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Abstract.

A global atmospheric model with roughly 50 km horizontal grid spacing is used to simulate

the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as

the lower boundary condition. The model’s convective parameterization is based on a closure for

shallow convection, with much of the deep convection allowed to occur on resolved scales. Four

realizations of the period 1981-2005 are generated. The correlation of yearly Atlantic hurricane

counts with observations is greater than 0.8 when the model is averaged over the four realizations,

supporting the view that the random part of this annual Atlantic hurricane frequency (the part not

predictable given the SSTs) is relatively small ( < 2 hurricanes/yr). Correlations with observations

are lower in the East, West and South Pacific (roughly 0.6, 0.5 and 0.3) and insignificant in the

Indian ocean. The model trends in Northern Hemisphere basin-wide frequency are consistent with

the observed trends in the International Best Track Archive for Climate Stewardship (IBTrACS)

database. The model generates an upward trend of hurricane frequency in the Atlantic and

downward trends in the East and West Pacific over this time frame. The model produces a negative

trend in the Southern Hemisphere that is larger than that in the IBTrACS.

The same model is used to simulate the response to the SST anomalies generated by coupled

models for the Intergovernmental Panel on Climate Change 4th Assessment Report (IPCC-AR4,

CMIP3) A1B scenario late in the 21st century. Results are presented for SST anomalies computed

by averaging over 18 models in the CMIP3 archive and from individual realizations from three

models (GFDL CM2.1, UKMO HADCM3, and MPI ECHAM5). A modest reduction of global

hurricane frequency is obtained in each case, but the results in individual basins differ among the

models. For example, CM2.1 SST anomalies result in an increase in Atlantic hurricanes with

a decrease in the East Pacific, while the HADCM3 SSTs produce the opposite pattern. In the

Atlantic, the seasonal mean shear in the Main Development Region generated by the model is

well correlated with the model’s storm frequency, both for interannual variability and for the

intermodel spread in global warming projections. A reduction in Southern Hemisphere storms is a

robust projection for all SST anomaly patterns examined.
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1. Introduction

As global atmospheric climate models move to finer horizontal resolution, the hope is that

simulations of the climatology of tropical storms will improve to the point that they can be

used to reliably study the impact of global warming on storm statistics. Recent encouraging

results with global models include atmosphere-only simulations (e.g., Bengtsson et al. 2007a b;

Oouchi et al. 2006; LaRow et al. 2008) and coupled models (Vitart 2006; Gualdi et al. 2008).

These studies suggest that atmospheric resolutions in the range of 20-100km may be sufficient to

study many aspects of genesis and storm distribution. Recent simulations with an 18km regional

climate model over the North Atlantic (Knutson et al. 2007) (below K07) are also encouraging

with regard to the quality of the simulation of interannual variability of hurricane frequency

obtainable at the lower end of this meso-β range of resolutions, even though simulations of

intensity remain inadequate. The hope is that simulations of storm frequency and intensity are

effectively decoupled, so that reliable simulations of frequency can be generated in models with

an unrealistic distribution of intensities.

The standard version of the AM2.1 atmospheric model developed at the Geophysical Fluid

Dynamics Laboratory (Anderson et al. 2004) has a horizontal grid spacing of 2 degrees latitude by

2.5 degrees longitude. We present results here from a version of AM2.1 with roughly 0.5 degree

(∼50km) grid spacing, with modified sub-grid closures. The moist physics has been modified

because the standard AM2 choice results in too quiescent a tropics, with Atlantic storminess

particularly suppressed, even as one moves to higher resolution. We have also been motivated to

try to simplify the moist convective and cloud closures in the model to facilitate studies of the

parameter dependence of our results and because we feel that simpler, less intrusive schemes

become more justifiable as resolution increases. We evaluate the quality of the model’s tropical

storm statistics by running over observed sea surface temperatures (SSTs) from the 1981-2005

period. We then examine the sensitivity of this model to the increase in SSTs projected by several

coupled climate models over the 21st century.

It is important that a model utilized to project tropical storm statistics into the future be
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capable of simulating observed trends in storm frequency. The well-documented upward trend in

the North Atlantic over the past 25 years is well simulated by the regional model analyzed in K07,

which is relaxed towards the National Centers for Environmental Prediction (NCEP)-National

Center for Atmospheric Research (NCAR) reanalysis (Kalnay et al. 1996) on large scales. In

this reanalysis, there is a trend towards destabilization of the atmosphere over the Atlantic, and

elsewhere in the tropics, raising the question of whether this destabilization, the reality of which

has been questioned (Santer et al. 2008), is responsible for a substantial part of the trend in

hurricane counts in that model (Garner et al. 2009). The model under consideration here does not,

on average, produce a destabilization of the mean tropical lapse rate as the ocean temperatures

warm due to increasing greenhouse gases. It is of interest whether such a model can simulate

the observed positive Atlantic trends, while simultaneously simulating the observed absence of

a trend or negative trends in other basins. The recent simulation of LaRow et al. (2008) suggest

that global models are capable of simulating the Atlantic trend with SST information alone,

although these simulations are initialized in early summer for each year of the simulation, and

may, conceivably, be affected by reanalysis trends towards tropical destabilization through this

initial condition. In the results described below, we consider free-running 25 year simulations of

the atmospheric model, with prescribed SSTs, without re-initialization.

With regard to future projections, a key question is whether or not the details of the SST

projections are important for the simulated changes in tropical storm statistics, or if at least

some aspects of these changes are robust to these differences. Emanuel et al. (2008) suggests

considerable sensitivity to differences among the World Climate Research Program Coupled

Model Intercomparison Project 3 (CMIP3) model projections, as does continuing work with the

K07 Atlantic regional model (Knutson et al. 2008 , J. Sirutis, personal communication). We are

limited by the computational expense of this 50km global model in how extensive an exploration

of these sensitivities we can perform, but as a start along these lines we compare results obtained

with a multi-model mean projection for SSTs with projections from three individual models using

trends from the Intergovernmental Panel on Climate Change (IPCC) emissions scenario A1B
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SRES scenario similar to those used in Knutson et al. (2008).

Running atmospheric models over observed SSTs has significant limitations in the context

of tropical storm simulations. As is well-known (e.g., Bender et al. 1993; Schade and Emanuel

1999) , fixing SSTs can distort storm intensities, especially for strong slow moving storms. The

extent to which a decoupled atmospheric model, given SSTs, should be able to accurately simulate

the climatology of genesis is also uncertain. Experience with global models to date is encouraging,

yet the evidence that decoupling can distort intra-seasonal variability (e.g., Waliser et al. 1999),

and monsoonal responses to global warming (Douville 2005) suggests that there is some concern

here as well. Keeping these limitations in mind, the value of this technique in our view is best

determined by the quality of the simulations of interannual variability and trends obtained with

uncoupled models.

