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A Model for Autumn Pelagic Distribution of 

Adult Female Polar Bears in the Chukchi Sea, 

1987-1994 

By G.M. Durner, D.C. Douglas, R.M. Nielson, and S.C. Amstrup 

Abstract  

We made predictions of polar bear (Ursus maritimus) autumn distribution in the Chukchi Sea 

with a Resource Selection Function (RSF) developed from 1198 satellite radio-collar locations on 124 

adult female polar bears, 1987 – 1994. The RSF was created to assist in an aerial survey design for polar 

bears proposed by the U.S. Fish and Wildlife Service. The RSF was based on bathymetry and daily sea 

ice covariates extracted from passive microwave satellite imagery within the pelagic region > 25 km 

from shore.  The RSF indicated that polar bears selected habitats with intermediate amounts (~50%) of 

ice cover in close proximity to higher ice concentrations, and over relatively shallow waters.  The RSF 

showed good predictive abilities for the years of its construct, worked best in October, and was robust to 

inter-annual variability.  When evaluated with recent (1997 – 2005) data, the RSF performed well for 

October and November but poorly in September.  This loss of predictive abilities appeared to be related 

to recent changes in habitat due to longer melt seasons and younger sea ice, and testing the retrospective 

model with a small sample of recent polar bears locations from a limited region of the Chukchi Sea.  

Contemporary applications of this RSF must consider three factors that could limit its utility:  1) 
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different sea ice phenology; 2) distributions of males and sub-adults; and 3) occupancy in nearshore 

habitats. 

Introduction 

Polar bears (Ursus maritimus) are dependent on the seasonally and permanently ice-covered seas 

throughout the Arctic basin to hunt for seals.  Sea ice composition and distribution vary both within and 

among years.  Minimal sea ice extent occurs throughout the Arctic basin during September.  During 

autumn and into winter, new ice is created in areas of open water and between unconsolidated floes and 

eventually covers most Arctic seas.  By early winter this new ice thickens and becomes first year ice 

that may be > 1 m thick.  First year sea ice that survives the summer melt becomes multi-year ice in 

autumn.  Multi-year  ice may persist for a decade or more and become more than 2 m thick.  The actions 

of winds and currents reshape the ice surface into a mosaic of pressure ridges, leads, and floes of various 

diameters and thicknesses. 

Polar bear distribution, while generally limited to the distribution of sea ice (Garner et al. 1990), 

is further influenced by the habitat requirements and availability of ice dependent prey.  Polar bears prey 

primarily on ringed seals (Phoca hispida) and secondarily on bearded seals (Erignathus barbatus) 

(Amstrup 2003).  Hence, polar bear distribution usually reflects the distribution of ice habitats that 

optimizes seal availability (Stirling et al. 1993, Ferguson et al. 2000).  However, the requirement for 

suitable hunting habitat is balanced by the requirement for stable habitat necessary for resting between 

hunting bouts (Mauritzen et al. 2003).  Polar bears appear to respond to habitat parameters including ice 

concentration, ice thickness or age (ice stage), floe size (ice form), the proximity of active ice edges, and 

ocean depth (Stirling et al. 1993, Arthur et al. 1996, Ferguson et al. 2000, Mauritzen et al. 2003, Durner 

et al. 2004) in their quest for food.  Breeding takes place on the sea ice during the season of maximal ice 

extent in early spring.  In Alaska, many pregnant polar bears depend on a stable sea ice platform for 
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successful denning (Amstrup and Gardner 1994).  Therefore, the use of different sea ice types by polar 

bears is dependent on certain life history requirements.  Throughout much of their range, polar bear 

habitat use changes with seasonal changes in sea ice (Arthur et al. 1996, Ferguson et al. 2000, Mauritzen 

et al. 2003, Durner et al. 2004). 

The vulnerability of polar bears to climate change is well recognized (Stirling et al. 1999, Wiig 

2005, Stirling and Parkinson 2006).  An understanding of polar bear sea ice requirements will allow 

prediction of likely responses of polar bears to sea ice change from climate warming.  This will allow 

adjustment of current management strategies where humans and polar bears interact, and to provide 

baseline data to identify future habitat refugia in a diminished sea ice environment.  Also, current 

management strategies are dependent on knowledge of polar bear population size and trends.  This 

information has been traditionally obtained through intensive field work involving aerial surveys and 

mark-recapture studies of free-ranging polar bears, both of which involve a large amount of personnel 

time and funding (Evans et al. 2003).  Therefore, the efficiency of capture and survey field work may be 

increased through an understanding of polar bear habitat selection patterns. 

