth) for 52 hydraulic cylinders all identical with oil sumps and control boards. A rough comparison was also made with the cost of the refurbishment of hydraulic cylinders for 40 pairs of miter gates at the Panama Canal (for 80 hydraulic cylinders).

Maintenance tools, cranes and railways:

This price is including 2 maintenance gantry cranes of 70ton capacity, span about 7m, 720m of rails and maintenance tooling as handling beam to lower and remove valves and bulkhead from the slots. Weight of cranes has been estimated to 2 x 40 tons, price: $2 \times 320,000 = \$640,000$ (kg price: \$8) - Rails: 1,000m x 100kg/m x \$3/m = \$300,000 – Maintenance tools: \$60,000.

Rolling gate operating machinery:

Is composed of:

	16 main AC motors with variable sp	eed (according to a		
	preliminary budget price of a manufa	acturer): $16 \ge 67,000 =$	\$ 1.1 Million	
•	8 primary gear boxes:	8 x 200, 000 =	\$ 1.6 Million	
	16 secondary gear boxes:	$16 \ge 300,000 =$	\$ 4.8 Million	
	The prices of gear boxes have been	based on hydro gear boxes	s prices (kg price between \$1	5

and \$25 according to the size)
balance of equipment (auxiliary AC motors, cable drums, pulleys, cables, bearings,..):
\$.2.50 Million

1.3.3.2 OPERATING MACHINERY: CONTROL SYSTEM

Estimated budget price:

The budget price is based on the description given in the report A4f-j-3x2. It is including the control equipment, installation, cabling and commissioning.

CPU 1 to 20 (Pan	board, Rack 19", I/O,)	2,100,000
Main Control roo	m	350,000
Backup control R	oom	50,000
CCTV		300,000
Total		\$2,800,000

Tractebel Development Engineering

USD 10.40 Million

USD 1.00 Million

USD 10.0 Million

USD 2.80 Million

A4m-3x2-RevB 15/07/2005

CPP

Prices have been based on unit prices of a similar control system.

1.3.3.3 LIGHTING

Estimated price for 50 high masts, 360 floodlights of 1000W, lock chamber and rolling gates lighting and galleries lighting:

USD 2.00 Million

1.3.3.4 ELECTRICAL AND POWER REQUIREMENTS

A4m-3x2-RevB

15/07/2005

Estimated budget price: Detailed as follow:

USD 13.15 Million

		Alternative 4	Alternative 5
1	High Voltage		De haran
11	Cables	940,000	1,646,400
1.2	HV Switchgear	1,670,000	1,995,000
2	Transformers	342,000	342,000
3	Emergency power supply	det a selt en antite	ende 202 ben
(MIL)	Diesel set 1200 kVA + transformers +	585,000	585,000
4	Low Voltage		
4.1	Low Voltage switchboard	1,380,000	1,380,000
4.2	Low Voltage Cables	1,280,000	1,280,000
4.3	Low Voltage equipment	297,000	297,000
5	Cable Trays and Supports	1,177,000	1,177,000
6	Miscellaneous	930,000	930,000
000	Total	9,201,000	10,232,000
000.1	Including transportation and erection	USD 11.75 Million	USD 13.15 Million

Note: No provision has been made either for the operating structures (overhead crane of the maintenance building or for HVAC necessary for control room and HV technical rooms).

TECHNUM

CPP	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB		
	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-13	19

Alternative 5, which offers more security, has been selected (see Report Task 4-A4f-j-3x2, *Electrical Power and Power Requirement*). Therefore, the corresponding prices of Alternative 5 have been used in the present Cost Estimation.

1.3.4 COST ESTIMATE FOR LOCK GATES

1.3.4.1 Price - Berendrecht lock gates

The cost of the Berendrecht Lock gates including equipment:

- 0 General working costs 363,000 USD
- 1 Detailed calculation and construction 310,000 USD drawings
- 2 Metal construction + equipment

	Lock gates (4) Lower support wagon (4 + 1) Upper support wagon (4) Maintenance support wagons (24) Bulkhead	19,288,000 USD 177,000 USD 544,000 USD 186,000 USD 575,000 USD
3	Mechanical parts	958,000 USD
1	Positioning and testing	455,000 USD
5	Temporary storage and additional works	198,000 USD
	Total	23 054 000 LISD

These costs were accurate in 1983.

The costs include the 4 gates, 5 lower support wagons (1 spare one), 4 upper support wagons, 4 maintenance support wagons (2 gates can be maintained simultaneously) and 1 bulkhead.

When we divide this total sum by the total weight of the 4 gates + equipment:

23,054,000 USD / 6,800,000 kg = 3.390 USD/kg

CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-14	
	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB		

Knowing that this price was made in 1983, it has to be multiplied with a factor to take into account the price evolution:

3.390 USD/kg x 1.75 = 5.933 USD/kg

We add to this price the transport of the gates from the workshop to the site:

5.933 USD/kg + 0.24 USD/kg = 6.173 USD/kg

We extrapolated this for the complete harmonized Triple-lift situation with 3x2 WSB:

3100 t (2 x gate 1) + 10400 t (4 x gate 2/3) + 5000 t (2 x gate 4) + 1774 t (equipment) = 20274 tons

6.173 USD/kg x 20,274,000 kg = **125,151,402 USD**

1.3.4.2 Fendering

We have foreseen 4 sets of wheel fenders (1 set = 5 wheels), one on each side of the harmonized Triple lift configuration with 3x2 WSB.

Based on recent information the cost of one wheel with casing is 90,000 USD (2002).

The cost of four sets of fenders + positioning on site:

 $(20 \times 90,000 \text{ USD}) \times 1.2 = 2,160,000 \text{ USD}$

This is much cheaper (factor 2) than an extrapolation of the costs of the fendering of the Berendrecht Lock. Based on the evolution during the last years, these materials are less expensive.

Based on recent information the cost of one tidal fender is 50.000 USD (including positioning on site).

he costs include the 4 gates, 5 lower support vegenant i spice data). A group support vegen nationaless support respons (2 gates can be realisabled arouttan construction buildings).

disea we divide the few sum in the best weight of the 4 causes cauting or

240.201 0v0.1 = 1.1 000.002.04 0.201 000 1-2

ECHNU

Tractebel Development Engineering

1.4 TOTAL PROJECT COST

The Total Project Cost is detailed in the following four Tables:

- Table 3.1 contains the Total Lock Cost.
- Table 3.2 contains the Total Water Saving Basins cost.
- Table 3.3 contains a summary (rounded numbers) of the Total Project Cost.

The total costs of the Civil Works and of the Electromechanical Equipment have been incremented by lump sum percentages corresponding to items not quantified in terms of volume of work but, nevertheless, required for the completion of the project. These items are the following:

Detailed Studies and Supervision

This item includes all the engineering service to be performed after awarding the Civil Work construction contract(s), the detailed execution studies (shop drawings) and the cost of complete works supervision. Excluded from this item are the basic design, final design, preparation of Tender documents, hydraulic model studies, and the geological and geotechnical investigations (except those related directly to the construction).

Based on the FIDIC recommendations, the estimated percentage covering the above Item 1 comes to 7%. This value is applicable to both the Civil Works and the Electromechanical total costs.

Instrumentation

This Item covers purchase, installation and activation of all permanent instruments dedicated to record the physical behavior of the Civil structures. It covers as well the monitoring and reporting during the construction period. It is estimated that 2% of the total cost of the Civil Works is sufficient to cover this Item 2.

Grouting and Consolidation

It is very unlikely that a project of the size of the Post Panamax Lock will not require grouting, drainage and consolidation of the foundation. At the present stage, the geological and geotechnical local characteristics of the Locks foundation are not known in detail but it is likely that some zones might require special foundation treatment, such as impermeabilization grouting, drainage or consolidation grouting. The Item 3 grouting and consolidation aims to cover the costs related to these works. It is estimated that 3% applicable to the total Civil Works cost is sufficient provision to cover this item.

Contingencies

This item covers all the works, services and equipment that cannot be precisely identified and quantified at the present stage of the studies. It is commonly accepted that these contingencies amount to from 15 to

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-16

20 percent of the total cost of the Civil Works at a conceptual design stage. Considering that the Civil Works have been defined for the Atlantic Post Panamax Lock Project (3x2 WSB) with quite a high level of precision for a conceptual study stage, the CPP estimate that a contingencies Item amounting to 15% of the total civil works cost is a sufficient provision.

Of course, with the increasing information gained regarding the geological and geotechnical features of the foundation, and with the increased level of detail achieved in the design of the Civil Work, the amount of this contingencies provision will progressively decrease.

Regarding the contingencies for Electromechanical Equipment, it is again commonly accepted that these works are generally quantified with a quite good level of precision, mainly because the geological and geotechnical uncertainties do not affect the cost estimates. At a Conceptual Design stage, a provision of 10% of the total cost of Electromechanical Equipment is considered perfectly adequate to cover the contingencies.

Administrative Costs

This Item includes all the management, communications and various other expenses incurred by the Owner to control the execution of the project. It does *not* include the financial costs. The Administrative Costs are estimated at 2% of the total cost of Civil Works and Electromechanical Equipment.

his Ram envers painhase, installation and activation of all permanent imaganicate structure of densed the hysical behavior of the Civil standares. It covers as well the modifering and hooring the outputching period. It is estimated that Theore the tetat cost of the Cevil World's is pufficient to cover the bar 2.

Croating and Considering

It revery paired y that is project of the area or the iffest function, backwall and require grouping, draining and consolidation of the functioner. At the prosect stage, the geologicid and geotechnical local characterintics of the function parameter and anoth in-detail but it is likely that some active range. The term 3 buildation treasaction which as imperindentification graving, do intege or detaol(detion) prosting. The term 3 gravitation and depolicient of the tower are constrained to the reservoirs which is a policy gravitation to be active and the cover are constrained to these works, it is exclusive that 1% appliers bits to the term Charl Works cover is sufficient provider to cover the cover the theory.

erlangenilug) . •

This near covers all the writter, see was and appropriate that cannot be provident interfaced and quarking the of the product state of the stabilities () is commutity seconds) that these commissionality animate in front (1

A4m-3x2-RevB 15/07/2005

Table 3.1 Conceptual Design Post-Panamax Lock Structure Harmonization Atlantic 3x2 WSB TOTAL LOCK COST

			Total
Item	Description	%	USD - 2002
	LOCK		
1	Civil Works		392.628.232
1,1 1,2 1,3 1,4 1,5 1,6	Civil works Detailed studies and supervision Instrumentation Grouting and consolidation Contingencies Administrative costs	7% 2% 3% 15% 2%	304.362.970 21.305.408 6.087.259 9.130.889 45.654.446 6.087.259
2	Electromechanical equipment		207.937.508
2,1 2,2 2,3 2,4	Electromechanical equipment Detailed studies and supervision Contingencies Administrative costs	7% 10% 2%	174.737.402 12.231.618 17.473.740 3.494.748
	TOTAL LOCK COST		600.565.740

TECHNUM

CPP

0

Table 3.2 Conceptual Design Post-Panamax Lock Structure Harmonization Atlantic 3x2 WSB TOTAL WSB COST

Itom	Description %		Total USD - 2002	
item	Description	70		
	WSB			
1	Civil Works		147.893.443	
1.1	Civil works		114.646.080	
1.2	Detailed studies and supervision	7%	8.025.226	
1.3	Instrumentation	2%	2.292.922	
1.4	Grouting and consolidation	3%	3.439.382	
1.5	Contingencies	15%	17.196.912	
1,6	Administrative costs	2%	2.292.922	
2	Electromechanical equipment		17.446.590	
2.1	Electromechanical equipment		14.661.000	
2.2	Detailed studies and supervision	7%	1.026.270	
2.3	Contingencies	10%	1.466.100	
2,4	Administrative costs	2%	293.220	
	TOTAL WSB COST		165.340.033	

TECHNUM

Tractebel Development Engineering

Table 3.3Conceptual DesignPost-Panamax Lock StructureHarmonization Atlantic 3x2 WSB

Summary of the Total Project Cost

			Total
Item	Description	%	USD - 2002
	Total project cost without WSB		601.000.000
	Total project cost with WSB		766.000.000
		and the second	

0

CPP

Table A.1 **Conceptual Design** Post-Panamax Lock Structure Atlantic 3x2 wsb **CIVIL WORKS Quantities Summary** Lock without WSB

Item	Description	Unit	Quantity
1	Excavation		5.576.977
1,1	Overburden	m ³	1.673.093
1,2	Gatun rock	m ³	3.903.884
2	Fill		
2,1	Backfill	m ³	2.218.532
2,2	Gravel layer	m ³	28.323
2,3	Bank protection	m²	0
2,4	Overhaul for spoil (10 km)	m³km	22.405.027
3	Concrete		
3,1	RC	m ³	1.282.414
3,2	RCC	m ³	96.851
3,3	Lean Concrete	m²	116.069
3,4	Pavement	m²	133.358
4	Reinforcement		
4,1	Steel reinforcement	tons	96.181
5	Other		안 같 문 집
5,1	Steel corner protection	m	4.693
5,2	Rubber joint	m	7.121
5,3	Geotextile	m²	62.577
5,4	Liner HDPE	m²	3.000
5,5	Underlaying protective geotextile	m²	3.000
5,6	Geotextile for drainage	m²	0
5,7	Rails	m	4.848
5,8	Wooden vertical guidances	m	675
5,9	Steel for support rail and frames	ton	1.228
5,10	Vertical element for seals east/recesses	m ³	663
5,11	Vertical element for seals west	m ³	843
5,12	Horizontal elements for seals lock chamber	m ³	896
5,13	Elements for placement habitat	m ³	932
5,14	Horizontal elements for seals gate recesses	m ³	152
5,15	Technical building	m²	4.741

Table A.1 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb CIVIL WORKS Quantities Summary Lock without WSB

Item	Description	Unit	Quantity
6	Accessories		(Exects attom
6,1	Bollards 1500kN	pcs	122
6,2	Wheel fenders	pcs	4
6,3	Roller fenders	pcs	4
6,4	Fenders Atlantic side	pcs	16
6,5	Ladders	m	122
6,6	Mooring bits	pcs	244
7	Steel piles	spirit	
7,1	Procurement of steel piles	tons	879
7,2	Driving of steel piles	pcs	10
7,3	Sandfill steel pile	m ³	856
7,4	Concrete fill steel pile	m ³	554
7,5	Steel reinforcement BE500	tons	28
		1	

Consorcio Post Panamax A4-M_3x2_revB_ / Qty Summary

Table A.2 Excavation and Fill Quantities

	contribuid state		Excavation	Backfill
Item	Description	Unit		
1	Lock from edge east wall Gatun side up to edge east wall Atlantic side	m ³	5.424.591	44.633
1,1	Overburden excavation	m ³	1.627.377	
1,2	Gatun Rock excavation	m ³	3.797.214	
2	Extra entrance wall Atlantic	m ³	152.386	5.651
2,1	Overburden excavation	m ³	45.716	
2,2 3	Gatun Rock excavation Backfill for temporary dam	m ³	106.670	
3,1	Atlantic side	m ³	in another	45.000
4	Overhaul for spoil (10 km)	m³km		22.405.027
	Total Volume Excavation / Backfill	m ³	5.576.977	95.284

Consorcio Post Panamax A4-M_3x2_revB_ / Excavation

Table A.3 Entrance Walls

Quantities Summary

			Atlantic Side	Gatun Side
1	Description	Ilmit	Quantity	Quantity
tem	Description	Unit		
	Standard 20 m. sagmant		100 March 100	
1	Standard So III - Segment	m ³	3 622	3 622
2	Steel Painforcement BE500	tons	272	272
2	Backfill Crushed Stope	m ³	9 891	9.891
1	Steel Corner Protection	m	30	30
5	Rubber Joint	m	37	37
6	Lean Concrete	m ²	612	612
0		Constant.	nume Broavente	V IstoT
	Quantities for one 30 m-segment:			
	Number of segments of 30 m	:	9	6
	Corpersegment			
1	Reinforced Concrete	m ³	8.421	7.794
2	Steel Reinforcement BE500	tons	632	585
3	Backfill Crushed Stone	m ³	18.654	18.394
4	Steel Corner Protection	m	77	75
5	Rubber Joint	m	37	37
6	Lean Concrete	m²	1.326	1.291
	Curvesegment			
1	Reinforced Concrete	m ³	9.494	8.434
2	Steel Reinforcement BE500	tons	712	633
3	Backfill Crushed Stone	m ³	15.622	13.550
4	Steel Corner Protection	m	92	84
5	Rubber Joint	m	37	37
6	Lean Concrete	m²	1.451	1.283
	Endsegment			
1	Reinforced Concrete	m ³	1.524	1.992
2	Steel Reinforcement BE500	tons	114	149
3	Backfill Crushed Stone	m ³	4.161	5.440
4	Steel Corner Protection	m	13	17
5	Rubber Joint	m	37	37