We first describe the model formulation in Section 2, including a summary of the global

simulation and a brief discussion of the method used to optimize the convective closure. Section

3 contains a description of the tropical storm climatology in the model and an ensemble of four

simulations of the 1981-2005 period with observed SSTs. Simulations using future projections of

SSTs are provided in Section 4. Section 5 provides discussion and conclusions.

2. Model Formulation and climate simulation

If one increases the horizontal resolution in AM2.1 the climate simulation improves in

a number of respects. A model of this type, at 50km resolution, has been used to generate a

time-slice climate change simulation coordinated with the ongoing North American Climate

Change and Assessment Program (http://www.narccap.ucar.edu/). This model has

also been used to study regional structures in the Asian monsoon system (Lau and Ploshay

2009). But the tropical storm climatology generated by the model remains deficient at this higher

resolution. In particular, the Atlantic is too quiescent.

To improve this aspect of the model, for this and for related projects at relatively high

resolutions, we have made the following changes to AM2.1: the finite-volume dynamical core (Lin

http://www.narccap.ucar.edu/
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2004) on a latitude-longitude grid has been replaced by a finite-volume core using a cubed-sphere

grid topology (Putman and Lin 2007); the number of vertical levels has been increased from

24 to 32; the prognostic cloud fraction scheme has been replaced by a simpler diagnostic

scheme assuming a sub-grid scale distribution of total water; and the relaxed Arakawa-Schubert

convective closure in AM2 has been replaced by a scheme based on the parameterization of

shallow convection by Bretherton et al. (2004). The model retains the surface flux, boundary layer,

land surface, gravity wave drag, large-scale cloud microphysics, and radiative transfer modules

from AM2 (Anderson et al. 2004). We refer to this model development branch as HIRAM2 (HIgh

Resolution AM2) , and the specific version described here as the C180HIRAM2.1 . The notation

C180 indicates 180 × 180 grid points in each face of the cube; the size of the model grid varies

from 43.5 km to 61.6 km.

The gnomonic projection in the cubed-sphere geometry described by Putman and Lin (2007),

compared to other options with the cubed-sphere topology, is chosen due to its overall accuracy

and excellent grid uniformity . Compared to a latitude-longitude grid, the use of the cubed-sphere

grid in the finite-volume core eliminates the need for the “flux-form semi-Lagrangian” extension

for the transport processes (Lin and Rood 1996) and the polar Fourier filtering for the fast

waves, resulting in improved computation and communication load balance, using 2D domain

decomposition on each of the six faces of the cube. This new dynamical core greatly improves

the models scalability when using large numbers of processors. The C180 model simulations

described here were generated on as many as 1350 processors on the CRAY-XT4 at the National

Energy Research Scientific Center (NSERC) at the Department of Energy as well as with 216

processors on the SGI Altix 3700 at GFDL.

Most of the extra vertical resolution as compared with AM2.1 is placed near the tropopause.

The low AM2 resolution in that region has been found to be a significant liability to several

aspects of the simulation, including stratospheric water and polar surface pressures, but more

significantly for this study the extra resolution near the tropical tropopause should better represent

the sensitivity of storms to upper tropospheric conditions.
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The use of a diagnostic cloud fraction scheme is motivated in large part by efficiency, a

significant consideration as one moves to higher resolution; short integrations suggest that the

effect of this simplification on the aspects of the simulation on which we focus here is minor.

The approach used in AM2 (Tiedtke 1993), in which cloud fraction is a prognostic variable,

is replaced with a simpler assumption concerning the PDF of total water (S. Klein, personal

communication). A description of this parameterization is provided in Appendix A.

The convective closure of Bretherton et al. (2004) assumes a single strongly entraining and

detraining plume, with entrainment/detrainment profiles determined by a parcel buoyancy sorting

algorithm that is a simplification of that used by Kain and Fritsch (1990), including a plume

vertical momentum equation and a parameterization of cloud top penetrative entrainment of air

between the level of neutral buoyancy and the maximum vertical extent of the plume. The base

mass flux in the plume is determined by estimates of the boundary layer eddy kinetic energy and

of the convective inhibition. Although strongly entraining, the plume can provide deep convection

when the atmosphere is sufficiently moist to limit the loss of buoyancy due to the entrainment.

But deep convection is sufficiently inhibited that a substantial fraction of the rainfall in the tropics

(30% for C48 resolution, 38% for C180 resolution) occurs through the large-scale ( stratiform)

cloud module rather than through the convection module, a larger fraction than in AM2.1 (7.5%

for C48 resolution). Our modifications to the Bretherton et al. (2004) scheme are also described

in appendix A.

Our choice of a shallow convection scheme, based on a strongly entraining plume model, on

which to base the convective closure is motivated by the desire for a scheme that is minimally

intrusive, allowing the large-scale to do much of the work. Our intuition is that the distortions

that result become acceptable for some purposes as one moves to mesoscale resolutions. As

an important example, since convection in the eye-wall of a mature storm is slanted rather

than vertical, typical upright convective parameterizations have the potential to distort the

amphitheater-like inner structure of a tropical storm. Although this issue is likely to be more

relevant at finer resolutions than utilized here, our experience is that it can be beneficial for
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large-scale condensation to play a significant role throughout the tropics as well as dominate near

the storm center even at this relatively low mesoscale resolution.

The overall convective entrainment rate is adjusted so as to maintain a cloud field over

the oceans that produces a reasonable energy balance at the top of the atmosphere. However,

when integrated at lower (C48) resolution especially, this model severely underestimates the

precipitation over tropical land areas, especially the Amazon. The deficiency slowly disappears as

one moves to higher resolution, but is still evident in the C180 model. Decreasing entrainment

rates over land improves the model in this respect, as illustrated in Fig. 1. The diurnal cycle of

rainfall over the Amazon (not shown) is distorted by this procedure, in that there is too strong

a maximum in rainfall in mid-afternoon. We feel that it is important to have a high quality

simulation of the seasonal cycle of tropical winds in this type of study, in order to create the

appropriate environments for tropical storm genesis, and have chosen this modification, despite

its arbitrary character, so as to improve this large-scale seasonal mean flow. The land/ocean

entrainment difference in the C180 model is small in any case (see Appendix A); this aspect of the

model design is of more relevance to the C90 (100km) version of this model, results of which will

be described elsewhere. Figure 1.