To help address ecologic and management questions, we examined the relationship between 

polar bears in the Chukchi Sea and the sea ice environment during the autumn months of 1987 – 1994.  

We used archived data of satellite telemetry locations of free-ranging female polar bears, daily sea ice 

distributions from satellite remote sensing, and ocean depth to develop predictive models of polar bear 

distributions.  The analyses were structured in a geographic information system (GIS) to facilitate use of 

the data for designing future USFWS aerial surveys of polar bears in the pelagic realm of the Chukchi 

Sea.  This report does not address the distribution of polar bears on land. 

Our report is organized into 3 sections.  Beginning on page 4, we present the derivation of a 

predictive polar bear resource selection model based on habitat covariates characterizing the sea ice 
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environment and ocean depth.  The model constructed is a resource selection function (RSF), which 

predicts the relative probability of use, or values proportional to the probability of use, of habitats 

(Manly et al. 2002, McDonald et al. 2006).  Starting on page 13, we evaluate the RSF model by 

examining the association between predicted and observed polar bear distributions.  We quantified these 

associations with the monthly and interannual variability of sea ice in the Chukchi Sea during autumn.  

We also investigated sensitivity of the predictive ability of the final model to daily concordance between 

measured sea ice conditions and polar bear locations.  Finally, the robustness of the final RSF for 

predicting recent polar bear distributions is explored and discussed with respect to recent sea ice 

conditions, which have changed substantially since 1994.  The overall results and implications of this 

study, with management applications, are presented in the Discussion. 

Deriving the Resource Selection Function 

This section describes the formulation and evaluation of an RSF for polar bears in the Chukchi 

Sea during autumn, 1987 – 1994.  The RSF is a function that is proportional to the probability of use of 

resources by an animal (Manly et al. 2002).   The analysis was developed to allow for changes in habitat 

availability over time (Arthur et al. 1996). 

Study area 

Our study area was the Chukchi Sea within the region bounded by 156º W to 170º E, and 66º 30’ 

N to 80º N (Fig. 1).  Boundaries were chosen to represent the extent of Chukchi Sea ice conditions and 

typical polar bear movements on the sea ice during 15 September – 14 November (autumn).  The study 

area was further delineated based on two factors.  First, this analysis used passive microwave imagery 

(SSMR, SSM/I; National Snow and Ice Data Center, Boulder, Co.) as the source of sea ice data.  These 

data are in a raster format with a pixel size of 25 × 25 km.  Because passive microwave data are not 
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reliable along shorelines (Cavalieri et al. 1990) we excluded passive microwave pixels, and polar bear 

location data that were within 25 km of land. A rasterized land mask (1:106-scale Digital Chart of the 

World; Defense Mapping Agency, 1992) with a 25 km buffer effectively removed most of the coastal 

pixels.  Because this land mask mimicked the resolution of passive microwave data, the resulting 25 km 

shoreline buffer was blocky rather than smooth (Fig. 2). 

The study area also was allowed to vary by day depending on sea ice extent.  Because polar 

bears cannot forage effectively in open water, and because polar bears swimming in large expanses of 

open water are likely enroute to ice covered areas or land, we defined the southern boundary of the 

study area for each day as the southern extent of sea ice on that day.  Open water regions were not 

considered as available habitat so polar bear locations south of the ice edge were excluded. The coarse 

resolution of microwave satellite imagery meant that some pixels classified as ‘open water’ may have 

contained undetected sea ice.  To account for this lack of precision we buffered areas of pack ice 

recorded with ≥15% ice concentration with a 50 km polygon.  We then retained the single, very large 

polygon of pack ice that always occupies the central Arctic.  Consequently, any small parcels (islands) 

of sea ice (≥15% ice concentration) south of the main pack were not included in the study area.  The 

periphery of the single large polygon was considered the edge of the main ice pack, and is hereafter 

termed the 15% ice contour. 

Polar bear location data 

We used location data from satellite radio collars deployed on adult female polar bears captured 

in the Chukchi and the Beaufort seas during 1987 – 1993.  Polar bears were captured with standard 

animal immobilization techniques (Stirling et al. 1989) each spring from 15 March – 5 May, 1987 – 

1993, and during autumn 1988 and 1989.  Bears were equipped with a PTT (platform transmitter 

terminal; Telonics, Inc., Mesa, AZ) radio collar.  PTTs transmitted to polar-orbiting satellites which 
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then relayed the information to various ground receiving stations worldwide, and ultimately to Service 

Argos in Largo, MD.  PTT locations were calculated by the Argos Data Collection and Location System 

(Fancy et al. 1988).  Most PTTs transmitted for 4 – 8 hours every 1 – 7 days (duty cycle).  Several 

locations were typically collected during each duty cycle.  For analysis we used locations that were 

within 1.2 km of the true location of the bear (Argos location-quality1, 2, or 3; Keating et al. 1991) and 

only one location per duty cycle.  From these, we retained only those locations that fell within our study 

area (see Study area).  Because pregnant polar bears may enter dens as early as 8 October (Amstrup and 

Gardner 1994), we removed all locations that may have been associated with maternal denning. 