A.3 12/07/2005

Table A.3 Entrance Walls

Quantities Summary

6 Lean Concrete	m²	257 337
Steel piles in muck 1 Procurement of steel piles φ 3000 mm - e = 30 mm - L = 40 m	tons	88
2 Driving of steel piles - L = 40 m	pcs	1
3 Sandfill steel pile	m ³	86
4 Concrete fill steel pile	m ³	55
5 Steel reinforcement BE500	tons	3
Quantities for one pile		
Number of piles:		10

Consorcio Post Panamax A4-M_3x2_revB_ / Entrance Walls

0

Table A.3 Entrance Walls

Quantities Summary

				Quanti	ities Summary
				Atlantic Side	Gatun Side
Item	Description		Unit	Quantity	Quantity
	Walls				
1	Reinforced Concrete		m ³	52.037	39.953
2	Steel Reinforcement BE500		tons	3.903	2.996
3	Backfill Crushed Stone	send (divertity)	m ³	127.455	96.729
4	Steel Corner Protection		m	451	356
5	Rubber Joint		m	444	333
6	Lean Concrete		m²	8.543	6.582
8	Pavement		m²	10.119	10.119
	Steel piles in muck				
1	Procurement of steel piles		tons	879	
	∲ 3000 mm - e = 30 mm - L = 40 m				
2	Driving of steel piles - L = 40 m		pcs	10	
3	Sandfill steel pile		m ³	856	
4	Concrete fill steel pile		m ³	554	
5	Steel reinforcement BE500		tons	28	

Tractebel Development TECHNUM Compagnic Nationale du Rhône COVNEET BELLIER

0

0

TASK 4

Table A.4 Lock Walls **Quantities Summary**

		Chamber 1	Chamber 2	Chamber 3
			0	
Item Description	Unit	quantity	Quantity	Quantity
1 Reinforced Concrete	m ³	7.792	7.734	7.698
2 Steel Reinforcement BE500	tons	584	580	577
3 Backfill Crushed Stone	m ³	20.044	19.413	19.040
4 Roller compacted concrete	m ³	1.005	1.005	1.005
5 Gravel Layer	m ³	285	285	285
6 Geotextile	m ²	645	645	645
7 Steel Corner Protection	E	30	30	30
8 Rubber joint	E	68	68	68
9 Lean Concrete	m ²	899	899	899
11 Pavement	m ²	1.391	1.391	1.391
Quantities for one 30 m-segment:		eneto evolo strato strato		
Number of segments of 3	0 m:	22	22	22

Consorcio Post Panamax A4-M_3x2_revB_ / Lock Walls

Table A.5 WSB and Conduits (Civil Works) Side by side conduits disposition

Quantities Summary

			Quantitu
Item	Description	Unit	Quantity
1	Reinforced concrete for valve chambers	m ³	37.886
2	Steel reinforcement BE500	tons	2.841
3	Reinforced concrete for conduits	m ³	37.893
4	Steel reinforcement BE500	tons	2.842
5	Reinforced concrete for intakes WSB	m ³	118.152
6	Steel reinforcement BE500	tons	8.861
7	Roller compacted concrete	m ³	160.470
8	Backfill Crushed Stone over conduits	m ³	560.332
9	Reinforced concrete for walls between WSB	m ³	61.227
10	Steel reinforcement BE500	tons	4.592
11	Liner HDPE (WSB)	m²	170.000
12	Underlaying protective geotextile (WSB)	m²	170.000
13	Geotextile for drainage (WSB)	m²	21.000
14	Bank protection (WSB)	m²	38.000
16	Excavations		3 50
16.1	WSB along Chamber 1	m ³	1.495.356
16.2	WSB along Chamber 2	m ³	1.981.556
16.3	WSB along Chamber 3	m ³	2.143.829
16.4	Extra conduits and valve chambers	m ³	1.170.997
17	Backfill crushed stone along chambers	20	
17,1	WSB along Chamber 1	m ³	94
17.2	WSB along Chamber 2	m ³	0
17.3	WSB along Chamber 3	m ³	0
18	Lean concrete	m²	24.329
19	Overhaul for spoil (10 km)	m ³ km	62.313.120
20	Technical building	m²	4.320
21	Equalisation layer WSB and spillway bottom	m ³	89.000
		120 B	

Table A.5 WSB and Conduits (Civil Works)

		Quanti	ties Summary
Item	Description	Unit	Quantity
1	Reinforced concrete	m ³	255.158
2	Steel reinforcement BE500	tons	19.137
3	Roller compacted concrete	m ³	160.470
4	Backfill Crushed Stone over conduits	m ³	560.332
5	Liner HDPE (WSB)	m²	170.000
6	Underlaying protective geotextile (WSB)	m²	170.000
7	Geotextile for drainage (WSB)	m²	21.000
8	Bank protection (WSB)	m²	38.000
9	Excavations	m ³	6.791.738
10	Backfill Crushed Stone along chambers	m ³	94
11	Lean concrete	m²	24.329
12	Overhaul for spoil (10 km)	m ³ km	62.313.120
13	Technical building	m²	4.320
14	Equalisation layer WSB and spillway bottom	m³	89.000

Consorcio Post Panamax A4-M_3x2_revB_ / WSB and Conduits

Table A.6 Lock Head Gate

Quantities Summary

Item	Description	Unit	Quantity
1	Lock Head Gate 1		
1,1	Reinforced Concrete	m ³	94.427
1.2	Steel Reinforcement BE500	ton	7.082
1,3	Backfill crushed stone	m ³	16.755
1.4	RCC chamber floor	m ³	1.856
1.5	Gravel layer	m ³	619
1.6	Geotextile	m²	1.238
1.7	Steel corner protection	m	325
1.8	Rubber joint	m	200
1,9	Lean concrete	m ²	5.162
1.10	Pavement	m²	5.330
1,11	Technical building	m²	1.185
2	Lock Head Gate 2	tangoù vandiar	bos and
2.1	Reinforced Concrete	m ³	138.280
2.2	Steel Reinforcement BE500	ton	10.371
2.3	Backfill crushed stone	m ³	45.528
2.4	RCC chamber floor	m ³	2.434
2.5	Gravel laver	m ³	811
2.6	Geotextile	m²	1.623
2.7	Steel corner protection	m	331
2.8	Rubber joint	m	200
2.9	Lean concrete	m²	6.319
2.10	Pavement	m²	5.330
2,11	Technical building	m²	1.185
3	Lock Head Gate 3		
3,1	Reinforced Concrete	m ³	138.131
3,2	Steel Reinforcement BE500	ton	10.360
3,3	Backfill crushed stone	m ³	44.326
3.4	RCC chamber floor	m ³	2.434
3.5	Gravel layer	m ³	811
3,6	Geotextile	m²	1.623
3,7	Steel corner protection	m	33
3,8	Rubber joint	m	200
3,9	Lean concrete	m²	6.319
3,10	Pavement	m²	5.330
3,11	Technical building	m²	1.18

Table A.6 Lock Head Gate

Quantities Summary

		Sec. 1	0
Item	Description	Unit	Quantity
4	Lock Head Gate 4		
4,1	Reinforced Concrete	m ³	137.327
4,2	Steel Reinforcement BE500	ton	10.300
4,3	Backfill crushed stone	m ³	42.665
4,4	RCC chamber floor	m ³	2.434
4,5	Gravel layer	m ³	811
4,6	Geotextile	m²	1.623
4,7	Steel corner protection	m	331
4,8	Rubber joint	m	200
4,9	Lean concrete	m²	6.319
4,10	Pavement	m ²	5.330
4,11	Technical building	m²	1.185
5	Concrete L-shaped walls and walls in		Cherry Pur-
	backfilled area to avoid by-pass seepage		-00234
	behind lock heads 1, 2, 3 and 4		
5,1	Reinforced Concrete	m ³	27.819
5,2	Steel Reinforcement BE500	ton	2.086
5,3	Backfill crushed stone	m ³	126.830

0

Table A.7 Transition Segment

Quantities Summary

Item	Descr	iption	103	Unit	Quantity
1	Lock Head Gate 1				
					A BING DB
1,1	Segment with inlet zone east	side			planago br
1,11	Reinforced Concrete			m ³	11.697
1,12	Steel Reinforcement BE500			tons	877
1,13	Backfill Crushed Stone			m ³	22.095
1,14	Steel Corner Protection			m	54
1,15	Rubber Joint			m	60
1,16	Lean Concrete			m ²	1.555
1,17	Roller compacted concrete			m ³	2.007
1,18	Gravel Layer			m ³	669
1,19	Geotextile			m²	1.338
	1.188				eniblicd fi
1,2	Segment with inlet zone west	side			
1,21	Reinforced Concrete			m ³	11.786
1,22	Steel Reinforcement BE500			tons	884
1,23	Backfill Crushed Stone			m ³	22.348
1,24	Steel Corner Protection			m	53
1,25	Rubber Joint			m	60
1,26	Lean Concrete			m²	1.579
1.27	Roller compacted concrete			m ³	2.007
1,28	Gravel Layer			m ³	669
1,29	Geotextile			m²	1.338
1,3	Segment side chamber 1 eas	t side			
1,31	Reinforced Concrete			m ³	7.662
1,32	Steel Reinforcement BE500			tons	575
1,33	Backfill Crushed Stone			m ³	19.710
1,34	Roller compacted concrete			m ³	989
1,35	Gravel layer			m ³	280
1,36	Geotextile			m ²	634
1,37	Steel Corner Protection			m	30
1,38	Rubber joint			m	68
1,39	Lean Concrete			m²	884
1,4	Segment side chamber 1 wes	t side			
1,41	Reinforced Concrete			m ³	7.662
1,42	Steel Reinforcement BE500			tons	575

0

0

Table A.7 Transition Segment

Quantities Summary

1,43 Backfill Crushed Stone	m ³	19.710
1,44 Roller compacted concrete	m ³	989
1,45 Gravel layer	m ³	280
1,46 Geotextile	m²	634
1,47 Steel Corner Protection	m	30
1,48 Rubber joint	m	68
1,49 Lean Concrete	m²	884
2 Lock Head Gate 2		10
2,1 Segment side chamber 1 east side		autor troise
2,11 Reinforced Concrete	m ³	9.870
2,12 Steel Reinforcement BE500	tons	740
2,13 Backfill Crushed Stone	m ³	25.389
2,14 Roller compacted concrete	m ³	1.273
2,15 Gravel layer	m ³	361
2,16 Geotextile	m²	817
2,17 Steel Corner Protection	m	38
2,18 Rubber joint	m	68
2,19 Lean Concrete	m²	1.139
2,2 Segment side chamber 1 west side		
2,21 Reinforced Concrete	m ³	9.870
2,22 Steel Reinforcement BE500	tons	740
2,23 Backfill Crushed Stone	m ³	25.389
2,24 Roller compacted concrete	m ³	1.273
2,25 Gravel layer	m ³	361
2,26 Geotextile	m ²	817
2,27 Steel Corner Protection	m	38
2,28 Rubber joint	m	68
2,29 Lean Concrete	m²	1.139
2,3 Segment side chamber 2 east side		
2,31 Reinforced Concrete	m ³	6.316
2,32 Steel Reinforcement BE500	tons	474
2,33 Backfill Crushed Stone	m ³	15.854
2,34 Roller compacted concrete	m ³	821
2,35 Gravel layer	m ³	233
2,36 Geotextile	m²	527
2,37 Steel Corner Protection	m	25

A.7 12/07/2005

A MARAT

Table A.7 Transition Segment

Quantities Summary

2.38 Rubber joint	m	68
2.39 Lean Concrete	m²	734
entre 220		10443
2,4 Segment side chamber 2 west side		80/
2,41 Reinforced Concrete	m ³	6.316
2,42 Steel Reinforcement BE500	tons	474
2,43 Backfill Crushed Stone	m ³	15.854
2,44 Roller compacted concrete	m ³	821
2,45 Gravel layer	m ³	233
2,46 Geotextile	m²	527
2,47 Steel Corner Protection	m	25
2,48 Rubber joint	m	68
2,49 Lean Concrete	m ²	734
APP 25.209		Currished Sta
3 Lock Head Gate 3	0.000	an halphqiad ce
3,1 Segment side chamber 2 east side		100
3,11 Reinforced Concrete	m ³	10.183
3,12 Steel Reinforcement BE500	tons	764
3,13 Backfill Crushed Stone	m ³	25.560
3,14 Roller compacted concrete	m ³	1.324
3,15 Gravel layer	m ³	375
3,16 Geotextile	m²	849
3,17 Steel Corner Protection	m	40
3,18 Rubber joint	m	68
3,19 Lean Concrete	m ²	1.184
tori terret	o lease	on helped high
3,2 Segment side chamber 2 west side		2.00
3,21 Reinforced Concrete	m ³	10.183
3,22 Steel Reinforcement BE500	tons	764
3,23 Backfill Crushed Stone	m ³	25.560
3,24 Roller compacted concrete	m ³	1.324
3,25 Gravel layer	m ³	375
3,26 Geotextile	m²	849
3,27 Steel Corner Protection	m	40
3,28 Rubber joint	m	68
3,29 Lean Concrete	m²	1.184
	10 miles	construction is
3,3 Segment side chamber 3 east side		
3,31 Reinforced Concrete	m ³	6.287
3,32 Steel Reinforcement BE500	tons	472

Table A.7 Transition Segment

Quantities Summary

3,33 Backfill Crushed Stone	m ³	15.549
3,34 Roller compacted concrete	m ³	821
3,35 Gravel Layer	m ³	233
3,36 Geotextile	m²	527
3,37 Steel Corner Protection	m	25
3,38 Rubber joint	m	68
3,39 Lean Concrete	m²	734
3,4 Segment side chamber 3 west side		
3,41 Reinforced Concrete	m ³	6.287
3,42 Steel Reinforcement BE500	tons	472
3,43 Backfill Crushed Stone	m ³	15.549
3,44 Roller compacted concrete	m ³	821
3,45 Gravel Layer	m ³	233
3,46 Geotextile	m²	527
3,47 Steel Corner Protection	m	25
3,48 Rubber joint	m	68
3,49 Lean Concrete	m²	734
4 Lock Head Gate 4		
4,1 Segment side chamber 3 east side		
4,11 Reinforced Concrete	m ³	10.136
4,12 Steel Reinforcement BE500	tons	760
4,13 Backfill Crushed Stone	m ³	25.069
4,14 Roller compacted concrete	m ³	1.324
4,15 Gravel Layer	m ³	375
4,16 Geotextile	m ²	849
4,17 Steel Corner Protection	m	40
4,18 Rubber joint	m	68
4,19 Lean Concrete	m²	1.184
4,2 Segment side chamber 3 west side		
4,21 Reinforced Concrete	m ³	10.136
4,22 Steel Reinforcement BE500	tons	760
4,23 Backfill Crushed Stone	m ³	25.069
4,24 Roller compacted concrete	m ³	1.324
4,25 Gravel Layer	m ³	375
4,26 Geotextile	m²	849
4.27 Steel Corner Protection	m	40

Consorcio Post Panamax A4-M_3x2_revB_ / Transition Segment

0

Table A.7 Transition Segment

Quantities Summary

4,28 Rubber joint	m	68
4,29 Lean Concrete	m²	1.184
EAS Fai		100
4,3 Segment with outlet zone east side		
4,31 Reinforced Concrete	m ³	9.263
4,32 Steel Reinforcement BE500	tons	695
4,33 Backfill Crushed Stone	m ³	18.098
4,34 Steel Corner Protection	m	44
4,35 Rubber Joint	m	60
4,36 Lean Concrete	m²	1.294
4,37 Roller compacted concrete	m ³	2.113
4,38 Gravel Layer	m ³	704
4,39 Geotextile	m²	1.409
4.4 Segment with outlet zone west side		
4.41 Reinforced Concrete	m ³	9.859
4.42 Steel Reinforcement BE500	tons	739
4.43 Backfill Crushed Stone	m ³	19.222
4.44 Steel Corner Protection	m	45
4.45 Rubber Joint	m	60
4 46 Lean Concrete	m ²	1.338
4 47 Roller compacted concrete	m ³	2,113
4 48 Gravel Laver	m ³	704
4,49 Geotextile	m²	1.409
1900.25 m 1		Polici berieuni

Table A.7 Transition Segment

Quantities Summary

Quantities Summary

			Quantity
Item	Description	Unit	Quantity
1	Reinforced Concrete	m ³	143.512
2	Steel Reinforcement BE500	tons	10.763
3	Backfill Crushed Stone	m ³	336.026
4	Steel Corner Protection	m	588
5	Rubber Joint	m	1.056
6	Lean Concrete	m²	17.484
7	Roller compacted concrete	m ³	21.343
8	Gravel Layer	m ³	6.461
9	Geotextile	m²	13.900