As a rough indication of the quality of the model’s climate simulation, we choose a small

number of global fields (precipitation, 850 and 200 hPa zonal winds, and surface pressure)

and compute the rms departure from observations, comparing C48, C90, and C180 versions of

HIRAM2.1 with AM2.1 and with 10 other models for which prescribed SST simulations are

available in the PCMDI CMIP3 data base. For each variable, we normalize the rms error by the

observed standard deviation of spatial variation of the time-mean fields – over the period 1979-

1996 for the Climate Prediction Center Merged Analysis of Precipitation (CMAP, Xie and Arkin

1996) precipitation data and 1958-1997 for NCEP-NCAR re-analysis (Kalnay et al. 1996). We

show the statistics for the annual global mean and the Aug-Sept-Oct (ASO) mean over 0-30N, the

latter being of special relevance to the Atlantic storm season. We find in Fig. 2 that the relatively

good simulation provided by AM2.1, among other models in this database, is maintained and in
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fact improved significantly as we move to the C180HIRAM simulation. The precipitation figures

should be viewed with some skepticism in that there is dependence on the choice of dataset

and on the smoothing/interpolation algorithm needed to compare data and models. The surface

pressure and zonal wind statistics are more robust, and for these statistics the performance of

both the C180 and C90 models is superior to the (mostly lower resolution) models in the CMIP3

database. Among these statistics, the improvement from C90 to C180 is especially notable in the

tropical 850 hPa flow. The trade winds are too strong in this model at low resolution; the upper

tropospheric eddy momentum fluxes decrease with increasing resolution, reducing the strength of

the trade winds to more realistic values. Figure 2.

3. Tropical storm climatology, interannual variability and decadal trends

We have completed four simulations of the 1981-2005 period with this C180 model. In these

simulations, in addition to the SSTs specified from UK Met Office HadISST 1.1 (Rayner et al.

2003), the well-mixed greenhouse gases and both tropospheric and stratospheric ozone vary from

year to year, following the procedure used in the CM2.1 historical simulations in the CMIP3

database (Delworth et al. 2006). We have chosen in these initial simulations to eliminate all

variations in anthropogenic and volcanic aerosols. In retrospect it might have been preferable to

exclude the greenhouse gas and ozone variations as well, but experiments with the C90 100km

version suggest that the changes in the well-mixed greenhouse gases and ozone are not playing a

significant role in these prescribed-SST simulations.

We continue by describing the tropical storm climatology in the C180 model. We have

examined a variety of methods for identifying tropical storms in this model, and find some

sensitivity of the resulting climatology to this choice. However, when we restrict consideration

to hurricane strength storms, most of the sensitivity is eliminated. For this reason, we restrict

discussion in this paper for the most part to storms of hurricane strength. (For simplicity, we refer

to these storms as “hurricanes” in all ocean basins.) The method we use to identify storms for

consideration is described in Appendix B. Once a storm is identified, it is classified as a hurricane



10

if the standard wind criterion (> 33 m s−1) is satisfied in the vicinity of the storm using 15-min

(model time-step) model winds at the lowest model level (35m). Figure 3.

Figure 4.

Figure 5.

For the global hurricane observations, we use the data from the International

Best Track Archive for Climate Stewardship (IBTrACS), available on-line through

http://www.ncdc.noaa.gov/oa/ibtracs/. We refer to Kruk et al. (2008) for a

description of this dataset. The IBTrACS provides estimates for both 10-min and 1-min maximum

sustained wind. We use 1-min wind since it is used in NOAA’s Hurricane Research Division

dataset (HURDAT, http://www.aoml.noaa.gov/hrd/hurdat/) and we would like to

have the observed North Atlantic hurricanes match exactly those in the HURDAT dataset. We

follow the definition of the ocean basins and naming conventions used in the IBTrACS. A storm

is assigned to an ocean basin based on its genesis location.

The tracks of all hurricanes in one of our simulations are shown in Fig. 3b , where they are

compared with the observations (Fig. 3a) from the IBTrACS. The total number of hurricanes

summed over various ocean basins is indicated in Fig. 4, where the results from each of the 4

realizations are provided. In Fig. 5, the seasonal cycle in each of these regions, averaged over the

4 realizations, is compared with observations.

While the number of storms in the North Atlantic is close to that observed, there is

on-average a 20% underprediction of hurricanes in the East Pacific and a more significant (40%)

overprediction of hurricanes in the West and South Pacific. The over-prediction of the ratio of

West Pacific to Atlantic storms is a property of some other global models of this resolution (e.g.,

Bengtsson et al. 2007a). In the South Indian Ocean, there is a 17% underprediction of hurricanes.

The small numbers in the North Indian Ocean are broadly consistent with the observations. There

are a few model hurricanes in the South Atlantic, where only one hurricane is present in the

IBTrACS database over this time period.

The seasonal cycle of the storm counts in the Atlantic is also realistic. It is not always

the case that models that generate the correct number of Atlantic storms also produce accurate

seasonal cycles (e.g., LaRow et al. 2008). The overprediction in the West Pacific is most

http://www.ncdc.noaa.gov/oa/ibtracs/
http://www.aoml.noaa.gov/hrd/hurdat/
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pronounced in May-June, while the underprediction in the East Pacific is largest in Aug-Sept.

Over the Northern Indian ocean, the bimodal seasonal distribution with maxima in the spring and

fall (owing, presumably, to the suppression of cyclones by shear in the peak monsoon months), is

well captured,

During the model development process, we find that if the convective entrainment rate over

the oceans increases in this model, the storm count increases. If no other parameters are changed,

an increase in this entrainment rate results in an unrealistic increase in low level clouds over the

ocean and in the planetary albedo.. Our selection of an entrainment rate was originally based

on the need to simulate a realistic planetary albedo; perhaps fortuitously, this setting generates a

realistic number of tropical storms, albeit with some overestimation in the West and South Pacific. Figure 6.

A significant deficiency, not unexpected in a model of this resolution, can be seen in the PDF

of storm intensity displayed in Fig. 6. Very few storms exceed a wind speed of 50 m s−1, with

an unrealistically strong peak in frequency near 30 m s−1. Model storms resemble each other

much more than do observed storms. The unrealistic aspects of this PDF discourage us from

taking the response of storm intensity to global warming in this model at face value. Yet some

of the most basic differences in intensity distributions between basins are captured qualitatively,

particularly the more intense storms in the West Pacific as compared to the Atlantic. Preliminary

studies suggest that one can increase the average storm intensity, without changing the average

storm frequency, by modifying the surface flux formulation so as to change the ratio of the drag

coefficients for momentum and water vapor fluxes, as anticipated from the theory of Emanuel

(1988). Whether or not it is desirable to generate very strong storms in a 50km model is unclear,

given that many strong storms have radii of maximum winds that should not be resolved with a

50km grid. Figure 7.