We were interested in the habitat choice that a bear made as it departed point A and arrived at 

point B.  We also wanted to maintain relative independence of observations.   Therefore, we used only 

consecutive locations that were separated by 2 – 7 days (44 – 172 hours).  The second observation of 

each pair would become the first observation for the next pair.  Lastly, we removed near shore locations 

that fell on passive microwave pixels with land contamination.  Generally this excluded most polar bear 

locations < 25 km from shore.   However, the blocky shape of the rasterized shoreline excluded some 

polar bear locations 25 – 40 km from the coast (Fig. 2). 

Habitat data 

Sea ice habitat covariates (Table 1) were derived from daily sea ice concentration (National 

Snow and Ice Data Center, Boulder, CO) maps produced from satellite image analyses of passive 

microwave brightness temperatures using the NASA Team Algorithm (Cavalieri et al. 1990).  These 

data were disseminated in raster format with 25 × 25 km pixel size in polar stereographic projection. 

Sea ice concentration (NTICE) is the areal proportion of sea ice occupying each ~625 km2 pixel.  

Within each pixel, we also calculated the distance (A15) to the nearest boundary (contour) of the 

polygon that encompassed all NTICE >15% concentration.  This boundary is equivalent to the 15% 
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contour described in Study area.  We constructed a 50% contour and a 75% contour using the same 

methodology, and calculated each pixel’s distance to these contours.  These contours partition the ice 

environment into 2 classes based on the respective thresholds of ice concentration (15, 50, or 75%).  

Offshore, these boundaries generally represent ice concentration contours where there is a gradient of 

ice concentrations above and below the threshold to either side of the boundary.  However, this is not 

the case in the late-autumn nearshore environment when sea ice abuts the coastline.  In this situation, 

passive microwave ice concentrations often exceed 90% from the coastline outward so the boundaries 

that partition ice greater than 15, 50, and 75% all converge to the same place – the coastline (or in our 

case, the 25 km coastal buffer that defined the edge of our study area).  These coincident contours along 

the coastline are no longer descriptive of the actual ice concentrations that are present, but their 

geographic position does make them a spatial proxy for the coastal zone in general. 

Hence, “contour”, as used in our analysis, gives two different distance measurements.  First, 

contours provide a distance measurement between a sample point and a coarse-resolution transition 

between thresholds of ice concentration.  For example, A15 is the distance from a particular pixel to the 

nearest transition zone between pixels containing no ice and pixels containing ≥15% ice.  Likewise A50 

is the distance from any particular pixel to the transition from pixels containing < 50% ice and those 

greater, and A75 is the distance from any particular pixel to the transition between pixels containing < 

75% and those pixels ≥ 75% ice.  However, as autumn progressed and ice formed adjacent to the 

shoreline, the 3 contours became synonymous and concordant with the coastal borders of the study area.  

In late autumn, the distance to the contour covariates (A15, A50, and A75) all effectively become 

proxies for a coastal effect. 
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We used the International Bathymetric Chart of the Arctic Ocean (IBCAO, 

http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html) for data on ocean depth (BATHY).  

These data are provided in a polar stereographic projection grid with 2500 m pixel resolution. 

Defining Habitat Available to Polar Bears 

We defined the habitat available to a bear at a particular time as the area within a circle with its 

center at the first of 2 consecutive observations (Arthur et al. 1996, Durner et al. 2004). The radius of 

that circle was determined by the duration of time between the previous observation and the next 

observation, and by the rate of bear movement.  Because movement rates of female polar bears in the 

southern Beaufort Sea vary by month (Amstrup et al. 2000), we calculated a unique radius for each 

unique bear/date observation with the following equation: 

radius of available habitat = {a + (b Χ 2)} Χ c; 

where a equals the mean hourly movement rate for all bears within the respective month; b is the 

standard deviation of the movement rate; {a + (b Χ 2)} gives an approximation of the upper limit to the 

hourly movement rate; and c equals the number of hours between locations.  On rare occasions, the 

actual straight-line distance traveled by a bear between observations exceeded the calculated radius.  In 

these cases, the radius of available habitat was defined as the straight-line distance actually traveled. 