Consorcio Post Panamax A4-M_3x2_revB_ / Transition Segment

Table A.8 Lock Head Gate Quantities Summary Equipment (Civil Part)

Item Description	Unit	Quantity
1 Lock Hoad Gate 1		
1 1 Equipment lock gate (civil part)		
1,1 1 Deile LISW	-	260
	m	200
	m	200
1.1.3 Ralls MSW	m	432
1.1.4 Rails norizontale guidances in recesses	m	200
1.1.5 Wooden vertical guidance in recesses	m	110
1.1.6 Steel for support rails USW	tons	104
1.1.7 Steel for support ralls LSW	tons	104
1.1.8 Steel for support rails guidance	tons	39
1.1.9 Maintenance support frames	tons	60
1,2 Equipment lock head (civil part)		
1.2.1 Vertical elements for seals - east/recesses	m ³	124
1.2.2 Vertical elements for seals - west	m ³	157
1.2.3 Horizontal elements for seals- lock chamber	m ³	224
1.2.4 Elements for placement habitat	m ³	233
1.2.5 Horizontal elements for seals- gate recesses	m ³	38
2 Lock Head Gate 2		
2,1 Equipment lock gate (civil part)		
2.1.1 Rails USW	m	260
2.1.2 Rails LSW	m	260
2.1.3 Rails MSW	m	432
2.1.4 Rails horizontal guidance in recesses	m	260
2.1.5 Wooden vertical guidance in recesses	m	190
2.1.6 Steel for support rails USW	tons	104
2.1.7 Steel for support rails LSW	tons	104
2 1 8 Steel for support rails guidance	tons	39
2.1.9 Maintenance support frames	tons	60
2.2 Equipment lock head (civil part)		
2.2.1 Vertical elements for seals - east/recesses	m ³	182
2.2.2 Vertical elements for seals - west	m ³	233
2.2.3 Horizontal elements for seals- lock chamber	m ³	224
2.2.4 Elements for placement habitat	m ³	233
2.2.5 Horizontal elements for seals- gate recesses	m ³	38

Consorcio Post Panamax A4-M_3x2_revB_ / LHG Equipment (Civil)

Table A.8 Lock Head Gate Quantities Summary Equipment (Civil Part)

Item	Description	Unit	Quantity
3	Lock Head Gate 3		
3,1	Equipment lock gate (civil part)		
3.1.1	Rails USW	m	260
3.1.2	Rails LSW	m	260
3.1.3	Rails MSW	m	432
3.1.4	Rails horizontal guidances in recesses	m	260
3.1.5	Wooden vertical guidance in recesses	m	190
3.1.6	Steel for support rails USW	tons	104
3.1.7	Steel for support rails LSW	tons	104
3.1.8	Steel for support rails guidance	tons	39
3.1.9	Maintenance support frames	tons	60
3,2	Equipment lock head (civil part)		
3.2.1	Vertical elements for seals - east/recesses	m ³	182
3.2.2	Vertical elements for seals - west	m ³	228
3.2.3	Horizontal elements for seals- lock chamber	m ³	224
3.2.4	Elements for placement habitat	m ³	233
3.2.5	Horizontal elements for seals- gate recesses	m ³	38
4	Lock Head Gate 4		
4,1	Equipment lock gate (civil part)		
4.1.1	Rails USW	m	260
4.1.2	Rails LSW	m	260
4.1.3	Rails MSW	m	432
4.1.4	Rails horizontale guidances in recesses	m	260
4.1.5	Wooden vertical guidance in recesses	m	185
4.1.6	Steel for support rails USW	tons	104
4.1.7	Steel for support rails LSW	tons	104
4.1.8	Steel for support rails guidance	tons	39
4.1.9	Maintenance support frames	tons	60
4,2	Equipment lock head (civil part)		
4.2.1	Vertical elements for seals - east/recesses	m ³	175
4.2.2	Vertical elements for seals - west	m ³	225
4.2.3	Horizontal elements for seals- lock chamber	m ³	224
4.2.4	Elements for placement habitat	m ³	233
4.2.5	Horizontal elements for seals- gate recesses	m ³	38

Consorcio Post Panamax A4-M_3x2_revB_ / LHG Equipment (Civil)

Table A.9 ACCESSORIES

Quantities Summary

Item	Description	1	Unit	Qua	Intity
	Decemption				
1	Accessories				
1,1	Bollards 1500kN		pcs		122
1,2	Wheel fenders		pcs		4
1,3	Roller fenders		pcs		4
1,4	Fenders Atlantic side		pcs		16
1,6	Ladders		pcs		122
1,7	Mooring bits		pcs		244

Table A.10 ELECTROMECHANICAL EQUIPMENT Quantities Summary

Item	Description	Unit	Quantity	Unit Weight (t)	Total Weight (t)
tom	becomption	Unit	(pos)	treight (t)	treight (t)
1	EM Equipment Lock				DEN'S STORE
1,1	Lock gates		arot has been		
1.1.1	Lock head 1		anal and	Total 1.1.1.	3.410
	Lock gates (2)	tons	2	1.550	3.100
	Bulkheads (1)	tons	1	200	200
	Upper support wagon (2)	tons	2	30	60
	Lower support wagon (2)	tons	2	25	50
1.1.2	Lock head 2			Total 1.1.2.	5.660
	Lock gates (2)	tons	2	2.600	5.200
	Bulkheads (1)	tons	1	300	300
	Upper support wagon (2)	tons	2	45	90
	Lower support wagon (2)	tons	2	35,0	70
1.1.3	Lock head 3			Total 1.1.3.	5.660
	Lock gates (2)	tons	2	2.600	5.200
	Bulkheads (1)	tons	1	300	300
	Upper support wagon (2)	tons	2	45	90
	Lower support wagon (2)	tons	2	35,0	70
1.1.4	Lock head 4			Total 1.1.4.	5.460
	Lock gates (2)	tons	2	2.500	5.000
	Bulkheads (1)	tons	1	300	300
	Upper support wagon (2)	tons	2	45	90
	Lower support wagon (2)	tons	2	35,0	70
1.1.5	Spare parts			Total 1.1.5.	84
	Lower support wagon (LH1)	tons	1	35	35
	Lower support wagon (LH2, 3, 4)	tons	1	25	25
	Maintenance support wagons (LH1)	tons	12	1	12
	Maintenance support wagons (LH2, 3, 4)	tons	12	1	12
1,2	Culvert valves and bulkheads			Total 1.2:	2.047
1.2.1	Culvert valves	tons	16	26	408
1.2.2	Culvert bulkheads	tons	8	23	180
1.2.3	Culvert valves slot	tons	16	37	592
1.2.4	Culvert bulkhead slots	tons	32	27	867
1,4	Support equipment		1		
1,5	Control system		1		
1,6	Lighting System		1		
1,7	Electrical and Power System		1		

Table A.10 ELECTROMECHANICAL EQUIPMENT Quantities Summary

	· L biot 1	dielt	1. With		Qu	antity	Unit	Total
Item	Descri	ption	1. 183	Unit	()	ocs)	Weight (t)	Weight (t)
2,1 2,3 2,4 2,6	EM Equipment WSB WSB valves WSB bulkheads WSB valves slots WSB bulkheads slots	1 mark 10.1.1 1 1640 2001 200		tons tons tons tons	enor tintal enor	24 6 24 48	Total 2.: 21 18 42 28	2.932 502 107 998 1.325
	100 A	13	15		2(17)		(S))	nere's hat planes

Consorcio Post Panamax A4-M_3x2_revB_ / EM Equipment

Table A.11 Construction and permanent dams

Quantities Summary

Item	Description	Unit	quantity
1	Liner HDPE		
1,1	Atlantic Side	m²	3000
2	Underlaying protective geotextile		
2,1	Atlantic Side	m ²	3000

Consorcio Post Panamax A4-M_3x2_revB_ / Dams

TASK 4

Table B.1.1 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Total Cost Civil Works

Lock without WSB

					Selected	Unit Price
	AND A CARLES AND			Quantity	Unit	Total
Item	Description		Unit	Guantity	Price	USD
1	Excavation					24 399 27/
1.1	Overburden		m ³	1 673 093	3.50	5 855 826
1,2	Gatun rock		m ³	3.903.884	4,75	18.543.449
2	Fill					13.547.043
2,1	Backfill		m ³	2.218.532	3.00	6.655.596
2,2	Gravel layer		m ³	28.323	6,00	169.939
2,3	Bank protection		m²	0	13.00	0
2,4	Overhaul for spoil (10 km)		m ³ km	22.405.027	0,30	6.721.508
3	Concrete				-	160.846.678
3,1	RC		m ³	1.282.414	120,00	153.889.632
3,2	RCC		m ³	96.851	28,00	2.711.832
3,3	Lean Concrete		m²	116.069	9,00	1.044.621
3,4	Pavement		m²	133.358	24,00	3.200.592
4	Reinforcement					84.158.393
4,1	Steel reinforcement		tons	96.181	875,00	84.158.393
5	Other					14.208.059
5,1	Steel corner protection		m	4.693	73,00	342.590
5,2	Rubber joint		m	7.121	71,00	505.591
5,3	Geotextile		m²	62.577	1,80	112.638
5,4	Liner HDPE		m²	3.000	13,31	39.930
5,5	Underlaying protective geotextile		m²	3.000	1,88	5.640
5,6	Geotextile for drainage		m²	0	4,71	C
5,7	Rails		m	4.848	280,00	1.357.440
5,8	Wooden vertical guidances		m	675	400,00	270.000
5,9	Steel for support rail and frames		ton	1.228	2.400,00	2.947.200
5,10	Vertical element for seals east/rece	esses	m ³	663	3.050,00	2.022.150
5,11	Vertical element for seals west		m ³	843	2.700,00	2.276.100
5,12	Horizontal elements for seals lock	chamber	m ³	896	2.700,00	2.419.200
5,13	Elements for placement habitat		m ³	932	275,00	256.300
5,14	Horizontal elements for seals gate	recesses	m ³	152	1.520,00	231.040
5,15	Technical building		m ²	4.741	300.00	1.422.240

Table B.1.1 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Total Cost Civil Works

							Loc	k without WS	BB
							Г	Selected l	Jnit Price
							Juontitu	Unit	Total
Item		Desc	ription	1. 5691	Un	it	uantity	Price	USD
		and the second							
	26.89.25								5 004 000
6	Accessori	es					100	4 000 00	5.901.000
6,1	Bollards 15	DUOKN			pc	s	122	4.900,00	597.600
6,2	Wheel fend	ders			pc	S	4	540.000,00	2.160.000
6,3	Roller tend	lers			pc	S	4	540.000,00	2.160.000
6,4	Fenders At	tlantic side			pc	S	16	50.000,00	800.000
6,5	Ladders				m		122	100,00	12.200
6,6	Mooring bi	ts			pc	s	244	950,00	231.800
	B.727.8							Kons bit unde	
7	Steel piles	5							1.241.723
7,1	Procureme	ent of steel piles			tor	IS	879	1.200,00	1.054.560
7,2	Driving of s	steel piles			pc	s	10	7.500,00	75.000
7,3	Sandfill ste	el pile			m	3	856	25,00	21.407
7,4	Concrete f	ill steel pile			m	3	554	120,00	66.508
7,5	Steel reinfo	prcement BE500			tor	IS	28	875,00	24.248
10	15 19 1.38							100	
	PE. 1581.28	Tota	I Cost	, anot ,				1 demail	304.362.970
	1. 1. 1. 1. 1	()							

B.1.1 12/07/2005

Consorcio Post Panamax A4-M_3x2_revB_ / Total Cost

Table B.1.2 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Total Cost Civil Works WSB Side by side conduits disposition

				Selected Unit Price		
			Quantity	Unit	Total	
Item	Description	Unit	Quantity	Price	USD	
1	Reinforced concrete	m ³	255.158	120,00	30.618.946	
2	Steel reinforcement BE500	tons	19.137	875,00	16.744.736	
3	Roller compact concrete over conduits	m ³	160.470	28,00	4.493.160	
4	Backfill crushed stone over conduits	m ³	560.332	3,00	1.680.996	
5	Liner HDPE (WSB)	m ²	170.000	13,31	2.262.700	
6	Underlaying protective geotextile (WSB)	m ²	170.000	1,88	319.600	
7	Geotextile for drainage (WSB)	m ²	21.000	4,71	98.910	
8	Bank protection (WSB)	m ²	38.000	13,00	494.000	
9	Excavation					
9,1	Overburden excavation	m ³	2.037.521	3,50	7.131.325	
9,2	Gatun Rock excavation	m ³	4.754.217	4,75	22.582.529	
10	Backfill crushed stone along chambers	m ³	94	3,00	282	
11	Lean concrete	m ²	24.329	9,00	218.961	
12	Overhaul for spoil (10km)	m ³ km	62.313.120	0,30	18.693.936	
13	Technical building	m ²	4.320	300,00	1.296.000	
14	Equalisation layer WSB and spillway bottom	m ³	89.000	90,00	8.010.000	
	Total Cost				114.646.080	

Table B.1.3 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Civil Works Lock Cost by Structure

tem	Description	Total USD - 2002	
1	Excavation and Fill for lock	31.406.635	
2	Entrance walls	19.725.674	
3	Lock walls	103.949.546	
41	Lock heads	143.273.746	
5	Accessories	5.961.800	
6	Dams	45.570	
	TOTAL COST LOCK	304.362.970	
6	WSB and conduits (excavation and fill included)	114.646.080	
	TOTAL COST WITH WSB	419.009.050	
	AND		

Table B.2 Cost Estimate Excavation and Fill

Item	Description	1	Unit	Unit Price	Quantity	Total USD - 2002
					The Charles of the	
1	Excavation					
1,1	Overburden excavation		m ³	3,50	1.673.093	5.855.826
1,2	Gatun Rock excavation		m ³	4,75	3.903.884	18.543.449
2	Fill					
2,1	Backfill		m ³	3.00	95.284	285.852
2,2	Overhaul for spoil (10 km)		m³km	0,30	22.405.027	6.721.508
	Total Cost			-		31.406.635

Table B.3 Cost Estimate Entrance Walls

Constitution usball			L	Init	Quantity	Total
Item	Description	Unit	Р	rice		USD - 2002
	Walls		1			
1	Reinforced Concrete	m ³	1.11	120.00	91,989	11.038.700
2	Steel Reinforcement BE500	tons		875,00	6.899	6.036.78
3	Backfill Crushed Stone	m ³		3,00	224.184	672.55
4	Steel Corner Protection	m	10 miles	73,00	807	58.90
5	Rubber Joint	m	havin.	71,00	777	55.16
6	Lean Concrete	m²		9,00	15.125	136.12
7	Pavement	m²		24,00	20.238	485.71
	Steel piles					
1	Procurement of steel piles ϕ 3000 mm - e = 30 mm - L = 40 m	tons		1.200,00	879	1.054.56
2	Driving of steel piles - $L = 40 \text{ m}$	pcs	-	7.500,00	10	75.00
3	Sandfill steel pile	m ³		25,00	856	21.40
4	Concrete fill steel pile	m ³		120,00	554	66.50
5	Steel reinforcement BE500	tons		875	28	24.24
	Total Cost					19.725.67

B.3 12/07/2005 Tractebel Development TECHNUM

0

0

TASK 4

Table B.4 Cost Estimate Lock Walls

		Unit	Outstate	Total
Item Description	Unit	Price	Mailury	USD - 2002
Construction and a construction of the constru				
1 Reinforced Concrete	m ³	120,00	510.928	61.311.360
2 Steel Reinforcement BE500	tons	875,00	38.320	33.529.650
3 Backfill Crushed Stone	m ³	3,00	1.286.934	3.860.802
4 Roller compacted concrete	m ³	28,00	66.350	1.857.794
5 Gravel Layer	m ³	6,00	18.810	112.860
6 Geotextile	m ²	1,80	42.570	76.626
7 Steel Corner Protection	E	73,00	1.980	144.540
8 Rubber joint	E	71,00	4.488	318.648
9 Lean Concrete	m ²	9,00	59.341	534.065
10 Pavement	m²	24,00	91.800	2.203.200
			and the second se	
Total Cost			ton on s	103.949.546
			The second se	

Consorcio Post Panamax A4-M_3x2_revB_ / Lock Walls Cost

Side by side conduits disposition WSB and Conduits (Civil Works) **Cost Estimate** Table B.5