Figure 8.

Figure 9.

The model shows significant skill in reproducing the observed year-to-year variability in the

North Atlantic, the East and West Pacific and to a lesser degree the South Pacific. Because the total

numbers of hurricanes in some basins are significantly different from the observations (Fig. 4),

below we show the results of normalizing in each basin by a time-independent multiplicative
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factor so as to reproduce the observed number. Fig. 7 shows that the model does an excellent

job of simulating the year to year variations in hurricane frequency in the North Atlantic. The

correlations for the individual runs of the model with observations are 0.7, 0.78, 0.68, and 0.55.

The standard deviation across the model ensemble, computed for each year and then averaged

over all years, is 1.7 hurricanes/yr. Garner et al. (2009) obtained a very similar estimate in the

regional model utilized by K07, forced not only by the year-to-year variations in SST but also

by relaxation of the largest scales in their regional domain towards observations. One would

anticipate more variability in a global model in which the large scale flow is unconstrained than

in the regional model used by Garner et al. (2009). If both of these estimates are accurate, the

implication would be that the large scale flow variability that is independent of SSTs generates

relatively little of the variance in simulations of seasonal storm activity as compared to the noise

resulting from small scales.

The correlation of observed Atlantic hurricane counts with the ensemble mean of these four

realizations is 0.83 . This value is somewhat higher than one would expect given the correlations

with the individual realizations. This expectation is based on the hypothesis of a perfect model

that responds exactly as does nature to changes in SSTs and the assumption that the observations

have the same (1.7 hurricane) noise level as the model, with Gaussian statistics. In this case,

the correlation of the mean of a 4-member ensemble with another realization has only a 20%

chance of being as high as 0.83. It is reasonable to conclude that the rms of the observed noise,

so defined, is unlikely to be much larger than 1.7 and could be smaller. In any case, it is clear that

the number of hurricanes per year in the Atlantic has a large component that is predictable from

SSTs, consistent with the dynamical modeling results of Vitart (2006) and LaRow et al. (2008), as

well as a variety of statistical studies. Figure 10.

There is a significant correlation between the spread across the ensemble in each year and

the number of storms; in particular the correlation between the standard deviation σ and the

mean hurricane count n for each year is 0.53 (p=0.006) with a linear regression fit of σ=0.5+0.2n

for the North Atlantic. The active years 1995 and 2005 have indeed a relatively large spread
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in the ensemble. For example, in 2005, the 4 realizations produce hurricane counts of 13, 12,

8, 15, to which we can compare the observed number of 15. The Atlantic hurricane tracks for

each realization of 2005 are also shown in Fig. 10 to provide the reader with some flavor for the

noise level in the model. The year in which the model does most poorly is 1996. (Additional

experiments for this particular year are consistent with the hypothesis that this relatively large

model-observation difference is significant.) It is of interest to see if there is some aspect of the

large-scale atmospheric flow over the tropical Atlantic in 1996 that the model does not simulate

well, but we do not pursue this issue here.

Each of the realizations of the model produces a positive linear, least-square trend in

Atlantic hurricanes over this period, with the ensemble mean trend being 0.17 hurricane/yr after

normalization, compared to the observed trend of 0.22 hurricanes/yr. As shown below (Fig. 11b),

the difference between the ensemble mean trend and the observation is within the spread of

model trends from the 4 realizations so that there does not appear to be a statistically significant

difference between model and observed trends.

Fig. 8 shows the result for the East Pacific. The model captures reasonably well the less

active years of 1988-1989, 1995 and 1998-1999 and the active period of the early 1990s. The

model does poorly for the years of 1985, 1994, 2000 and 2002. Overall, the correlation between

the ensemble mean and the observation is 0.62 (r2 = 0.38, p=0.001, assuming the 25 individual

years are temporally independent samples). The model also simulates a downward trend (-0.14/yr)

of hurricane frequency in the East Pacific over this time period, compared to the observed

trend (-0.24/yr). Detrended, the correlation with the ensemble mean model drops to 0.57. The

correlation between hurricane counts in the East Pacific and West Atlantic in the observations is

-0.49, while the model generates correlations ranging from -0.40 to -0.74 in the four realizations,

with a correlation of -0.79 between the ensemble means in the two basins.

Fig. 9 shows the corresponding results for the West Pacific. Despite the overestimate of the

total West Pacific hurricane number (see Fig. 4), the storm variability is comparable in model and

observations after the normalization. The anomalously quiet years of 1983, 1988, 1992 and 1998
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are captured well. The poorest simulations appear to be for 1995 and 1999, for which there is

roughly a factor of 2 overestimate in the storm count after normalization. The correlation of the

ensemble mean with the observations is 0.52 ( r2 = 0.28, p = 0.007). The ensemble mean model

simulates a downward trend (-0.07/yr) in hurricane frequency over this time period, again close to

the observed trend (-0.06/yr). Figure 11.

Fig. 11 provides a summary plot to show the noise level of model simulated correlations

and trends for each basin. Fig. 11a displays the correlation of observed hurricane count to the

4-member ensemble mean and the correlation of each ensemble member to the ensemble mean

of the remaining three. In general, the model means are correlated as well to observations as the

model means are to another ensemble member. In the South Pacific there is only small correlation

between the modeled and observed time series of hurricane count with the 4-member ensemble

mean producing a coefficient roughly 0.3. The model produces no significant correlation in either

the North or South Indian ocean. In those regions in which the correlation of the model ensemble

mean to observations is low, the correlation of the model ensemble mean to individual realization

is also low. Fig. 11b shows the observed and modeled linear trends in hurricane frequency for

the period 1981-2005 in each basin. Model trends are calculated from the normalized time series

for the ensemble mean and each individual realization. We see fairly large spread in the modeled

trends for all basins except, fortuitously, perhaps for the North Indian. The observed trends are

generally within the model spread for all basins except for the Indian Ocean - though even there

they are quite close.

The model’s raw global hurricane count has a downward trend of 0.19 hurricanes/yr, which

is contributed from the East (-0.11/yr), West (-0.09/yr), and South Pacific (-0.07/yr) as well

as the South Indian ocean(-0.06/yr). There is no significant trend in the North Indian ocean.