			Unit		Total
Item	Description	Unit	Price	quantity	USD - 2002
	Desit Nutries a conscient				
-	Reinforced concrete	m³	120,00	255.158	30.618.946
~	Steel reinforcement BE500	tons	875,00	19.137	16.744.736
(7)	Roller compact concrete over conduits	m³	28,00	160.470	4.493.160
4	Backfill crushed stone over conduits	m³	3,00	560.332	1.680.996
ц)	(Liner HDPE (WSB)	m²	13,31	170.000	2.262.700
0	Underlaying protective geotextile (WSB)	m²	1,88	170.000	319.600
1	Geotextile for drainage (WSB)	m²	4,71	21.000	98.910
8	Bank protection (WSB)	m²	13,00	38.000	494.000
0	Excavation			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
9,1	Overburden excavation	m ³	3,50	2.037.521	7.131.325
9,2	Gatun rock excavation	m ³	4,75	4.754.217	22.582.529
10	Backfill crushed stone along chambers	m ³	3,00	94	282
11	Lean concrete	m²	9,00	24.329	218.961
12	Overhaul for spoil (10km)	m³km	0,30	62.313.120	18.693.936
10	Technical building	m²	300,00	4.320	1.296.000
14	Equalisation layer WSB and spillway bottom	m³	90,00	89.000	8.010.000

A4-M_3x2_revB_ / WSB and Conduits Cost Consorcio Post Panamax

114.646.080

Total Cost

Table B.6 Cost Estimate Lock Head Gate

	and the second		Unit	Quantity	Total
Item	Description	Unit	Price	quantity	USD - 2002
1	Reinforced Concrete	m ³	120.00	535.984	64.318.080
2	Steel Reinforcement BE500	ton	875,00	40.199	35.173.950
3	Backfill crushed stone	m ³	3,00	276.104	828.312
5	RCC chamber floor	m ³	28,00	9.158	256.431
6	Gravel layer	m ³	6,00	3.052	18.311
7	Geotextile	m ²	1,80	6.107	10.992
8	Steel corner protection	m	73,00	1.318	96.214
9	Rubber joint	m	71,00	800	56.800
10	Lean concrete	m ²	9,00	24.119	217.071
11	Pavement	m ²	24,00	21.320	511.680
12	Technical building	m²	300,00	4.741	1.422.240
	Total Cost				102.910.080

Table B.7 Cost Estimate Transition Segment

	and T	-	Unit		Total
Item	Description	Unit	Price	Quantity	USD - 2002
1	Reinforced concrete	m ³	120,00	143.512	17.221.493
2	Steel reinforcement BE500	ton	875,00	10.763	9.418.004
3	Backfill crushed stone	m ³	3,00	336.026	1.008.078
4	Steel corner protection	m	73,00	588	42.933
5	Rubber joint	m	71,00	1.056	74.976
6	Lean concrete	m ²	9,00	17.484	157.356
9	RCC	m ³	28,00	21.343	597.607
10	Gravel layer	m ³	6,00	6.461	38.768
11	Geotextile	m²	1,80	13.900	25.02
	Total Cost	loost	R STA		28.584.236

B.7 12/07/2005

Table B.8Cost EstimateLock Head GateEquipment (Civil Part)

Itom	Description	Unit	Unit	Quantity	Total
ntem	Description	Unit	Flice		030-2002
1	Equipment lock gate (civil part)				4.574.640
1,1	Rails	m	280,00	4.848	1.357.440
1,2	Wooden vertical guidances	m	400,00	675	270.000
1,3	Steel for support rails and frames	tons	2.400,00	1.228	2.947.200
2	Equipment lock head (civil part)				7.204.790
2,1	Vertical elements for seals - east/recesses	m ³	3.050,00	663	2.022.150
2,2	Vertical elements for seals - west	m ³	2.700,00	843	2.276.100
2,3	Horizontal elements for seals- lock chamber	m ³	2.700,00	896	2.419.200
2,4	Elements for placement habitat	m ³	275,00	932	256.300
2,5	Horizontal elements for seals- gate recesses	m ³	1.520,00	152	231.040
	Total Cost				11.779.430

Table B.9 Cost Estimate Accessories

	Super- Den Company	000		Unit	Quantity	Total
Item	Description		Jnit	Price	quantity	USD - 2002
1	Accessories	lacions		1		
1,1	Bollards 1500kN	00.001	pcs	4.900	122	597.800
1,2	Wheel fenders	190,30	pcs	540.000	4	2.160.000
1,3	Roller fenders		pcs	540.000	4	2.160.000
1,4	Fenders Atlantic side		pcs	50.000	16	800.000
1,5	Ladders	00,001	m	100	122	12.200
1,6	Mooring bits	0000	pcs	950	244	231.800
	Total Cost	00,81		THE STREET		5.961.800
	1040403	0.000		101 - Rol	eoom elop	न्द्रीहरू: 101 संगण

Consorcio Post Panamax A4-M_3x2_revB_ / Accessories Cost

Table B.10 Cost Estimate ELECTROMECHANICAL EQUIPMENT

Itom	Description	Unit	Unit	Quantity	Total
nem	Description	Unit	Price		030-2002
1	EM Equipment lock				174.737.402
1,1	EM Equipment Lock (rolling gates and bulkheads)	tons	6.173	20.274	125.151.402
1,2	EM Equipment Lock (valves and bulkheads)	tons	5.000	2.047	10.236.000
1,3	Support equipment		21.400.000	1	21.400.000
1,4	Control system		2.800.000	1	2.800.000
1,5	Lighting System		2.000.000	1	2.000.000
1,6	Electrical and Power System (alternative 5)		13.150.000	1	13.150.000
2	EM Equipment WSB (Support and control system	tons	5.000	2.932	14.661.000
	Total Cost				189.398.402

Table B.11 Cost estimate Construction and permanent dams

ltem		Description		Unit	L P	Jnit Price	Qua	antity	Total USD - 2002
1 2	Liner HDPE Underlaying	protective geote	extile	m² m²	8.1	13,31 1,88	nol	3.000 3.000	39.930 5.640
		Total Cost		0	8:01		nak.	htie ái	45.570
		21 40 0,00 0, 2 609,000 2 020,009 5 (69,000		2020	03.00 00.00 00.00 00.05	* 21.4 2.5 2.0		inc	od enjemieni skolan og hvelen od hovyer Srol

CPP Consorcio Post-Panamax

0

Alternative Conceptual Design of Pacific and Atlantic Post-Panamax Locks – 3x2 WSB – Contract SAA-150551

ATLANTIC LOCKS 3x2 wsb

Task A4m-3x2- QUANTITIES AND COST ESTIMATION Rev B

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	i

1	QUANTITIES AND COST ESTIMATION	1-1
1.1	PREAMBLE	1-1
1.2	QUANTITIES	1-2
1.2.1 1.2.2 1.2.3 1.2.4	GENERAL LOCK WALLS & ENTRANCE WALLS LOCK OPERATING GATES. ELECTROMECHANICAL EQUIPMENT	1-2 1-2 1-5 1-6
1.3	COST ESTIMATES	1-7
1.3.1 1.3.2 1.3.3 1.3.4	INTRODUCTION COST ESTIMATE FOR CIVIL WORKS COST ESTIMATE OF THE ELECTROMECHANICAL EQUIPMENT COST ESTIMATE FOR LOCK GATES	1-7 1-7 1-10 1-13
1.4	TOTAL PROJECT COST	1-15

Appendix A - Quantities

Appendix B - Cost Estimates

Alternative Conceptual Design of Pacific and Atlantic Post Panamux Locks – 3x2 WSB -Contract SAA-150551

REVALANTACIÓN LOCKS CXC AVER OCTAMITES AND COST ESTIMATIO PROF

TECHNUM

Quantities and Cost Estimation

1.1 PREAMBLE

The harmonized Triple Lift Lock configuration for the new Post Panamax Locks at the Atlantic side of the Panama Canal is a huge construction project, probably one of the largest that are going to be built during the forthcoming decades.

A total construction cost for the **Pacific** Locks has already been quantified:

- for the Triple Lift Lock Configuration and presented by CPP in November 2002 in the Final Report 3 Steps Lock System Task 4 Chapter R4-M Cost Estimation.
- for the Single Lift Lock Configuration and presented by CPP in March 2003 in the Final Report -Single Lift Lock System - Task 4 Chapter R4-M Cost Estimation.
- for the Double Lift Lock Configuration and presented by CPP in May 2003 in the Final Report -Double Lift Lock System - Task 4 Chapter R4-M Cost Estimation.
- For the actualized Triple Lift Lock Configuration and presented by CPP in April 2005 in the Final Report Pacific Locks Actualization Task 4 Chapter P4m Quantities and Cost estimation.

A total construction cost for the harmonized Triple Lift Lock configuration with 3x3 WSB at the Atlantic side has also been quantified. It is presented by CPP in May 2005 in the Final report – Atlantic Locks Harmonization – Task 4 Chapter A4m Quantities and Cost estimation.

The present Report contains quantities and cost estimates of the Civil Works and Electromechanical Equipment required to build the Post Panamax Atlantic Locks of the Panama Canal in its harmonized Triple Lift configuration with 3x2 WSB.

The costs of the present project have been based on the same aggregated unit price list prepared and justified in the above first mentioned Report (3 Steps Lock System - Task 4 Chapter R4-M Cost Estimation). However it has to be mentioned that generally the steel prices have been increasing strongly since early 2004. For reasons of comparison between original and harmonization the prices have not yet been modified, which means that the new total cost is slightly underestimated.

CPP

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB		
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-2	

The present Report consolidates individual reports prepared by the different CPP teams, each in accordance with their particular field of know-how. It groups the information provided in three Chapters: Quantities, Cost Estimates, and Total Project Cost. In addition, the Report includes two Appendices that contain detailed information on quantities of construction item (Appendix A) and project cost estimates (Appendix B).

1.2 QUANTITIES

1.2.1 GENERAL

According to the different tasks that have been undertaken during the harmonization study, it was possible to identify all new design criteria, , and determine the most suitable Lock siting and layout. Subsequently, the concept studies of the numerous elements of the new Locks were actualized, as there are:

- Lock walls;
- Filling and Emptying System, including Water Saving Basins;
- Lock Operating Gates;
- Culvert and Conduit Valves;
- Electromechanical Devices;

For each of these elements, studies and analysis results have been included in the preceding chapters of this final report. They have been sufficiently worked out by means of proper modern engineering design tools, shown on drawings with all required dimensions on a conceptual level of design, in order to allow calculating the quantities of materials involved. The Terms of Reference require an accuracy of 25% for the cost estimation; therefore it is necessary that the quantities are determined at a higher level of precision, which is most certainly being obtained.

All Quantities are summarized in a series of Tables presented in the Appendix A of the present report.

1.2.2 LOCK WALLS & ENTRANCE WALLS

Lock walls and entrance walls are gravity type retaining walls, which have to be constructed in an open excavation. Due to the enormous dimensions, especially in depth, they require very large excavations, mainly in Gatun rock.

A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-3

In the Task 3 Report of the Triple Lift Configuration (Pacific side), dealing with the excavation volumes for the new canal by-pass, an estimation of \$607,000,000 USD (based on unit prices communicated by ACP as to year 2000) has been put forward as a construction cost for the excavation of the new by-pass including the Locks excavations. Although the new alignment (Pacific and Atlantic side) needs considerable less excavation volumes, it is clear that excavation costs will be a very important factor in determining the total construction cost.

The excavation and backfill volumes have been determined using the digital map "*Curvas nivel*", the plan view D4-A-403 and the lock Profile Drawings D4-B-401 and 402. Generation of cross sections was done with the AutoCAD 2005 Autodesk Land Desktop software tool, which also calculates the volumes of excavation and backfill. *Excavation and backfill volumes are calculated in cubic meters* [m³].

As far as the entrance walls are concerned, the excavation include the entrance channel up to the outer corner of the east wall; from that point on the excavation for the west wall is restricted to the minimum profile required for the construction of the single wall, and does not include the volume of the canal situated in between the entrance wall and the eastern canal embankment, these volumes have to be considered in the total excavation required for the by-pass canal.

An attempt was also made to determine the type of excavation volumes [rock and common (overburden) excavation]. Common excavation refers to boulders of less than 1 m³ or to material that can be excavated using a maximum of three passes of a ripper. These assumptions have been based on the available information, which is in our opinion not sufficient to determine the quantities of the different materials with sufficient accuracy. However, the total calculated excavation volume is to be considered as a reliable estimation.

Nevertheless, it was noticed during the analysis of the geo-technical longitudinal profiles that the top levels of the overburden do not correspond with the data from the topographic survey "*Curvas nivel*". It is recommended that these profiles be modified as soon as possible, for instance, as a subject during further design.

As a subject during further design we also advise the execution of a bathymetric survey of the flooded areas located under the future WSB. This survey is important for the exact calculation of the backfill quantities. At the stage of conceptual design the water depth of these areas had to be estimated.

The following assumptions were made for quantity estimates:

 Percentages of Gatun rock and overburden in different types of excavation:

Gatun rock	70 %
Overburden	30 %

During excavation, and afterwards during construction of the Lock and entrance walls, the excavated area will have to be dewatered to allow concrete works. As the Lock site is enclosed in a nearly impervious rock formation, the contractor will probably only have to inject some cracks to prevent too much water infiltration. However, care has to be exercised, especially with the many faults which were identified and

CPP

CPP	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-4

which could be important in the hydrological context. This problem might need further investigation; however, provision has been made by including lump sums to cover foundation treatment, such as grouting and drainage.

The construction of the walls and also the lock heads are to be considered as rather ordinary concrete works, although the applied volumes are rather gigantic and require concrete batching plants with a very high capacity.

In order to determine the concrete volumes with sufficient accuracy, it was necessary to make drawings for each lock partition, i.e. the 4 Lock heads, the Lock walls and the Entrance walls.

Reference is made to drawings D4-B-401 to 406 (lock walls), D4-B-207 to 219 (lock heads) and D4-I-201 (entrance walls).

These drawings contain the design details of the following:

- Lockwall Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill).
- Entrance:
 - Walls in rock- Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill)
 - Steel piles in muck Single option (steel piles filled with sand and concrete)

It is to be noted that contrary to the formerly studied Triple Lift Configuration, here, in this instance, only the best construction option which has been proved to be the most economical one in the corresponding former Cost Estimations, is designed and evaluated for each structure.

The concrete structures are of reinforced concrete, which requires a large amount of steel reinforcement.

The quantities (tons) of steel reinforcement have been determined as a fixed weight per m³ of concrete, based on the engineer's judgment and experience with similar constructions (Lock walls at Berendrecht which are also of reinforced concrete, quay walls). *Steel reinforcement is measured in tons [tons]*.

The following assumptions were made for quantity estimates:

 Quantity of reinforcement steel in reinforced concrete (RC) used for estimating purposes in the Post Panamax Pacific Locks Project: 75 kg/m³, according to the structure

according to the structure type, its role, and, of course, as required by the design

The longitudinal culverts at both sides of the Locks are integrated in the Lock walls and Lock heads; as such they do not appear separately in the quantity list.

The Lock walls and Lock heads, as well as the entrance walls are exposed to temperature variations, curing and shrinkage, and therefore they have to be subdivided in independent parts (segments). In this conceptual design the segments are 30 m in length, with some exceptions, for example, in the transition

000	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WS	
СРР	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-5

between Lock walls and Lock heads. Each joint between the wall segments is made water and soil tight by means of a rubber joint, which is anchored in the concrete at both sides. *Rubber joints are measured in meters [m]*.

At the corner edge of the top of the Lock walls, a steel corner protection profile is provided to protect the concrete against damage from the towing cables. *The protective steel profile is measured in meters [m]*.

After construction the walls that require backfill, as shown on the drawings, are filled at the rear with crushed stone that can be recovered from the rock excavations, but the rock has to be crushed properly in a dedicated installation to obtain an acceptable size, suitable for backfilling and compaction in order to avoid settlements afterwards. *Backfilling in crushed stone is measured in cubic meters* [m³].

Roller compacted concrete (RCC) (*expressed in* $[m^3]$) is placed to protect the bottom of the Lock Chambers founded in Gatun rock formation and also at the culvert and conduit outlets to prevent erosion and weakening of the fractured rock bottom due to currents and exposure (see drawing D4-B-401 to 405). Holes in the RCC are foreseen to make the layer permeable to prevent uplift pressures caused by the lockages. A gravel layer $[m^3]$ is spread beneath the RCC layer and covered by a geotextile $[m^2]$.

The sills and the vertical bearings in the Lock heads that make the sealing surface of the gate are constructed with hard rock-like basalt, granite or prefabricated hard concrete blocks. They have to be anchored in the concrete by means of steel anchors. *The blocks are measured in* $[m^3]$.

The gates move with the carriage wagons over rails anchored in the bottom floor of the Lock heads and the sidewall recesses of the recess chamber. Other rails are fixed on the recess walls to guide the gate when moving. *The rails are measured in meter* [m].

Drawing D4-A-403 shows a general plan view of the Locks. It has been used to indicate a number of accessories, such as bollards, fenders, light poles, cable-ducts equipped with steel cover (not indicated), etc... Such items are always expressed in pieces [pcs].

The result of quantity estimates for different items is given in the Appendix A.

1.2.3 LOCK OPERATING GATES.

The rolling gate type has been selected for use in the recent triple lift configuration. The layout of the rolling gate is shown on drawings D4-D 200 to 205. Report A4d on Lock gate design gives unit weight of Lock gates for the different sizes according to the Lock head position.

The unit weight allows determining the total weight of each gate, and an additional weight has to be taken into account for wheelbarrow wagons and steel auxiliaries. *The steel weight of the total gate structure is expressed in [tons]*.

000	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-6

The sealing of the gate against the basalt or granite blocks is obtained with exotic wooden (azobé) beams that are fixed by bolting to the Lock gate. These wooden beams are expressed in $[m^3]$.

In order to use the Lock gate chambers as a place to maintain the gates, a slot bulkhead is required. The *bulkhead is a steel construction, expressed in tons [tons]*.

1.2.4 ELECTROMECHANICAL EQUIPMENT

Quantities of mechanical equipment, expressed in tons, were based on the experience of the Consultants in large hydropower projects, using graphs and charts relating the weight of equipment with the size and the pressures handled by the proposed equipment. Electrical and power equipment quantities have been based on the conceptual design projects and on the experience provided by the existing Panama Canal Locks.

The games move with the duringe wayons dvier rails anchored in the borton flow of the flock heads and he subswall recesses of the means chanter. Our er mis new fixed on the recess while to guide the game view matching. The tasks are meanwork in mercy fluct.

Denving DebA-403 sinves a general plan view of the Locks. It has been used by redicing a number of accessives, such as policids, fenders, light poles, eable-durts equipped with shell cover not indiceedly these shell down are composed in precess (reg).

is insured of quantity expirates for delibered in ministry in given in the Appendix .

12.3 LOOK OPENALING GATES,

Ho rolling guo type has been wheeled for use inclue meet apple life configuration. **He layed of the rolling gue is** shown on drawings D'telt 201 to 203: Report A46 on Lock gut: delign gives and weight of Lock gates for the the distribute vises according to the Lock bend , estimat.

The units weight allows it invisions the anti-veight of such gate, and in additional weight has to be fillen a into account for wheeling now warrant shell similaries. The seal is algor of the and gate arrithme in apresent is plane).

1.3 COST ESTIMATES

1.3.1 INTRODUCTION

Reference is made to Configuration 1 (Pacific side) -"**3 Lift Lock System**"- Report R4-M. For this Configuration, the cost estimation for the Civil Works was based on the **aggregation method** in which a cost database is created by analyzing the price/costs of similar work (type/volumes) obtained from international past and present market prices, and adjusting them to obtain current prices. These prices, called aggregate prices, include direct and indirect construction costs. The aggregate prices as of the Year 2002 thus obtained are then applied to the Post Panamax Locks Project to establish its cost. This aggregation method is normally applied by the firms constituting the Consortium, and is of common use in Europe to estimate the cost of projects at a conceptual design stage and even in more detailed study stages. As already explained in the fifth paragraph of the Preamble to the present Report, the same unit prices from the Table 2.1 Aggregate Unit Price of the above mentioned Triple Lift Lock System-Report R4-M, have been used to establish costs for the harmonized Triple Lift Lock system. Once again the attention is drawn to the fact that the increased steel prices since early 2004 have not yet been taken into account.

1.3.2 COST ESTIMATE FOR CIVIL WORKS

As explained in Paragraph 1.2, the present report presents for each structure of the harmonized Triple Lift Configuration with 3x2 WSB only a single construction option that has been proved to be the most economical one in the former cost estimates. These are the following:

- Lockwall Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill).
- Entrance:
 - Walls in rock- Single Option (RC reinforced concrete gravity wall and counterforts, crushed stone backfill)
 - Steel piles in muck Single Option (steel piles filled with sand and concrete)

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-8

The Water Savings Basins layout presents as well one single scheme with two adjacent basins for each chamber. The first basin is the one with the highest bottom level and closest to the Eastern Lockwall.

As it has been shown in the former Triple Lift Configuration Cost Estimation Report R4 M, the Aggregated Unit Prices are related to the global quantities involved in the Project for the main items. This relation between prices and volumes has been represented by trend graphs presented in the Appendices B of the former cost estimate reports. Considering that it has been proved in the Single Lift Configuration Cost Estimation Report that the differences in quantities between different lock configurations are not significant enough to justify a revision of the formerly selected unit prices and observing that the quantities for the harmonized Triple Lift Configuration with 3x2 WSB are again in the same order of magnitude, it can be finally concluded that, the same series of selected prices remain also valid for calculating the cost of the harmonized Triple Lift Lock Configuration with 3x2 WSB.

The following Table 2.1 presents the complete list of Aggregate Unit Prices used to estimate the cost of the Project.

Table 2.1 Conceptual Design Post-Panamax Lock Structure Harmonization Atlantic 3x2 WSB Aggregate Unit Price

Item	Description	Unit	Selected Unit Price USD 2002
10 100	the Intercased steel processing some 2004 have	act the	
1	Excavations		
1,1	Overburden	m ³	3,50
1,2	Atlantic muck	m ³	0,00
1,3	Gatun rock	m³	4,75
2	Fill		
2,1	Backfill	m ³	3,00
2,2	Gravel layer	m ³	6,00
2,3	Bank protection WSB1	m²	13,00
2,4	Overhaul for spoil (10 km)	m³km	0,30
3	Concrete	2101 003	
3,1	RC	m ³	120,00
3.2	RCC	m ³	28,00
3.3	Lean Concrete	m²	9,00
3.4	Pavement	m²	24,00
3,5	Concrete layer chamber bottom	m ³	90,00
4	Reinforcement	Single-	
4,1	Steel reinforcement	tons	875,00
5	Other	- Rome	
5.1	Steel corner protection	m	73,00

ECHNUM

PP	A4m-3x2-RevB Alta 15/07/2005 A4m-3x2		ternative Atlantic Locks 3x2 WSB 2-Quantities and Cost Estimation 1-5	
	5,2	Rubber joint	l m l	71.00
	5,3	Geotextile	m²	1.80
	5,4	Liner HDPE (WSB)	m²	13.31
	5,5	Underlaying protective geotextile (WSB)	m²	1.88
	5,6	Geotextile for drainage (WSB)	m²	4.71
	5,7	Rails	m	280.00
	5,8	Wooden vertical guidances	m	400.00
	5,9	Steel for support rail and frames	ton	2,400.00
	5,10	Vertical element for seals east/recesses	m ³	3.050.00
	5,11	Vertical element for seals west	m ³	2.700.00
	5,12	Horizontal elements for seals lock chamb	er m ³	2.700.00
	5,13	Elements for placement habitat	m ³	275.00
	5,14	Horizontal elements for seals gate recess	ses m ³	1.520.00
	5,15	Technical building	m²	300
		P. A. alwey word Statitude day	A distance the 24	Setto Semenaria
	6	Accessories		
	6,1	Bollards 1500kN	pcs	4.900.00
	6,2	Wheel fenders	pcs	540.000
	6,3	Roller fenders	pcs	540.000
	6,4	Fenders Atlantic side	pcs	50.000
	6,5	Fenders Gatun Lake side	pcs	40.000
	6,6	Ladders	m	100,00
	6,7	Mooring bits	pcs	950,00
	7	Steel piles		
	7,1	Procurement of steel piles	tons	1,200,00
	7,2	Driving of steel piles	pcs	7 500 00
	7,3	Sandfill steel pile	m ³	25.00
	7,4	Concrete fill steel pile	m ³	120,00
	7,5	Steel reinforcement BE500	tons	875.00

Cost Estimates of Civil Works are summarized in the following Table. Detailed information is presented in Appendix B.

C

Tractebel Development Engineering

Costs of the Civil Works Summary

Item	Description	Selected Cost
	2000.1911011	USD - 2002
1	Lock only	304.362.970
2	Water Savings Basins only	114.646.080
3	Lock and WSB`s	419.009.050

COYNEET BELLIER

TECHNUM

1.3.3 COST ESTIMATE OF THE ELECTROMECHANICAL EQUIPMENT

1.3.3.1 CULVERT AND CONDUIT VALVES

A4m-3x2-RevB

15/07/2005

Estimated Weights of the Culvert and WSB Valves and Bulkheads

The following Table (Ref. Report A4e- $3x^2$) is the base for estimating the price of the valves and bulkheads. The price for welded construction is usually estimated by multiplying a weight by a kg price. That kg price has been estimated at 5 USD/kg, all-inclusive.

Rei son	Number	Unit weight (tons)	Total weight (tons)
Culvert valves	16	25.5	408
Culvert bulkheads	8	22.5	180
Culvert valves slots	16	37	592
Culvert bulkhead slots	32	27.1	867
WSB valves	24	20.9	502
WSB bulkheads	6	17.9	107
WSB valves slots	24	41.6	998
WSB bulkhead slots	48	27.6	1325
TOTAL			4980 tons

The total price for the 52 fixed-wheel valves and related bulkheads and slots is estimated to:

4980000 x 5 =

USD 24.90 Million

That price is including transport, erection and commissioning. It does not include either the operating machinery (cylinders, oil hydraulic unit, etc) and the maintenance cranes or the control boards.

\$5/kg is a usual price "all included" considered for similar valves of welded construction in the hydro field. Welded construction kg price ex-works is considered to be normally in a range of \$3 to \$3.5. Transportation and erection are estimated to vary between 30 and 40%. The top of the range has been preferred for the valves due to some machining and stainless material (wheels, sealing systems).

CPP

USD 10.40 Million

USD 1.00 Million

USD 10.0 Million

USD 2.80 Million

Valve operating machinery and local control boards:

The valve operating machinery price has been based on a preliminary budget price given by an important supplier (Bosch Rexroth) for 52 hydraulic cylinders all identical with oil sumps and control boards. A rough comparison was also made with the cost of the refurbishment of hydraulic cylinders for 40 pairs of miter gates at the Panama Canal (for 80 hydraulic cylinders).

Maintenance tools, cranes and railways:

A4m-3x2-RevB

15/07/2005

This price is including 2 maintenance gantry cranes of 70ton capacity, span about 7m, 720m of rails and maintenance tooling as handling beam to lower and remove valves and bulkhead from the slots. Weight of cranes has been estimated to 2 x 40 tons, price: $2 \times 320,000 = \$640,000$ (kg price: \$8) - Rails: 1,000m x 100kg/m x \$3/m = \$300,000 – Maintenance tools: \$60,000.

Rolling gate operating machinery:

Is composed of:

16 main AC motors with variable s	speed (according to a		
preliminary budget price of a manu	ufacturer): $16 \ge 67,000 =$	\$ 1.1 Million	
8 primary gear boxes:	8 x 200, 000 =	\$ 1.6 Million	
16 secondary gear boxes:	$16 \ge 300,000 =$	\$ 4.8 Million	
The prices of gear boxes have bee	en based on hydro gear boxes	prices (kg price betwee	n \$15
and \$25 according to the size)			

 balance of equipment (auxiliary AC motors, cable drums, pulleys, cables, bearings,..):
 \$.2.50 Million

1.3.3.2 OPERATING MACHINERY: CONTROL SYSTEM

Estimated budget price:

Tractebel Development Engineering

The budget price is based on the description given in the report A4f-j-3x2. It is including the control equipment, installation, cabling and commissioning.

Total	\$2,800,000
CCTV	300,000
Backup control Room	50,000
Main Control room	350,000
CPU 1 to 20 (Panboard, Rack 19", I/O,)	2,100,000

CPP

1.3.3.3 LIGHTING

Estimated price for 50 high masts, 360 floodlights of 1000W, lock chamber and rolling gates lighting and galleries lighting:

USD 2.00 Million

1.3.3.4 ELECTRICAL AND POWER REQUIREMENTS

A4m-3x2-RevB

15/07/2005

Estimated budget price: Detailed as follow:

USD 13.15 Million

		Alternative 4	Alternative 5
			an hannan
1	High Voltage	under drive protion	() (Common) ()
1.1	Cables	940,000	1,646,400
1.2	HV Switchgear	1,670,000	1,995,000
2	Transformers	342,000	342,000
3	Emergency power supply		ende 202 bro
(and	Diesel set 1200 kVA + transformers +	585,000	585,000
4	Low Voltage		
4.1	Low Voltage switchboard	1,380,000	1,380,000
4.2	Low Voltage Cables	1,280,000	1,280,000
4.3	Low Voltage equipment	297,000	297,000
5	Cable Trays and Supports	1,177,000	1,177,000
6	Miscellaneous	930,000	930,000
000,1	Total	9,201,000	10,232,000
	Including transportation and erection	USD 11.75 Million	USD 13.15 Million

Note: No provision has been made either for the operating structures (overhead crane of the maintenance building or for HVAC necessary for control room and HV technical rooms).

TECHNUM

000	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB		
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-13	9

Alternative 5, which offers more security, has been selected (see Report Task 4-A4f-j-3x2, *Electrical Power and Power Requirement*). Therefore, the corresponding prices of Alternative 5 have been used in the present Cost Estimation.

1.3.4 COST ESTIMATE FOR LOCK GATES

1.3.4.1 Price - Berendrecht lock gates

The cost of the Berendrecht Lock gates including equipment:

- 0 General working costs 363,000 USD
- 1 Detailed calculation and construction 310,000 USD drawings
- 2 Metal construction + equipment

	Lock gates (4) Lower support wagon (4 + 1) Upper support wagon (4) Maintenance support wagons (24) Bulkhead	19,288,000 USD 177,000 USD 544,000 USD 186,000 USD 575,000 USD
3	Mechanical parts	958,000 USD
1	Positioning and testing	455,000 USD
5	Temporary storage and additional works	198,000 USD
	Total	23 054 000 LISD

These costs were accurate in 1983.

The costs include the 4 gates, 5 lower support wagons (1 spare one), 4 upper support wagons, 4 maintenance support wagons (2 gates can be maintained simultaneously) and 1 bulkhead.

When we divide this total sum by the total weight of the 4 gates + equipment:

23,054,000 USD / 6,800,000 kg = 3.390 USD/kg

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB		
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-14	

Knowing that this price was made in 1983, it has to be multiplied with a factor to take into account the price evolution:

3.390 USD/kg x 1.75 = 5.933 USD/kg

We add to this price the transport of the gates from the workshop to the site:

5.933 USD/kg + 0.24 USD/kg = 6.173 USD/kg

We extrapolated this for the complete harmonized Triple-lift situation with 3x2 WSB:

3100 t (2 x gate 1) + 10400 t (4 x gate 2/3) + 5000 t (2 x gate 4) + 1774 t (equipment) = 20274 tons

6.173 USD/kg x 20,274,000 kg = **125,151,402 USD**

1.3.4.2 Fendering

We have foreseen 4 sets of wheel fenders (1 set = 5 wheels), one on each side of the harmonized Triple lift configuration with 3x2 WSB.

Based on recent information the cost of one wheel with casing is 90,000 USD (2002).

The cost of four sets of fenders + positioning on site:

 $(20 \times 90,000 \text{ USD}) \times 1.2 = 2,160,000 \text{ USD}$

This is much cheaper (factor 2) than an extrapolation of the costs of the fendering of the Berendrecht Lock. Based on the evolution during the last years, these materials are less expensive.

Based on recent information the cost of one tidal fender is 50.000 USD (including positioning on site).

he costs include the 4 gales, 5 lower support wegens (1 spice data), 4 appei support wigon numbers soprod reagons (2 gales can be realistical amentaneously) and (birthead.

diren werden der heur som beskende weigen officio a naves verannent

AND STEP - 5X890,000 Kg = 3.340 USD MA

ECHNU

Tractebel Development Engineering

1.4 TOTAL PROJECT COST

The Total Project Cost is detailed in the following four Tables:

- Table 3.1 contains the Total Lock Cost.
- Table 3.2 contains the Total Water Saving Basins cost.
- Table 3.3 contains a summary (rounded numbers) of the Total Project Cost.

The total costs of the Civil Works and of the Electromechanical Equipment have been incremented by lump sum percentages corresponding to items not quantified in terms of volume of work but, nevertheless, required for the completion of the project. These items are the following:

Detailed Studies and Supervision

This item includes all the engineering service to be performed after awarding the Civil Work construction contract(s), the detailed execution studies (shop drawings) and the cost of complete works supervision. Excluded from this item are the basic design, final design, preparation of Tender documents, hydraulic model studies, and the geological and geotechnical investigations (except those related directly to the construction).

Based on the FIDIC recommendations, the estimated percentage covering the above Item 1 comes to 7%. This value is applicable to both the Civil Works and the Electromechanical total costs.