The North Atlantic is the only basin in which the model trend over this period is positive

(+0.14/yr). If we normalize each basin by the mean observed count, the global trend is reduced

to -0.15 hurricanes/yr, since the Pacific basins are then less dominant. This figure corresponds

to a reduction of 8% over this 25 year period. This magnitude of the downward trend in the
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ensemble-mean is larger than the observed global hurricane trend (-0.06 hurricane/yr or -3%)

over this period in the IBTrACS dataset; however, the observed trend is contained within the

spread of that of the ensemble members. Roughly 60% of the modeled downward trend comes

from the Southern Hemisphere (-0.12 hurricanes/yr) while the observed hurricane trend in the

Southern Hemisphere is negligible (-0.01/yr). However, when we take into account all Southern

Hemisphere tropical storms (wind speed > 17 m s−1), we find a much larger downward trend

for this period in IBTrACS dataset (-0.12 /yr), close to the model trend in tropical storms of the

Southern Hemisphere.

4. Global warming projections
Figure 12.

We perturb this model with SST anomalies taken from various models of the climate near the

end of the 21st century. We consider 4 anomaly patterns, those obtained from the three models

GFDL’s CM2.1, the UKMO’s HADCM3, and MPI’s ECHAM5, and that obtained by taking the

ensemble mean for the simulations for 18 models. All results are taken from the A1B simulation

in the CMIP3 archive (https://esg.llnl.gov:8443/index.jsp) (Meehl et al. 2007)

utilized extensively by the IPCC AR4 assessments. The multi-model ensemble mean SST

anomaly is computed by differencing the period 2081-2100 and the period 2001-2020 from

the historical simulations (labeled 20C3M in the CMIP3 archive). For each of the 3 individual

models, one realization (run 1 in the CMIP3 archive) is used to compute the 2001-2100 linear

trend. The linear trend is then multiplied by 0.8 so that it is consistent in magnitude with the

period used for the multi-model ensemble mean. The SST anomalies are computed separately for

each month. Fig. 12 shows the mean SST anomalies for the ASO season. Note, for example, that

the HADCM3 anomaly is relatively large in the Pacific and relatively small in the Atlantic while

ECHAM5 has the largest average anomalies over the ocean domain (40S-40N). We increase the

CO2 in the atmosphere to a value consistent with the A1B scenario for the period in question.

We do not modify the sea ice extent for simplicity, assuming that, with prescribed SSTs, sea ice

perturbations have little influence on the tropical climates of interest here.

https://esg.llnl.gov:8443/index.jsp
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One possible methodology is to add these SST anomalies to the time-varying SSTs for the

period modeled in the previous section. To try to simplify the analysis and save computational

resources, we have instead chosen to generate simulations prescribing climatological SSTs –

seasonally varying SSTs with no interannual variability. By perturbing this climatology with

the various seasonally-varying but otherwise time-invariant anomalies, the hope is to generate

more stable statistics, without the possible complication that the response might depend on the

phase of ENSO, for example. Each of these climatological and perturbed runs is of 10 years

length. An unforeseen complication is that the climatological storm simulation in the Atlantic is

very sensitive to the choice of climatology. For reasons of consistency with other computations

underway, for this study we took the climatological SSTs from an average over 1982-2000 using

the NOAA Optimum Interpolation SST Analysis data set (Reynods et al. 2002). This simulation

produces fewer storms in the Atlantic than the time mean of simulations described in the previous

section (3.3/year as compared with 5.6/year). In contrast, the mean West and East Pacific, and

global mean, storm frequencies are hardly affected. The difference in Atlantic storm frequency is

reduced slightly if one averages the time-varying SST simulations over exactly the same years as

were used in the computation of the climatological SSTs (5.6/year is reduced to 5.0/year). But

this does not explain the bulk of the difference.

We considered the possibility that this reduction in simulated storm frequency was due

to a rectification effect, in which one cannot reproduce the time mean of the results using

inter-annually-varying SSTs by using the time-averaged SSTs as lower boundary conditions, but

this was not the dominant effect. We have generated an additional simulation with the time average

of the HadiSST SSTs and find the number of Atlantic storms to be roughly 5.1/year, similar to

the mean of the time-varying simulations. We find, instead, that the reduction in frequency is

primarily due to the difference between SSTs in the NOAA Reynold OI and UKMO HadiSST

datasets. It is not just the number of Atlantic storms, but the time mean precipitation and vertical

shear over the Atlantic, that is sensitive to this change in climatology. The dependence of Atlantic

storm simulation on SST data set will be explored further elsewhere. Despite this complication,
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we have no particular reason to believe that the qualitative response of Atlantic storm frequency to

global warming SST anomalies is dramatically affected by the climatological SST starting point. Figure 13.

Figure 14.The response of storm frequency for each of these perturbations is shown in Fig. 13 and

Fig. 14. We show the fractional changes in hurricane count per year for various ocean basins.

Focusing first on the North Atlantic (Fig. 13a) , we find that SSTs from two models (CM2.1 and

ECHAM5) show an increase (∼ 36%) in hurricane frequency, while SSTs from HADCM3 and

the ensemble mean show a reduction (∼ -64% for HADCM3, ∼ -28% for ensemble mean). If we

count all tropical storms identified by the algorithm described in Appendix B, the increases in the

CM2.1 and ECHAM5 SSTs models are much smaller (< 5% see Fig. 13b), indicating some of the

increase in hurricanes in these models is due to a shift to more intense storms. For the ensemble

mean SST anomaly, the reduction of tropical storm and hurricane frequency are respectively -38%

and -28%, somewhat stronger than the -27% (tropical storms) and -18% (hurricanes) reduction

obtained from Knutson et al. (2008) although the latter restricted their study to the Aug-Sept-Oct

season only. Figure 15.

The model using the HADCM3 SST anomaly generates an especially large reduction in

Atlantic storms. This distinction is also clear if we simply examine the mean rainfall response

in the four simulations, illustrated in Fig. 15. The simulation with the HADCM3 anomaly has

severely reduced rainfall over the Atlantic, as well as the Amazon, distinct from the other models

used here. The explanation very likely lies in the differential warming over the tropical Atlantic

and tropical Pacific, with the ratio of Atlantic to Pacific warming with HADCM3 SST clearly

smaller than in any of the other models considered (see Fig. 12). The coupled simulations from the

HADCM3 model in the CMIP3 database also show a distinctive severe drying over the Amazon

and adjacent Atlantic Ocean. Our atmosphere-only simulations, with different atmospheric and

land models, captures this distinction qualitatively, suggesting that it is primarily a result of the

SST anomaly pattern and not the details of the atmosphere/land models, once the SST anomaly

pattern is specified. Figure 16.