Instrumentation

This Item covers purchase, installation and activation of all permanent instruments dedicated to record the physical behavior of the Civil structures. It covers as well the monitoring and reporting during the construction period. It is estimated that 2% of the total cost of the Civil Works is sufficient to cover this Item 2.

Grouting and Consolidation

It is very unlikely that a project of the size of the Post Panamax Lock will not require grouting, drainage and consolidation of the foundation. At the present stage, the geological and geotechnical local characteristics of the Locks foundation are not known in detail but it is likely that some zones might require special foundation treatment, such as impermeabilization grouting, drainage or consolidation grouting. The Item 3 grouting and consolidation aims to cover the costs related to these works. It is estimated that 3% applicable to the total Civil Works cost is sufficient provision to cover this item.

Contingencies

This item covers all the works, services and equipment that cannot be precisely identified and quantified at the present stage of the studies. It is commonly accepted that these contingencies amount to from 15 to

	A4m-3x2-RevB	Alternative Atlantic Locks 3x2 WSB	
CPP	15/07/2005	A4m-3x2-Quantities and Cost Estimation	1-16

20 percent of the total cost of the Civil Works at a conceptual design stage. Considering that the Civil Works have been defined for the Atlantic Post Panamax Lock Project (3x2 WSB) with quite a high level of precision for a conceptual study stage, the CPP estimate that a contingencies Item amounting to 15% of the total civil works cost is a sufficient provision.

Of course, with the increasing information gained regarding the geological and geotechnical features of the foundation, and with the increased level of detail achieved in the design of the Civil Work, the amount of this contingencies provision will progressively decrease.

Regarding the contingencies for Electromechanical Equipment, it is again commonly accepted that these works are generally quantified with a quite good level of precision, mainly because the geological and geotechnical uncertainties do not affect the cost estimates. At a Conceptual Design stage, a provision of 10% of the total cost of Electromechanical Equipment is considered perfectly adequate to cover the contingencies.

Administrative Costs

This Item includes all the management, communications and various other expenses incurred by the Owner to control the execution of the project. It does *not* include the financial costs. The Administrative Costs are estimated at 2% of the total cost of Civil Works and Electromechanical Equipment.

his Hom onvers parelase, installation and activation of all permanent improvident, demonded to depend the hesitab behavior of the Civil structures. It covers as well the middlening and theoriting the ensuration period. It is estimated that 2% of the tetal cost of the Civil Warks is sufficient to cover this that 2

Croating and Counsidering

It is very particly that a project of the size of the iffest function. Look will not require grouping, draining and consolidation of the functioner. At the project stage, the geologicid and geologicit require special fiftes of the function proves in not known in detail but it is likely that some when anyth require special buildness these area. when as imperinterabilization graving, do inage or denset (denot (denoted prograving and denset) build that of shows the constraining, do inage or denset (denot (denoted that 1% appliced graving and denset) build that he cover are constrained to these works, it is extinuted that 1% applices bits to the text (livit). Works cover is sufficient provident to cover this the cover the text.

erlangenilug 7 . *

This near oppins all the worker, see near and againment that cannet be provided interfaced and quartific a did praterit state of the statistic loss committee second of that flees committeender annuar to from 15

Table 3.1 Conceptual Design Post-Panamax Lock Structure Harmonization Atlantic 3x2 WSB TOTAL LOCK COST

			Total
Item	Description	%	USD - 2002
	LOCK		
1	Civil Works		392.628.232
1,1 1,2 1,3 1,4 1,5 1,6	Civil works Detailed studies and supervision Instrumentation Grouting and consolidation Contingencies Administrative costs	7% 2% 3% 15% 2%	304.362.970 21.305.408 6.087.259 9.130.889 45.654.446 6.087.259
2	Electromechanical equipment		207.937.508
2,1 2,2 2,3 2,4	Electromechanical equipment Detailed studies and supervision Contingencies Administrative costs	7% 10% 2%	174.737.402 12.231.618 17.473.740 3.494.748
	TOTAL LOCK COST		600.565.740

Tractebel Development Engineering

CPP

0

A4m-3x2-RevB

15/07/2005

Table 3.2 Conceptual Design Post-Panamax Lock Structure Harmonization Atlantic 3x2 WSB TOTAL WSB COST

ltem	Description	%	Total USD - 2002
item	WSB		
1	Civil Works		147.893.443
1,1 1,2 1,3 1,4 1,5 1,6	Civil works Detailed studies and supervision Instrumentation Grouting and consolidation Contingencies Administrative costs	7% 2% 3% 15% 2%	114.646.080 8.025.226 2.292.922 3.439.382 17.196.912 2.292.922
2	Electromechanical equipment		17.446.590
2,1 2,2 2,3 2,4	Electromechanical equipment Detailed studies and supervision Contingencies Administrative costs	7% 10% 2%	14.661.000 1.026.270 1.466.100 293.220
	TOTAL WSB COST		165.340.033

TECHNUM

Tractebel Development Engineering

CPP

Table 3.3Conceptual DesignPost-Panamax Lock StructureHarmonization Atlantic 3x2 WSB

Summary of the Total Project Cost

			Total
Item	Description	%	USD - 2002
	Total project cost without WSB		601.000.000
	Total project cost with WSB		766.000.000
		and the second	

CPP

0

CPP

Table A.1 **Conceptual Design** Post-Panamax Lock Structure Atlantic 3x2 wsb **CIVIL WORKS Quantities Summary** Lock without WSB

	Description	Unit	Quantity
1	Excavation		5.576.977
1,1	Overburden	m ³	1.673.093
1,2	Gatun rock	m ³	3.903.884
2	Fill	Sec.	
2,1	Backfill	m ³	2.218.532
2,2	Gravel layer	m ³	28.323
2,3	Bank protection	m²	0
2,4	Overhaul for spoil (10 km)	m ³ km	22.405.027
3	Concrete		
3,1	RC	m ³	1.282.414
3,2	RCC	m ³	96.851
3,3	Lean Concrete	m²	116.069
3,4	Pavement	m²	133.358
4	Reinforcement		
4,1	Steel reinforcement	tons	96.181
5	Other		
5,1	Steel corner protection	m	4.693
5,2	Rubber joint	m	7.121
5,3	Geotextile	m²	62.577
5,4	Liner HDPE	m²	3.000
5,5	Underlaying protective geotextile	m²	3.000
5,6	Geotextile for drainage	m²	0
5,7	Rails	m	4.848
5,8	Wooden vertical guidances	m	675
5,9	Steel for support rail and frames	ton	1.228
5,10	Vertical element for seals east/recesses	m ³	663
5,11	Vertical element for seals west	m ³	843
5,12	Horizontal elements for seals lock chamber	m ³	896
5,13	Elements for placement habitat	m ³	932
5,14	Horizontal elements for seals gate recesses	m ³	152
5,15	Technical building	m²	4.741

Table A.1 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb CIVIL WORKS Quantities Summary Lock without WSB

Item	Description	Unit	Quantity
6	Accessories		(Cactor attom
6,1	Bollards 1500kN	pcs	122
6,2	Wheel fenders	pcs	4
6,3	Roller fenders	pcs	4
6,4	Fenders Atlantic side	pcs	16
6,5	Ladders	m	122
6,6	Mooring bits	pcs	244
7	Steel piles	spoing	
7,1	Procurement of steel piles	tons	879
7,2	Driving of steel piles	pcs	10
7,3	Sandfill steel pile	m ³	856
7,4	Concrete fill steel pile	m ³	554
7,5	Steel reinforcement BE500	tons	28
		1	

Consorcio Post Panamax A4-M_3x2_revB_ / Qty Summary

Table A.2 Excavation and Fill Quantities

	contribuid state		Excavation	Backfill
Item	Description	Unit		
1	Lock from edge east wall Gatun side up to edge east wall Atlantic side	m ³	5.424.591	44.633
1,1	Overburden excavation	m ³	1.627.377	
1,2	Gatun Rock excavation	m ³	3.797.214	
2	Extra entrance wall Atlantic	m ³	152.386	5.651
2,1	Overburden excavation	m ³	45.716	
2,2 3	Gatun Rock excavation Backfill for temporary dam	m ³	106.670	
3,1	Atlantic side	m ³	in another	45.000
4	Overhaul for spoil (10 km)	m³km		22.405.027
	Total Volume Excavation / Backfill	m ³	5.576.977	95.284

Consorcio Post Panamax A4-M_3x2_revB_ / Excavation

Table A.3 Entrance Walls

Quantities Summary

		i qui at	Atlantic Side	Gatun Side
	D	11mit	Quantity	Quantity
Item	Description	Unit		
	Other dead 20 million and and			
	Standard 30 m - segment		2 622	3 622
1	Reinforced Concrete	topo	3.022	3.022
2	Steel Reinforcement BE500	tons m ³	0 801	0 801
3	Backfill Crushed Stone	m	3.031	3.031
4	Steel Comer Protection	m	37	37
C	Rubber Joint	m ²	612	612
6	Lean Concrete		012	012
	Quantities for one 20 m cogmont:			
	Quantities for one 30 m-segment.	-		
	Number of segments of 30 m:		9	6
	Cornersegment			
1	Reinforced Concrete	m ³	8.421	7.794
2	Steel Reinforcement BE500	tons	632	585
3	Backfill Crushed Stone	m ³	18.654	18.394
4	Steel Corner Protection	m	77	75
5	Rubber Joint	m	37	37
6	Lean Concrete	m²	1.326	1.291
	Curvesegment			
1	Reinforced Concrete	m ³	9.494	8.434
2	Steel Reinforcement BE500	tons	712	633
3	Backfill Crushed Stone	m ³	15.622	13.550
4	Steel Corner Protection	m	92	84
5	Rubber Joint	m	37	37
6	Lean Concrete	m²	1.451	1.283
	Endsegment			
1	Reinforced Concrete	m ³	1.524	1.992
2	Steel Reinforcement BE500	tons	114	149
3	Backfill Crushed Stone	m ³	4.161	5.440
4	Steel Corner Protection	m	13	17
5	Rubber Joint	m	37	37

A.3 12/07/2005

Table A.3 Entrance Walls

Quantities Summary

6 Lean Concrete	m²	257 337
Steel piles in muck 1 Procurement of steel piles φ 3000 mm - e = 30 mm - L = 40 m	tons	88
2 Driving of steel piles - L = 40 m	pcs	1
3 Sandfill steel pile	m ³	86
4 Concrete fill steel pile	m ³	55
5 Steel reinforcement BE500	tons	3
Quantities for one pile		
Number of piles:		10

Consorcio Post Panamax A4-M_3x2_revB_ / Entrance Walls

0

Table A.3 Entrance Walls

Quantities Summary

			Quant	ities Summary
			Atlantic Side	Gatun Side
láom	Description	Unit	Quantity	Quantity
item	Description	Unit		
1	Walls Reinforced Concrete	m ³	52.037	39.953
2	Steel Reinforcement BE500	tons	3.903	2.990
3	Backfill Crushed Stone	m ³	127.455	96.729
4	Steel Corner Protection	m	451	356
5	Rubber Joint	m	444	333
6	Lean Concrete	m²	8.543	6.582
8	Pavement	m²	10.119	10.119
1	<u>Steel piles in muck</u> Procurement of steel piles ∳ 3000 mm - e = 30 mm - L = 40 m	tons	879	
2	Driving of steel piles - L = 40 m	pcs	10	
3	Sandfill steel pile	m ³	856	
4	Concrete fill steel pile	m ³	554	
5	Steel reinforcement BE500	tons	28	

Tractebel Development TECHNUM Compagnic Nationale du Rhône COVNEET BELLIER

0

0

TASK 4

Table A.4 Lock Walls **Quantities Summary**

		Chamber 1	Chamber 2	Chamber 3
Item Description	Unit	quantity	Quantity	Quantity
1 Reinforced Concrete	m ³	7.792	7.734	7.698
2 Steel Reinforcement BE500	tons	584	580	577
3 Backfill Crushed Stone	m³	20.044	19.413	19.040
4 Roller compacted concrete	m³	1.005	1.005	1.005
5 Gravel Layer	m ³	285	285	285
6 Geotextile	m ²	645	645	645
7 Steel Corner Protection	E	30	30	30
8 Rubber joint	E	68	68	68
9 Lean Concrete	m ²	899	899	899
11 Pavement	m²	1.391	1.391	1.391
Quantities for one 30 m-segment:	toest a	endo evolo Surro COTO	1992 1992 1992 1993 1993 1993 1993	
Number of segments of 30 m:		22	22	22

Consorcio Post Panamax A4-M_3x2_revB_ / Lock Walls

Table A.5 WSB and Conduits (Civil Works) Side by side conduits disposition

Quantities Summary

			Quantity	
Item	Description	Unit	Quantity	
1	Reinforced concrete for valve chambers	m ³	37.886	
2	Steel reinforcement BE500	tons	2.841	
3	Reinforced concrete for conduits	m ³	37.893	
4	Steel reinforcement BE500	tons	2.842	
5	Reinforced concrete for intakes WSB	m ³	118.152	
6	Steel reinforcement BE500	tons	8.861	
7	Roller compacted concrete	m ³	160.470	
8	Backfill Crushed Stone over conduits	m ³	560.332	
9	Reinforced concrete for walls between WSB	m ³	61.227	
10	Steel reinforcement BE500	tons	4.592	
11	Liner HDPF (WSB)	m²	170.000	
12	Inderlaving protective geotextile (WSB)	m²	170.000	
13	Geotextile for drainage (WSB)	m²	21.000	
14	Bank protection (WSB)	m²	38.000	
16	Excavations		3	
16.1	WSB along Chamber 1	m ³	1.495.356	
16.2	WSB along Chamber 2	m ³	1.981.556	
16.3	WSB along Chamber 3	m ³	2.143.829	
16,4	Extra conduits and valve chambers	m ³	1.170.997	
17	Backfill crushed stone along chambers	20		
17,1	WSB along Chamber 1	m ³	94	
17,2	WSB along Chamber 2	m ³	0	
17.3	WSB along Chamber 3	m ³	0	
18	Lean concrete	m²	24.329	
19	Overhaul for spoil (10 km)	m³km	62.313.120	
20	Technical building	m²	4.320	
21	Equalisation layer WSB and spillway bottom	m ³	89.000	
		10 B		

Table A.5 WSB and Conduits (Civil Works)

		Quanti	ties Summary
Item	Description	Unit	Quantity
1	Reinforced concrete	m ³	255.158
2	Steel reinforcement BE500	tons	19.137
3	Roller compacted concrete	m ³	160.470
4	Backfill Crushed Stone over conduits	m ³	560.332
5	Liner HDPE (WSB)	m²	170.000
6	Underlaying protective geotextile (WSB)	m²	170.000
7	Geotextile for drainage (WSB)	m²	21.000
8	Bank protection (WSB)	m²	38.000
9	Excavations	m ³	6.791.738
10	Backfill Crushed Stone along chambers	m ³	94
11	Lean concrete	m²	24.329
12	Overhaul for spoil (10 km)	m ³ km	62.313.120
13	Technical building	m²	4.320
14	Equalisation layer WSB and spillway bottom	m³	89.000

Consorcio Post Panamax A4-M_3x2_revB_ / WSB and Conduits

Table A.6 Lock Head Gate

Quantities Summary

Item	Description	Unit	Quantity
1	Lock Head Gate 1		
1.1	Reinforced Concrete	m ³	94.427
1.2	Steel Reinforcement BE500	ton	7.082
1.3	Backfill crushed stone	m ³	16.755
1.4	RCC chamber floor	m ³	1.856
1.5	Gravel laver	m ³	619
1.6	Geotextile	m²	1.238
1.7	Steel corner protection	m	325
1.8	Rubber joint	m	200
1.9	Lean concrete	m²	5.162
1.10	Pavement	m²	5.330
1,11	Technical building	m²	1.185
	voodes	trippos valuate	bas and
2	Lock Head Gate 2	2	100.000
2,1	Reinforced Concrete	m	138.280
2,2	Steel Reinforcement BE500	ton	10.371
2,3	Backfill crushed stone	m ³	45.528
2,4	RCC chamber floor	m ³	2.434
2,5	Gravel layer	m³	811
2,6	Geotextile	m²	1.623
2,7	Steel corner protection	m	331
2,8	Rubber joint	m	200
2,9	Lean concrete	m²	6.315
2,10	Pavement	m²	5.330
2,11	Technical building	m²	1.185
3	Lock Head Gate 3		
3,1	Reinforced Concrete	m ³	138.131
3,2	Steel Reinforcement BE500	ton	10.360
3,3	Backfill crushed stone	m ³	44.326
3,4	RCC chamber floor	m ³	2.434
3,5	Gravel layer	m ³	81
3,6	Geotextile	m²	1.623
3,7	Steel corner protection	m	33
3,8	Rubber joint	m	200
3,9	Lean concrete	m²	6.31
3,10	Pavement	m²	5.330
3,11	Technical building	m²	1.18

Table A.6 Lock Head Gate

Quantities Summary

		Sec. 1	0
Item	Description	Unit	Quantity
4	Lock Head Gate 4		
4,1	Reinforced Concrete	m ³	137.327
4,2	Steel Reinforcement BE500	ton	10.300
4,3	Backfill crushed stone	m ³	42.665
4,4	RCC chamber floor	m ³	2.434
4,5	Gravel layer	m ³	811
4,6	Geotextile	m²	1.623
4,7	Steel corner protection	m	331
4,8	Rubber joint	m	200
4,9	Lean concrete	m ²	6.319
4,10	Pavement	m²	5.330
4,11	Technical building	m²	1.185
5	Concrete L-shaped walls and walls in		CANTER PRO-
	backfilled area to avoid by-pass seepage		- 002334
	behind lock heads 1, 2, 3 and 4		
5,1	Reinforced Concrete	m ³	27.819
5,2	Steel Reinforcement BE500	ton	2.086
5,3	Backfill crushed stone	m ³	126.830

0

Table A.7 Transition Segment

Quantities Summary

Item	Descr	iption	ries.	Unit	Quantity
1	Lock Head Gate 1				
					Ad Cela 4
1,1	Segment with inlet zone east	side			Manago be
1,11	Reinforced Concrete			m ³	11.697
1,12	Steel Reinforcement BE500			tons	877
1,13	Backfill Crushed Stone			m ³	22.095
1,14	Steel Corner Protection			m	54
1,15	Rubber Joint			m	60
1,16	Lean Concrete			m²	1.555
1,17	Roller compacted concrete			m ³	2.007
1,18	Gravel Layer			m ³	669
1,19	Geotextile			m²	1.338
	1.186				entblad B
1,2	Segment with inlet zone west	side			
1,21	Reinforced Concrete			m ³	11.786
1,22	Steel Reinforcement BE500			tons	884
1,23	Backfill Crushed Stone			m ³	22.348
1,24	Steel Corner Protection			m	53
1,25	Rubber Joint			m	60
1,26	Lean Concrete			m²	1.579
1,27	Roller compacted concrete			m ³	2.007
1,28	Gravel Layer			m ³	669
1,29	Geotextile			m²	1.338
1,3	Segment side chamber 1 east	t side			
1,31	Reinforced Concrete			m ³	7.662
1,32	Steel Reinforcement BE500			tons	575
1,33	Backfill Crushed Stone			m ³	19.710
1,34	Roller compacted concrete			m ³	989
1,35	Gravel layer			m ³	280
1,36	Geotextile			m²	634
1,37	Steel Corner Protection			m	30
1,38	Rubber joint			m	68
1,39	Lean Concrete			m²	884
1,4	Segment side chamber 1 wes	t side			
1,41	Reinforced Concrete			m ³	7.662
1,42	Steel Reinforcement BE500			tons	575

0

0

Table A.7 Transition Segment

Quantities Summary

1,43 Backfill Crushed Stone	m ³	19.710
1,44 Roller compacted concrete	m ³	989
1,45 Gravel layer	m ³	280
1,46 Geotextile	m ²	634
1,47 Steel Corner Protection	m	30
1,48 Rubber joint	m	68
1,49 Lean Concrete	m ²	884
2 Lock Head Gate 2		E State
2,1 Segment side chamber 1 east side		autor frotos
2,11 Reinforced Concrete	m ³	9.870
2,12 Steel Reinforcement BE500	tons	740
2,13 Backfill Crushed Stone	m ³	25.389
2,14 Roller compacted concrete	m ³	1.273
2,15 Gravel layer	m ³	361
2,16 Geotextile	m ²	817
2,17 Steel Corner Protection	m	38
2,18 Rubber joint	m	68
2,19 Lean Concrete	m²	1.139
2,2 Segment side chamber 1 west side		
2,21 Reinforced Concrete	m ³	9.870
2,22 Steel Reinforcement BE500	tons	740
2,23 Backfill Crushed Stone	m ³	25.389
2,24 Roller compacted concrete	m ³	1.273
2,25 Gravel layer	m ³	361
2,26 Geotextile	m ²	817
2,27 Steel Corner Protection	m	38
2,28 Rubber joint	m	68
2,29 Lean Concrete	m²	1.139
2,3 Segment side chamber 2 east side		
2,31 Reinforced Concrete	m ³	6.316
2,32 Steel Reinforcement BE500	tons	474
2,33 Backfill Crushed Stone	m ³	15.854
2,34 Roller compacted concrete	m ³	821
2,35 Gravel layer	m ³	233
2,36 Geotextile	m²	527
2,37 Steel Corner Protection	m	25

Consorcio Post Panamax A4-M_3x2_revB_ / Transition Segment

A.7 12/07/2005

L'ABS A

Table A.7 Transition Segment

Quantities Summary

2.38 Rubber joint	m	68
2.39 Lean Concrete	m²	734
- mil - 200		1000
2,4 Segment side chamber 2 west side		8.07
2,41 Reinforced Concrete	m ³	6.316
2,42 Steel Reinforcement BE500	tons	474
2,43 Backfill Crushed Stone	m ³	15.854
2,44 Roller compacted concrete	m ³	821
2,45 Gravel layer	m ³	233
2,46 Geotextile	m²	527
2,47 Steel Corner Protection	m	25
2,48 Rubber joint	m	68
2,49 Lean Concrete	m ²	734
1890.88 Man	0	all higher Sta
3 Lock Head Gate 3	0.000	as baighted on
3,1 Segment side chamber 2 east side		100
3,11 Reinforced Concrete	m ³	10.183
3,12 Steel Reinforcement BE500	tons	764
3,13 Backfill Crushed Stone	m ³	25.560
3,14 Roller compacted concrete	m ³	1.324
3,15 Gravel layer	m ³	375
3,16 Geotextile	m²	849
3,17 Steel Corner Protection	m	40
3,18 Rubber joint	m	68
3,19 Lean Concrete	m²	1.184
t start to the	i alerai	ing balancy has
3,2 Segment side chamber 2 west side		3501
3,21 Reinforced Concrete	m ³	10.183
3,22 Steel Reinforcement BE500	tons	764
3,23 Backfill Crushed Stone	m ³	25.560
3,24 Roller compacted concrete	m ³	1.324
3,25 Gravel layer	m ³	375
3,26 Geotextile	m²	849
3,27 Steel Corner Protection	m	40
3,28 Rubber joint	m	68
3,29 Lean Concrete	m²	1.184
	(J	or paregraphic
3,3 Segment side chamber 3 east side		1976 B
3,31 Reinforced Concrete	m ³	6.287
3,32 Steel Reinforcement BE500	tons	472

Consorcio Post Panamax A4-M_3x2_revB_ / Transition Segment A.7 12/07/2005

Table A.7 Transition Segment

Quantities Summary

3,33 Backfill Crushed Stone	m ³	15.549
3,34 Roller compacted concrete	m ³	821
3,35 Gravel Layer	m ³	233
3,36 Geotextile	m²	527
3,37 Steel Corner Protection	m	25
3,38 Rubber joint	m	68
3,39 Lean Concrete	m²	734
3,4 Segment side chamber 3 west side		
3,41 Reinforced Concrete	m ³	6.287
3,42 Steel Reinforcement BE500	tons	472
3,43 Backfill Crushed Stone	m ³	15.549
3,44 Roller compacted concrete	m ³	821
3,45 Gravel Layer	m ³	233
3,46 Geotextile	m ²	527
3,47 Steel Corner Protection	m	25
3,48 Rubber joint	m	68
3,49 Lean Concrete	m²	734
4 Lock Head Gate 4		
4,1 Segment side chamber 3 east side		
4,11 Reinforced Concrete	m ³	10.136
4,12 Steel Reinforcement BE500	tons	760
4,13 Backfill Crushed Stone	m ³	25.069
4,14 Roller compacted concrete	m ³	1.324
4,15 Gravel Layer	m ³	375
4,16 Geotextile	m²	849
4,17 Steel Corner Protection	m	40
4,18 Rubber joint	m	68
4,19 Lean Concrete	m²	1.184
4,2 Segment side chamber 3 west side		
4,21 Reinforced Concrete	m ³	10.136
4,22 Steel Reinforcement BE500	tons	760
4,23 Backfill Crushed Stone	m ³	25.069
4,24 Roller compacted concrete	m ³	1.324
4,25 Gravel Layer	m ³	375
4,26 Geotextile	m²	849
4,27 Steel Corner Protection	m	40

Consorcio Post Panamax A4-M_3x2_revB_ / Transition Segment

0

Table A.7 Transition Segment

Quantities Summary

4,28 Rubber joint	m	68
4,29 Lean Concrete	m²	1.184
4.2 Comment with outlet zone east side		
4,3 Segment with outlet zone east side	m ³	0.263
4,31 Reinforced Concrete	tone	9.205
4,32 Steel Reinforcement BES00	10115	18 008
4,33 Backfill Crushed Stone		10.090
4,34 Steel Corner Protection		44
4,35 Rubber Joint	111 m ²	1 204
4,36 Lean Concrete	111-	1.294
4,37 Roller compacted concrete	1110	2.113
4,38 Gravel Layer	m° m²	1 100
4,39 Geotextile	m-	1.409
4.4 Segment with outlet zone west side		
4.41 Reinforced Concrete	m ³	9.859
4.42 Steel Reinforcement BE500	tons	739
4.43 Backfill Crushed Stone	m ³	19.222
4.44 Steel Corner Protection	m	45
4.45 Rubber Joint	m	60
4.46 Lean Concrete	m²	1.338
4.47 Roller compacted concrete	m ³	2.113
4.48 Gravel Laver	m ³	704
4 49 Geotextile	m ²	1.409
.,		Into horizon

Table A.7 Transition Segment

Quantities Summary

Quantities Summary

			Quantity
Item	Description	Unit	Quantity
1	Reinforced Concrete	m ³	143.512
2	Steel Reinforcement BE500	tons	10.763
3	Backfill Crushed Stone	m ³	336.026
4	Steel Corner Protection	m	588
5	Rubber Joint	m	1.056
6	Lean Concrete	m²	17.484
7	Roller compacted concrete	m ³	21.343
8	Gravel Layer	m ³	6.461
9	Geotextile	m²	13.900

Consorcio Post Panamax A4-M_3x2_revB_ / Transition Segment

Table A.8 Lock Head Gate Quantities Summary Equipment (Civil Part)

Item	Description	Unit	Quantity
1	Lock Head Gate 1		
1,1	Equipment lock gate (civil part)		000
1.1.1	Rails USW	m	260
1.1.2	Rails LSW	m	260
1.1.3	Rails MSW	m	432
1.1.4	Rails horizontale guidances in recesses	m	260
1.1.5	Wooden vertical guidance in recesses	m	110
1.1.6	Steel for support rails USW	tons	104
1.1.7	Steel for support rails LSW	tons	104
1.1.8	Steel for support rails guidance	tons	39
1.1.9	Maintenance support frames	tons	60
1,2	Equipment lock head (civil part)		
1.2.1	Vertical elements for seals - east/recesses	m ³	124
1.2.2	Vertical elements for seals - west	m ³	157
1.2.3	Horizontal elements for seals- lock chamber	m ³	224
1.2.4	Elements for placement habitat	m ³	233
1.2.5	Horizontal elements for seals- gate recesses	m ³	38
2	Lock Head Gate 2		
2,1	Equipment lock gate (civil part)		
2.1.1	Rails USW	m	260
2.1.2	Rails LSW	m	260
2.1.3	Rails MSW	m	432
2.1.4	Rails horizontal guidance in recesses	m	260
2.1.5	Wooden vertical guidance in recesses	m	190
216	Steel for support rails USW	tons	104
217	Steel for support rails LSW	tons	104
218	Steel for support rails guidance	tons	39
2.1.9	Maintenance support frames	tons	60
2.2	Equipment lock head (civil part)		
2.2.1	Vertical elements for seals - east/recesses	m ³	182
2.2.2	Vertical elements for seals - west	m ³	233
2.2.3	Horizontal elements for seals- lock chamber	m ³	224
2.2.4	Elements for placement habitat	m ³	233
225	Horizontal elements for seals- gate recesses	m ³	38

Consorcio Post Panamax A4-M_3x2_revB_ / LHG Equipment (Civil)

Table A.8 Lock Head Gate Quantities Summary Equipment (Civil Part)

Item	Description	Unit	Quantity
3	Lock Head Gate 3	-	
3,1	Equipment lock gate (civil part)		
3.1.1	Rails USW	m	260
3.1.2	Rails LSW	m	260
3.1.3	Rails MSW	m	432
3.1.4	Rails horizontal guidances in recesses	m	260
3.1.5	Wooden vertical guidance in recesses	m	190
3.1.6	Steel for support rails USW	tons	104
3.1.7	Steel for support rails LSW	tons	104
3.1.8	Steel for support rails guidance	tons	39
3.1.9	Maintenance support frames	tons	60
3,2	Equipment lock head (civil part)		
3.2.1	Vertical elements for seals - east/recesses	m ³	182
3.2.2	Vertical elements for seals - west	m ³	228
3.2.3	Horizontal elements for seals- lock chamber	m ³	224
3.2.4	Elements for placement habitat	m ³	233
3.2.5	Horizontal elements for seals- gate recesses	m ³	38
4	Lock Head Gate 4		
4,1	Equipment lock gate (civil part)		
4.1.1	Rails USW	m	260
4.1.2	Rails LSW	m	260
4.1.3	Rails MSW	m	432
4.1.4	Rails horizontale guidances in recesses	m	260
4.1.5	Wooden vertical guidance in recesses	m	185
4.1.6	Steel for support rails USW	tons	104
4.1.7	Steel for support rails LSW	tons	104
4.1.8	Steel for support rails guidance	tons	39
1.1.9	Maintenance support frames	tons	60
4,2	Equipment lock head (civil part)		
4.2.1	Vertical elements for seals - east/recesses	m ³	175
4.2.2	Vertical elements for seals - west	m ³	225
4.2.3	Horizontal elements for seals- lock chamber	m ³	224
4.2.4	Elements for placement habitat	m ³	233
4.2.5	Horizontal elements for seals- gate recesses	m ³	38

Consorcio Post Panamax A4-M_3x2_revB_ / LHG Equipment (Civil)

Table A.9 ACCESSORIES

Quantities Summary

		Г			
Quantity		escription Unit		Description	Item
				Accessories	1
122		pcs		Bollards 1500kN	1,1
4		pcs		Wheel fenders	1,2
4		pcs		Roller fenders	1,3
16		pcs		Fenders Atlantic side	1,4
122		pcs		Ladders	1,6
244		pcs		Mooring bits	1,7

to Belley for heyed whe guiltance

4.2 Support on the devid stat)
 5.4 Verified all only to the rest's manufacture of the second state o

Table A.10 ELECTROMECHANICAL EQUIPMENT Quantities Summary

	a hat the second se	1	Quantity	Unit	Total
Item	Description	Unit	(pcs)	Weight (t)	Weight (t)
1	EM Equipment Lock				
11	Lock dates		Sector State		
1 1 1	Lock head 1			Total 1 1 1	3 / 10
	Lock dates (2)	tons	2	1 550	3 100
	Bulkheads (1)	tons	1	200	200
	Upper support wagon (2)	tons	2	30	60
	Lower support wagon (2)	tons	2	25	50
1.1.2	Lock head 2	10110	-	Total 1 1 2	5,660
	Lock gates (2)	tons	2	2 600	5,200
	Bulkheads (1)	tons	1	300	300
	Upper support wagon (2)	tons	2	45	90
	Lower support wagon (2)	tons	2	35.0	70
1.1.3	Lock head 3			Total 1.1.3.	5.660
	Lock gates (2)	tons	2	2.600	5.200
	Bulkheads (1)	tons	1	300	300
	Upper support wagon (2)	tons	2	45	90
	Lower support wagon (2)	tons	2	35,0	70
1.1.4	Lock head 4			Total 1.1.4.	5.460
	Lock gates (2)	tons	2	2.500	5.000
	Bulkheads (1)	tons	1	300	300
	Upper support wagon (2)	tons	2	45	90
	Lower support wagon (2)	tons	2	35,0	70
1.1.5	Spare parts			Total 1.1.5.	84
	Lower support wagon (LH1)	tons	1	35	35
	Lower support wagon (LH2, 3, 4)	tons	1	25	25
	Maintenance support wagons (LH1)	tons	12	1	12
	Maintenance support wagons (LH2, 3, 4)	tons	12	1	12
1,2	Culvert valves and bulkheads			Total 1.2:	2.047
1.2.1	Culvert valves	tons	16	26	408
1.2.2	Culvert bulkheads	tons	8	23	180
1.2.3	Culvert valves slot	tons	16	37	592
1.2.4	Culvert bulkhead slots	tons	32	27	867
1,4	Support equipment		1		
1,5	Control system		1		
1,6	Lighting System		1		
1,7	Electrical and Power System		1		
		1			