Fig. 16a compares the anomalies in the ASO season vertical wind shear Vs (defined as the
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magnitude of the vector difference between seasonal-mean winds at 850 hPa and 200 hPa) over

the Atlantic main development region (MDR) [80◦W-20◦W, 10◦N-25◦N] in the various SST

anomaly simulations with the number of hurricanes simulated by this model, including also the

ensemble mean responses for each year of the 4 observed-SST simulations. The mean over the

all years of these simulations is shown as well, as is the climatological-SST simulation used as a

control for the anomaly simulations. There is a clear negative correlation with coefficient of -0.8.

The linear regression coefficient for the AMIP ensemble mean data points is -1.5 hurricanes/yr

per m s−1 wind shear. This shear metric also helps explain the difference between the mean of

the prescribed SST runs using the HadiSST dataset and the climatological-SST run using the

Reynolds OI dataset. The latter has fewer Atlantic storms and also stronger shear.

Fig. 16b compares the simulated Atlantic hurricane-shear relationship with observations

obtained by regression of the observed hurricane count versus vertical wind shear calculated

from the NCEP-NCAR reanalysis. For this comparison we use data points from all 4 individual

realizations, the model produces a slope of -1.32 hurricanes/yr per m s−1, similar to the observed

values of -1.25 hurricanes/yr per m s−1. However, the model ASO mean shear over MDR region

is about 2 m s−1 weaker than that in NCEP-NCAR reanalysis (∼10 m s−1). The model simulated

year to year variation of ASO wind shear also correlates well with the NCEP-NCAR reanalysis

with a coefficient of 0.61 (not shown). This number is smaller than the model-observation

correlation in hurricane count (0.83), indicating other factors may contribute to accuracy of the

simulation of interannual variation of Atlantic hurricane count besides this shear.

The fact that the shear in the main development region is a good predictor of the model

hurricane counts does not necessarily imply that the dynamical influence of the shear in inhibiting

storms is dominant. For example, shears can be large in this region if oceanic convection moves

equator-ward, so that the mean distance from the convective center to the main development

region increases and local Hadley circulations spin up baroclinic shears in the development region.

In this picture, increased shear can in part be a marker for the distance to the most favorable

regions for convection. It is plausible to assume that the dynamics underlying this correlation is a
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mix of these kinds of effects plus the direct suppression of genesis by shear.

The response to 21st century SST projections is shown for other basins in Fig. 14. The

atmospheric model shows an increase in frequency over the East Pacific from three of the four

projections, including from the ensemble mean SST anomalies. In three of the projections, the

SSTs that generate a decrease in the Atlantic show an increase in the East Pacific, and vice versa,

consistent with the negative correlation on ENSO time scales (an exception is the ECHAM5

SST anomalies for which the model suggests an increase in both the Atlantic and East Pacific).

In the West Pacific, the ensemble mean SST anomalies show a decrease in activity, as does the

ECHAM5 SSTs, with the other two SST’s generating relatively small changes. For the North

Indian Ocean the ensemble mean and HADCM3 SST anomalies produce increased activity while

ECHAM5 and CM2.1 give the opposite response with similar magnitude.

The changes in the Southern Hemisphere are more consistent across the anomaly experiments.

Fig. 14d-e show decreased activity in all southern ocean sectors except for the South Indian

ocean in the ECHAM5 SST anomaly simulation, for which the model produces no change of

hurricane frequency. (However, when we take into account all tropical storms, this case also

shows decreased storm activity.) The South Pacific shows the strongest reduction (∼50%) and

is robust across the experiments. The relatively larger warming of the SSTs in the Northern as

compared to the Southern Hemisphere tropics/subtropics, resulting in a more stable atmosphere in

the south, is a plausible cause for this consistent reduction in activity.

Finally, Fig. 14f shows that the global hurricane frequency decreases with warming for all

simulations. The ensemble mean SST anomalies produce roughly 17% global reduction, of which

nearly 2/3 comes from the Southern Hemisphere.

5. Discussion and Conclusions

It is not a priori self-evident what horizontal resolution is needed in a global model to

realistically simulate the statistics of tropical storms. Our work with a global atmospheric model,

with a 50km grid spacing, adds to a growing set of encouraging results with resolution in the
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20-100 km range in simulating the climatology and interannual variability of tropical storm

and hurricane frequencies. The implication is that one may be able to simulate realistic storm

frequencies without simultaneously simulating a realistic distribution of storm intensities.

The model that we use here parameterizes shallow convection and allows this convection to

extend as deeply as it can into the troposphere, but the large entrainment rate specified makes this

difficult and forces the resolved scales to contribute much of the deep convection and precipitation

in the tropics. This type of closure likely improves as the resolution becomes finer, the question

being whether the distortions that result from forcing the large-scale to play a significant role at

this 50 km resolution are acceptable. The diurnal cycle of precipitation is not adequately simulated

in many regions, for example. We believe that the tropical storm climatology described here, as

well as the quality of the large scale flow, is evidence for the value of this approach.

Averaging over four realizations of the period 1981-2005, using observed SSTs as the

lower boundary condition, we find that the models year-to-year variations in Atlantic hurricane

frequency are correlated with observations with a coefficient of 0.83. The implication of such

high correlation is that the noise level in this statistic, that part of the Atlantic variability not

explainable by variations in SST, is rather small ( < 2 hurricanes/yr). This level of skill also leaves

little room for other factors not transmitted through the SST distribution, such as the stratospheric

quasi-biennial oscillation or in situ atmospheric effects of dust variations that are not themselves

forced by SSTs. The model’s interannual variability in hurricane frequency is less well correlated

with observations in the East, West and South Pacific, with values of roughly 0.6, 0.5, 0.3, and

there is no significant correlation with the IBTrACS observed records in the Indian Ocean.

The model simulates an upward trend of hurricane frequency in the North Atlantic and a

downward trend in the East and West Pacific over the 1981-2005 period. Both are consistent

with the observations, with the observed trends lying within the ensemble spread of model trends.