Table A.10 ELECTROMECHANICAL EQUIPMENT Quantities Summary

otal	То	Unit	antity	Qui	1	1. yan	1 instead	- K bilot	
gnt (t)	weig	Weight (t)	ocs)	(F	Unit	1. 182	ption	Descri	Item
2.932 502 107 998 1.325	106. 00580	Total 2.: 21 18 42 28	24 6 24 48	enor ticol ticol	tons tons tons tons		Food 1011 1 660 200 200	quipment WSB valves bulkheads valves slots bulkheads slots	2 2,1 2,3 2,4 2,6
w hat be an	non els	(S)		2(10)		5	1.5		

Consorcio Post Panamax A4-M_3x2_revB_ / EM Equipment

Table A.11 Construction and permanent dams

Quantities Summary

ltem	Description	Unit	,
1	Liner HDPE		
1,1	Atlantic Side	m ²	3000
2	Underlaying protective geotextile		
2,1	Atlantic Side	m²	3000

Consorcio Post Panamax A4-M_3x2_revB_ / Dams

TASK 4

Table B.1.1 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Total Cost Civil Works

Lock without WSB

					Selected	Unit Price
	The second s			Quantity	Unit	Total
Item	Description	1	Unit		Price	USD
1	Excavation					24 200 274
11	Overburden		m ³	1 673 093	3 50	5 855 826
12	Gatun rock		m ³	3 903 884	4 75	18 5/3 //0
.,-			1	0.000.004	4,70	10.040.440
2	Fill					13 547 043
2.1	Backfill		m ³	2.218.532	3.00	6.655.596
2.2	Gravel laver		m ³	28.323	6.00	169 939
2.3	Bank protection		m²	0	13.00	
2,4	Overhaul for spoil (10 km)		m ³ km	22.405.027	0,30	6.721.508
3	Concrete				and a loss of a	160.846.678
3,1	RC		m ³	1.282.414	120.00	153.889.632
3,2	RCC		m ³	96.851	28,00	2.711.832
3,3	Lean Concrete		m²	116.069	9,00	1.044.621
3,4	Pavement		m²	133.358	24,00	3.200.592
4	Reinforcement					84.158.393
4,1	Steel reinforcement		tons	96.181	875,00	84.158.393
5	Other					14.208.059
5,1	Steel corner protection		m	4.693	73.00	342.590
5,2	Rubber joint		m	7.121	71,00	505.591
5,3	Geotextile		m²	62.577	1,80	112.638
5,4	Liner HDPE		m²	3.000	13,31	39.930
5,5	Underlaying protective geotextile		m²	3.000	1,88	5.640
5,6	Geotextile for drainage		m²	0	4,71	C
5,7	Rails		m	4.848	280,00	1.357.440
5,8	Wooden vertical guidances		m	675	400,00	270.000
5,9	Steel for support rail and frames		ton	1.228	2.400,00	2.947.200
5,10	Vertical element for seals east/rec	esses	m ³	663	3.050,00	2.022.150
5,11	Vertical element for seals west		m ³	843	2.700,00	2.276.100
5,12	Horizontal elements for seals lock	chamber	m ³	896	2.700,00	2.419.200
5,13	Elements for placement habitat		m ³	932	275,00	256.300
5,14	Horizontal elements for seals gate	recesses	m ³	152	1.520,00	231.040
5,15	Technical building		m ²	4.741	300.00	1.422.240

B.1.1 12/07/2005 Tractebel Development Engineering Compagnie Nationale du Rhône COYNE ET BELLIER

TASK 4

Table B.1.1 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Total Cost Civil Works

						Selected I	Init Price
						Unit	Total
tem	Desci	ription	Tube I	Unit	Quantity	Price	USD
							Sector sector
6	Accessories						5.961.800
6,1	Bollards 1500kN			pcs	122	4.900,00	597.800
6,2	Wheel fenders			pcs	4	540.000,00	2.160.000
6,3	Roller fenders			pcs	4	540.000,00	2.160.000
6,4	Fenders Atlantic side			pcs	16	50.000,00	800.000
6,5	Ladders			m	122	100,00	12.200
6,6	Mooring bits			pcs	244	950,00	231.800
						Active (CEO) Report	
7	Steel piles						1.241.723
7,1	Procurement of steel piles			tons	879	1.200,00	1.054.560
7,2	Driving of steel piles			pcs	10	7.500,00	75.000
7,3	Sandfill steel pile			m ³	856	25,00	21.407
7,4	Concrete fill steel pile			m ³	554	120,00	66.508
7,5	Steel reinforcement BE500			tons	28	875,00	24.248
	Tota	Cost				ant services	304.362.970

Goolaxfiel

ana stit.

5.6 Wooden variaan stadares 6.9 Steviller support all and remen 10 Steviller support all and remen

Werfical elatrient in sealery set

Control of the photon and a photon of a photon

Hodsonial all mentation starting gale

phiniaid thoirrigaT

Consorcio Post Panamax A4-M_3x2_revB_ / Total Cost

B.1.1 12/07/2005

Table B.1.2 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Total Cost Civil Works WSB Side by side conduits disposition

				Selected	Unit Price
			Quantity	Unit	Total
Item	Description	Unit	Quantity	Price	USD
1	Reinforced concrete	m ³	255.158	120,00	30.618.946
2	Steel reinforcement BE500	tons	19.137	875,00	16.744.736
3	Roller compact concrete over conduits	m ³	160.470	28,00	4.493.160
4	Backfill crushed stone over conduits	m ³	560.332	3,00	1.680.996
5	Liner HDPE (WSB)	m ²	170.000	13,31	2.262.700
6	Underlaying protective geotextile (WSB)	m ²	170.000	1,88	319.600
7	Geotextile for drainage (WSB)	m ²	21.000	4,71	98.910
8	Bank protection (WSB)	m ²	38.000	13,00	494.000
9	Excavation	100		1999	
9,1	Overburden excavation	m ³	2.037.521	3,50	7.131.325
9,2	Gatun Rock excavation	m ³	4.754.217	4,75	22.582.529
10	Backfill crushed stone along chambers	m ³	94	3,00	282
11	Lean concrete	m ²	24.329	9,00	218.961
12	Overhaul for spoil (10km)	m ³ km	62.313.120	0,30	18.693.936
13	Technical building	m ²	4.320	300,00	1.296.000
14	Equalisation layer WSB and spillway bottom	m ³	89.000	90,00	8.010.000
	Total Cost				114.646.080

Consorcio Post Panamax A4-M_3x2_revB_ / Total Cost WSB

Table B.1.3 Conceptual Design Post-Panamax Lock Structure Atlantic 3x2 wsb Civil Works Lock Cost by Structure

tem	Description	Total USD - 2002	
1	Excavation and Fill for lock	31.406.635	
2	Entrance walls	19.725.674	
3	Lock walls	103.949.546	
4	Lock heads	143.273.746	
5	Accessories	5.961.800	
6	Dams	45.570	
	TOTAL COST LOCK	304.362.970	
6	WSB and conduits (excavation and fill included)	114.646.080	
	TOTAL COST WITH WSB	419.009.050	
	- Manager		

Table B.2 Cost Estimate Excavation and Fill

Description		Unit	Unit	Quantity	Total
Description		Unit	Price		050-2002
Excavation					
Overburden excavation		m ³	3,50	1.673.093	5.855.826
Gatun Rock excavation		m ³	4,75	3.903.884	18.543.449
Fill	die			and Ba	
Backfill	06.63	m ³	3,00	95.284	285.852
Overhaul for spoil (10 km)		m³km	0,30	22.405.027	6.721.508
Total Cost	10015				31.406.635
	Description Excavation Overburden excavation Gatun Rock excavation Fill Backfill Overhaul for spoil (10 km) Total Cost	Description Excavation Overburden excavation Gatun Rock excavation Fill Backfill Overhaul for spoil (10 km) Total Cost	Description Unit Excavation m³ Overburden excavation m³ Gatun Rock excavation m³ Fill m³ Backfill m³ Overhaul for spoil (10 km) m³km	DescriptionUnitDescriptionUnitExcavationm³Overburden excavationm³Gatun Rock excavationm³Fillm³Backfillm³Overhaul for spoil (10 km)m³kmTotal CostImage: Control of the second s	Unit PriceUnit QuantityExcavation Overburden excavation Gatun Rock excavationm³3,501.673.093Fill Backfill Overhaul for spoil (10 km)m³3,0095.284Total Costm³km0,3022.405.027

Table B.3 Cost Estimate Entrance Walls

Item	Description	Unit	L	Init rice	Quantity	Total USD - 2002
1 2 3 4 5 6 7	Walls Reinforced Concrete Steel Reinforcement BE500 Backfill Crushed Stone Steel Corner Protection Rubber Joint Lean Concrete Pavement	m ³ tons m ³ m m m ² m ²	ini ini ini ini ini	120,00 875,00 3,00 73,00 71,00 9,00 24,00	91.989 6.899 224.184 807 777 15.125 20.238	11.038.700 6.036.789 672.552 58.902 55.167 136.129 485.712
1	Steel piles Procurement of steel piles ϕ 3000 mm - e = 30 mm - L = 40 m	tons	A	1.200,00	879	1.054.56
2	Driving of steel piles - L = 40 m	pcs		7.500,00	10	75.00
3	Sandfill steel pile	m ³		25,00	856	21.40
4	Steel reinforcement BE500	tons		875	28	24.24
	Total Cost					19.725.67

Tractebel Development TECHNUM

0

0

TASK 4

Table B.4 Cost Estimate Lock Walls

		Unit	Ounditor	Total
Item Description	Unit	Price	Mudiluty	USD - 2002
Constant and the second s			No. of Street, or other	
1 Reinforced Concrete	m ³	120,00	510.928	61.311.360
2 Steel Reinforcement BE500	tons	875,00	38.320	33.529.650
3 Backfill Crushed Stone	m ³	3,00	1.286.934	3.860.802
4 Roller compacted concrete	m³	28,00	66.350	1.857.794
5 Gravel Layer	m ³	6,00	18.810	112.860
6 Geotextile	m²	1,80	42.570	76.626
7 Steel Corner Protection	ш	73,00	1.980	144.540
8 Rubber joint	ш	71,00	4.488	318.648
9 Lean Concrete	m²	9,00	59.341	534.065
10 Pavement	m ²	24,00	91.800	2.203.200
Total Cost				103.949.546
		and the second s		

Consorcio Post Panamax A4-M_3x2_revB_ / Lock Walls Cost

Table B.5 Cost Estimate WSB and Conduits (Civil Works) Side by side conduits disposition

		Unit		Total
Item Description	Unit	Price	Quantity	USD - 2002
	6	100 001	056 450	010 010 00
I Reinforced concrete	, H	120,00	001.002	20.010.040
2 Steel reinforcement BE500	tons	875,00	19.137	16.744.736
3 Roller compact concrete over conduits	m ³	28,00	160.470	4.493.160
4 Backfill crushed stone over conduits	m ³	3,00	560.332	1.680.996
5 Liner HDPE (WSB)	m ²	13,31	170.000	2.262.700
6 Underlaying protective geotextile (WSB)	m ²	1,88	170.000	319.600
7 Geotextile for drainage (WSB)	m ²	4,71	21.000	98.910
8 Bank protection (WSB)	m²	13,00	38.000	494.000
9 Excavation			and the second	
9,1 Overburden excavation	m ³	3,50	2.037.521	7.131.325
9,2 Gatun rock excavation	m ³	4,75	4.754.217	22.582.529
10 Backfill crushed stone along chambers	m ³	3,00	94	282
11 Lean concrete	m ²	9,00	24.329	218.961
12 Overhaul for spoil (10km)	m³km	0,30	62.313.120	18.693.936
13 Technical building	m ²	300,00	4.320	1.296.000
14 Equalisation layer WSB and spillway bottom	m³	90,00	89.000	8.010.000
Total Cost	and the second se	NOS -	LI SCHES	114.646.080

Consorcio Post Panamax A4-M_3x2_revB_ / WSB and Conduits Cost

Table B.6 Cost Estimate Lock Head Gate

	and the second		Unit	Quantity	Total
Item	Description	Unit	Price	quantity	USD - 2002
1	Reinforced Concrete	m ³	120.00	535.984	64.318.080
2	Steel Reinforcement BE500	ton	875,00	40.199	35.173.950
3	Backfill crushed stone	m ³	3,00	276.104	828.312
5	RCC chamber floor	m ³	28,00	9.158	256.431
6	Gravel layer	m ³	6,00	3.052	18.311
7	Geotextile	m ²	1,80	6.107	10.992
8	Steel corner protection	m	73,00	1.318	96.214
9	Rubber joint	m	71,00	800	56.800
10	Lean concrete	m ²	9,00	24.119	217.071
11	Pavement	m ²	24,00	21.320	511.680
12	Technical building	m²	300,00	4.741	1.422.240
	Total Cost				102.910.080

Table B.7 Cost Estimate Transition Segment

	and T		Unit		Total
tem	Description	Unit	Price	Quantity	USD - 2002
1	Reinforced concrete	m ³	120,00	143.512	17.221.493
2	Steel reinforcement BE500	ton	875,00	10.763	9.418.004
3	Backfill crushed stone	m ³	3,00	336.026	1.008.078
4	Steel corner protection	m	73,00	588	42.933
5	Rubber joint	m	71,00	1.056	74.976
6	Lean concrete	m²	9,00	17.484	157.356
9	RCC	m ³	28,00	21.343	597.607
10	Gravel layer	m ³	6,00	6.461	38.768
11	Geotextile	m²	1,80	13.900	25.02
	Total Cost	Toolet	R STA		28.584.236

Table B.8Cost EstimateLock Head GateEquipment (Civil Part)

Item	Description	Unit	Unit	Quantity	Total
nem	Description	Unit	THEE		000-2002
1	Equipment lock gate (civil part)				4.574.640
1,1	Rails	m	280,00	4.848	1.357.440
1,2	Wooden vertical guidances	m	400,00	675	270.000
1,3	Steel for support rails and frames	tons	2.400,00	1.228	2.947.200
2	Equipment lock head (civil part)				7.204.790
2,1	Vertical elements for seals - east/recesses	m ³	3.050,00	663	2.022.150
2,2	Vertical elements for seals - west	m ³	2.700,00	843	2.276.100
2,3	Horizontal elements for seals- lock chamber	m ³	2.700,00	896	2.419.200
2,4	Elements for placement habitat	m ³	275,00	932	256.300
2,5	Horizontal elements for seals- gate recesses	m ³	1.520,00	152	231.040
	Total Cost				11.779.430

Table B.9 Cost Estimate Accessories

	SUDE ORI COMPANY			Unit	Quantity	Total
Item	Description	U	nit	Price	quantity	USD - 2002
1	Accessories	lacions		-		
1,1	Bollards 1500kN	p	CS	4.900	122	597.800
1,2	Wheel fenders	p	cs	540.000	4	2.160.000
1,3	Roller fenders	p	CS	540.000	4	2.160.000
1,4	Fenders Atlantic side	p	CS	50.000	16	800.000
1,5	Ladders	00,000	m	100	122	12.200
1,6	Mooring bits	p	CS	950	244	231.800
	Total Cost	0,83				5.961.800
	1020102	0.00		fm 1	room slog	also tot show

Consorcio Post Panamax A4-M_3x2_revB_ / Accessories Cost

Table B.10 Cost Estimate ELECTROMECHANICAL EQUIPMENT

Itom	Description	Unit	Unit	Quantity	Total
nem	Description	Unit	Price		030-2002
1	EM Equipment lock		the late		174.737.402
1,1	EM Equipment Lock (rolling gates and bulkheads)	tons	6.173	20.274	125.151.402
1,2	EM Equipment Lock (valves and bulkheads)	tons	5.000	2.047	10.236.000
1,3	Support equipment		21.400.000	1	21.400.000
1,4	Control system		2.800.000	1	2.800.000
1,5	Lighting System		2.000.000	1	2.000.000
1,6	Electrical and Power System (alternative 5)		13.150.000	1	13.150.000
2	EM Equipment WSB (Support and control system	tons	5.000	2.932	14.661.000
	Total Cost				189.398.402

Table B.11 Cost estimate Construction and permanent dams

ltem		Description		Unit	Unit Price		Quantity	Total USD - 2002
1 2	Liner HDPE Underlaying	protective geote	extile	m² m²	13 1	,31 ,88	3.000 3.000	39.930 5.640
		Total Cost					na hie ái	45.570
		21 400,000 2 800-000 2 000,000 9 169,000		20 20 20 20	21:405.0 2:809.0 2:809.0 2:009.0		D.C	kt angingenien ut syckan og Svelen ont opd Hower Sven