Without normalization, for the Northern Hemisphere altogether, the model produces a downward

trend of -0.06 hurricane/yr close to the observed value of -0.05 hurricanes/yr. In the Southern

Hemisphere, the model generates a downward trend of hurricane frequency with magnitude (-0.13
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hurricanes/yr) larger than the observed value (-0.01 hurricanes/yr) from the IBTrACS dataset

although a similar magnitude downward trend does exist if one takes into account all the tropical

storms in the Southern Hemisphere. Globally averaged, the model ensemble mean generates a

downward trend of hurricane frequency (-0.19 hurricane/yr) that is about 3 times larger than the

value (-0.06 hurricane/yr) in IBTrACS.

When we perturb the SSTs with anomalies generated by global model projections for late in

the 21st century, using an ensemble mean over the CMIP3 A1B simulations from 18 models, there

is a reduction in the globally averaged hurricane frequency, made up from reductions in West

Pacific and the Southern Hemisphere, with a slight reduction in the Atlantic, and a substantial

(∼44%) increase in activity in the East Pacific. Despite the large differences in the specific

regional changes, the global mean reduction (∼17%) appears to be close to the value one would

estimate by extrapolating the reduction simulated by the model for the period 1981-2005 (∼8%),

assuming that it is due to the tropical mean warming of SSTs. However, the fact that the ECHAM5

SST anomalies, with the largest tropical mean warming, do not produce the largest reduction also

indicates an important effect of the regional SST pattern change on global hurricane frequency.

When the SST anomalies are taken from individual realizations from individual global

models the results are more varied. Globally, there is still a small (∼10%) reduction or little

change, but this generally is a result of larger changes in individual basins. Some of the largest

basin-wide changes are projected using the SSTs from HADCM3, which generates a large

increase (∼doubling) in the East Pacific with a sharp reduction (∼halving) in the Atlantic. The

SSTs projected by CM2.1 generate the opposite pattern in the Atlantic and East Pacific, while

the ECHAM5 SSTs produce modest increases in both basins. The results using individual model

SSTs need to be evaluated with care, since they use individual realizations, so the spread of these

results includes the sampling of low-frequency variability as well as spread in the forced responses

in the different models.

Reduced activity in the Southern Hemisphere is one of the more robust responses across

the models, reflecting, we presume, the robustness of the relatively small warming projected for
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the Southern Hemisphere tropics and subtropics as compared to that projected for the Northern

tropics.

In the Atlantic, the model-generated change in vertical shear in the Main Development

Region is closely related to the changes in hurricane frequency. This relationship (roughly an

annual reduction of 1.5 hurricane per m s−1 increase in the seasonal mean shear) holds both for the

interannual variability in the model as well as the intermodel differences in the future projections.

These changes in shear are partly due to differential warming of the tropical oceans (e.g.,

Latif et al. 2007), differential warming also changes the stability of the tropical atmosphere in the

different basins (e.g., Vecchi and Soden 2007a; Swanson 2008; Tang and Neelin 2004) since the

free tropospheric temperatures remain relatively homogeneous in the horizontal (e.g., Sobel et al.

2002). Since the changes in atmospheric stability and wind shear are likely to be strongly

correlated, it is difficult to distinguish between these two mechanisms in a study of this kind, and

we cannot rule out the possibility that the shear is in part a proxy for this differential stabilization

or for the related north-south displacements of the ITCZ. Further, there is also evidence that

some of the increased Atlantic wind shear in climate change experiments may be connected to

the weakening of the Pacific Walker circulation (Vecchi and Soden 2007b), a weakening that is

controlled by global mass energy constraints in climate models (e.g., Held and Soden 2006) and

is seen even in the response to uniform warming of the SSTs in idealized anomaly experiments.

For sorting out the dynamical mechanisms underlying these frequency changes, regional models

such as that used in Garner et al. (2009) may provide a flexible framework in which shear and

stability can be manipulated individually.

6. Appendix

a. Convective and stratiform cloud parameterization

The convection scheme is adapted from the shallow cumulus scheme originally developed by

Bretherton et al. (2004). Our primary modifications to the scheme are as follows. Liquid/frozen
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water static energy is used instead of liquid-frozen water potential temperature as a conserved

variable. Only saturated mixtures are detrained into the large-scale stratiform clouds, for

consistency with the underlying mixing assumption. A simple treatment of precipitation

microphysics is included within the convection module, assuming a symmetric triangle

distribution of total condensate with a width of 0.5 g kg−1 and with condensate above a threshold

value qc0 removed as precipitation (the default value of qc0 is 1 g kg−1). The iterative method

for obtaining temperature from the conserved variables is refined to better handle mixed phase

cloud. The boundary layer turbulent kinetic energy which enters the mass flux closure, is

estimated diagnostically based on surface stress and buoyancy flux following Holtslag and Boville

(1993), since this model has no prognostic turbulent kinetic energy equation. The upper limit

in the vertical extent of the convective clouds is removed. Finally, as described in the text, the

empirical non-dimensional parameter controlling the strength of the lateral mixing [c0 in Eq. 18 in

Bretherton et al. (2004)] is modified so that it is co over ocean and αco over land. α is a resolution

dependent tunable parameter. For c48, c90 and c180 models, we set α is 0.5, 0.65, and 0.85

respectively. The value of c0 over the ocean is 10.

The stratiform cloud scheme in AM2 (Anderson et al. 2004) is modified by removing the

Tiedtke (1993) prognostic cloud fraction scheme and replacing it with a simpler diagnostic scheme

assuming a sub-grid scale distribution of total water, suggested to us by S. Klein. The distribution

of total water has the form of beta distribution with the lower and upper bounds determined by a

width parameter multiplied by the grid-box mean total water. For this study, both shape parameter

p and q (see Eq. 7 in Tompkins 2002) are set to be 5 resulting in a symmetric distribution and

the width parameter is set to 0.2. The use of the diagnostic scheme for condensation/evaporation

processes allows one to remove AM2 Tiedtke (1993) cloud condensation, dissipation and erosion

parameterizations while still keep the general form of the prognostic condensate equations. The

remainder of the stratiform cloud scheme, including its treatment of cloud microphysics and

precipitation fallout, is unmodified from AM2.1.
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b. Tropical cyclone detection and tracking algorithm

The tropical cyclone detection and tracking algorithm is a 3-step procedure adapted

from earlier work by Knutson et al. (2007) and Vitart et al. (1997 2003) with some simplifica-

tions/modifications for this study.

Step 1: potential storm identification. Using 6-hourly data, grid points in space and time satisfying

the following conditions are located:

• At each time, 850 hPa relative vorticity maximum exceeding 1.6x10−4 s−1 are located

within areas of 6◦x6◦ latitude and longitude .

• The local minimum of sea level pressure, which must be within a distance of 2◦ latitude or

longitude from the vorticity maximum, is defined as the center of the storm. And the local

maximum surface (lowest model level) wind speed is recorded.

• The local maximum temperature averaged between 300 and 500 hPa is defined as the center

of the warm core. The distance of the warm-core center from the storm center must not

exceed 2◦. The warm-core temperature must be at least 1◦ C warmer than the surrounding

local mean.

Differing from Knutson et al. (2007), this algorithm does not use a bicubic spline method for

locating maxima, minima and computing gradients, due to the large computational cost as well as

the fact that little impact has been found when using this refinement with this 50km resolution

data.

Step 2: storm tracking. After a database of potential storm snapshots satisfying the above

conditions is created, a trajectory analysis is performed to link these together using the following

procedure:

• For each storm snapshot, a check is performed to see if there are storms during the following

6-hour time period within a distance of 400 km.
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• If there are none, the trajectory is considered to have stopped. If there are some, the closest

storm is chosen as belonging to the same trajectory as the initial storm. If there is more than

one possibility, preference is given to storms that are to the west and poleward of the current

location.

• To qualify as the model storm trajectory, a trajectory must last at least 3 days, and have a

maximum surface wind speed greater than 17 ms−1 during at least 3 days (not necessarily

consecutive).

Step 3: storm categorization. A tropical storm is categorized as a hurricane if the maximum

surface wind speed at some point during its entire trajectory exceeds 33 ms−1.
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Figure Captions

(a) C48 (α = 0.85)
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(d) C48 (α = 0.5)
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(b) C90 (α = 0.85)
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(e) C90 (α = 0.65)
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(c) C180(α = 0.85)
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(f) CMAP
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Figure 1. Sensitivity of annual mean Amazon precipitation to horizontal resolution and cu-

mulus lateral mixing rate over land. Left column (panel a,b,c): the same physics except for

the indicated resolution change, with a fixed ratio of land to ocean lateral mixing rates of

α=0.85. Right column: panel d: as in a) except α=0.5; panel e: as in b) except α=0.65; panel

f: observations from Climate Prediction Center Merged Analysis of Precipitation data (CMAP,

Xie and Arkin 1996). Unit: mm day−1.
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(a) precipitation
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(c) U850
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Figure 2. A comparison of RMS error (normalized by observed standard deviation of spatial

variation of each time-mean field) of selected fields from the C180, C90, C48 HIRAM2.1 and

the standard AM2.1 integrations with prescribed SSTs (1981-2005). The boxes show the lower

quartiles, medians, and upper quartiles of 10 other model runs from the CMIP3 data base, while

the whiskers show the max and min values among these models. a) Precipitation compared to

CMAP; b) Northern Hemisphere sea level pressure (compared to NCEP-NCAR reanalysis); c)

850 hPa zonal wind (compared to NCEP-NCAR reanalysis); d) As in c) but for 200 hPa zonal

wind.
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Figure 3. A comparison of observed (upper panel) and model simulated (lower panel) hurri-

cane tracks from 1981 to 2005.
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Figure 4. A comparison of observed and simulated annual mean hurricane count for each

ocean basin averaged over 1981 to 2005. M1, M2, M3, M4 represent each integration of the

4-member ensemble.
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Figure 5. Observed and model simulated seasonal cycle (number of hurricanes per month) for

each ocean basin from the 4-member ensemble mean (1=JAN, 12=DEC).
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Figure 6. A comparison of observed and model simulated tropical storm intensity distribution

as characterized by the surface maximum wind speed for North Atlantic (upper), East Pacific

(middle) and West Pacific (bottom). Black: IBTrACS observations using 1-min maximum

sustained wind at 10m. Red: model simulation using 15-min (model time-step) winds at the

lowest model level.
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Figure 7. Interannual variation of hurricane numbers for North Atlantic from 1981 to 2005.

Red: IBTrACS observations (Kruk et al. 2008); blue: 4-member ensemble mean; shaded area

shows the simulated maximum and minimum number for each year from the 4 member inte-

grations. Model time series are normalized by time-independent multiplicative factors so as to

reproduce the observed total number. Dotted lines show observed and model (ensemble mean)

linear trends.
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Figure 8. As in Fig. 7 except for the East Pacific.
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Figure 9. As in Fig. 7 except for the West Pacific.
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Figure 10. A comparison of observed and model simulated hurricane tracks for year 2005.

Upper panel: observed tracks; middle and bottom panels: simulated tracks from each individ-

ual realization of the 4-member ensemble. Yellow dots show the locations where maximum

wind speed exceeds 33 m s−1 along each track.
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Figure 11. Upper panel: the correlation of observed hurricane count to the 4-member ensem-

ble mean (stars) and the correlation of each ensemble member to the ensemble mean of the

remaining three (circles) for each basin. Lower panel: observed (stars) and modeled (circles)

linear trends in hurricane frequency for the period 1981-2005 in each basin. Model trends are

from individual realizations and calculated from normalized time series.
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(b) HADCM3
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Figure 12. Aug-Sept-Oct seasonal mean SST anomaly from a) GFDL CM2.1, b) UKMO

HADCM3, c) MPI ECHAM5 and d) multi-model ensemble mean (see detailed description in

the text). Unit: ◦ K.
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Figure 13. Fractional changes in annual hurricane (left) and tropical storm (right) count for

the North Atlantic basin from the 4 SST anomaly simulations.
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Figure 14. Fractional changes in hurricane counts (as in Fig 13a) except for a) East Pacific, b)

West Pacific c) North Indian, d) South Pacific, e) South Indian, and f) the global ocean.
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(b) HADCM3
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Figure 15. Aug-Sept-Oct seasonal mean precipitation differences between SST anomaly sim-

ulations and the control simulation. Unit: mm day−1.
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Figure 16. a) Scatter plot of annual Atlantic hurricane count versus ASO season vertical wind

shear anomalies from the ensemble mean for each year of the 4 observed-SST simulations

(small pentagrams). The big pentagram shows the AMIP all-year mean and the line is a linear

regression of the 25 year data points. Also shown are results from the control climatological-

SST simulation (red square) and the various SST anomaly simulations (green: ENSEMBLE,

blue: CM2.1, black: HADCM3, cyan: ECHAM5). For the control and SST anomaly simula-

tions, the ASO wind shear anomalies are the mean ASO wind shear minus the AMIP all-year

mean. b) As in a) except showing all members of the AMIP runs and compared with scatter

plots of observed Atlantic hurricane count versus vertical wind shear calculated from NCEP-

NCAR reanalysis (circles). The red and black lines are respectively linear regression of the

model and observation data points.
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