Creating Discrete Choice Habitat Units 

Data extracted from the daily sea ice concentration maps and the bathymetry chart (Table 1) 

were combined to produce units of discrete habitat units.  We defined a discrete habitat unit as a point 

on a map representing a 1000 × 1000 m area (pixel size) that was associated with several layers of 

habitat covariates, including total ice concentration, distances to the three ice class interfaces (contours), 

and ocean depth. 
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Generating Available Locations and Attaching Habitat Variables 

Available locations represented the discrete choice set of the possible habitat units that a bear 

may select as it traveled from point A to point B.  For each bear location, we generated up to 100 

random available locations within the respective available habitat.  To each available location we 

attached habitat covariates, including measured distances to ice concentration boundaries (i.e., A15, 

A50, and A75) and associated quadratics and interactions (Table 1).  Available locations had a 

minimum spacing of 1000 m. 

Generating a Resource Selection Function 

Estimating the RSF followed the methods for discrete choice modeling as described in Arthur et 

al. (1996), McCracken et al. (1998), Cooper and Millspaugh (1999) and Durner et al. (2004).  The 

discrete choice model is estimated by maximizing the multinomial logit likelihood (Manly et al. 2002).  

This was accomplished using the stratified Cox proportional hazards likelihood maximization routine 

available in the SAS procedure PROC PHREG (SAS Institute 2000).  Although PROC PHREG was not 

designed to fit discrete choice habitat selection functions, Kuhfeld (2000) describes a method by which 

PROC PHREG can be adapted to maximize the appropriate discrete choice likelihood function. 

Prior to model building, Pearson’s Correlation Coefficient (r; Conover 1980) was calculated for 

all pairs of main effects.  If a pair of covariates had a value of |r| ≥ 0.6, one of the variables was 

excluded from the analysis to avoid multicolinearity.  Stepwise model building began with developing a 

single-term model based on each covariate.  We set the critical level for covariate entry into the model 

as α = 0.05 for the adjusted score χ2 statistic (Klein and Moeschberger 1997).  The single-term model 

with the largest significant score χ2 was selected as the start of a forward selection model building 

process.  We allowed each step of the forward-selection process to add one other term only when the p-

value for the adjusted score χ2 value for that term was ≤ 0.05.  Each forward selection step was preceded 
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by a backward removal step, where the variable with the smallest Wald χ2 value was dropped from the 

model if its statistical significance was > 0.05.  An interaction or quadratic term was not allowed in the 

model if the associated main effect was not already in the model.  If a backward selection step identified 

a main effect for exclusion, and that covariate was also present in the model as a quadratic or as an 

interaction with another main effect, the main effect was not dropped from the RSF model.  The RSF 

was considered complete when no other terms could be entered or removed under the constraint of α = 

0.05. 

Testing the final resource selection function 

The predictive ability of the final RSF was tested with a k-fold cross-validation technique similar 

to that described by Boyce et al. (2002) and Johnson et al. (2006).  We randomly subdivided the data 

into groups based on the number of covariates in the final model.  Groups were composed of all 

sampled locations, used and available, for individual bears rather than random subsets from all bears, 

meaning that all of the observations for any particular bear fell within only one group in any iteration of 

the k-fold process.  In the k-fold process, one group was used for testing the model and the other groups 

were used for model training (re-estimating model coefficients).  We used Huberty’s rule of thumb 

(Huberty 1994) to determine the number of groups for any particular model.  Using this rule, we 

randomly selected 2 groups for testing 2 covariate models, 3 groups for 3 – 6 covariate models, and 4 

groups for 7 – 12 covariate models.  One of these groups was then set aside for testing and the 

remaining groups were used for training.  For example, during each iteration of the validation process 

for a 2-covariate model, half of the bears were randomly placed into the training group, and half of the 

bears were placed in the testing group.  Coefficients for the 2 variable model were then re-estimated 

using all data from the training group, and model predictions (relative probability of selection) were 

made for all locations (used and available) in the testing group.  Predictions were scaled to sum to 1, and 
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the predictions for the available locations (testing group) were grouped into 10 bins based on 

percentiles.  Thus, each bin represented the same amount of area as each of the other bins.  The used 

locations for the testing data were then assigned to the appropriate bin, based on the model prediction 

for that point.  For example, if bin 10 had minimum and maximum RSF values of 0.9 and 1.0, all polar 

bear locations with predictions in this range would be assigned to bin 10.  Spearman’s rank correlation 

coefficient was then calculated to estimate the strength of the relationship between the bin rank (10 in 

this example), and the number of polar bear locations associated with that bin.  Higher ranks correspond 

to higher relative probabilities of selection, and thus a good predictive model would correctly identify 

more polar bear locations with bins of higher rank (Boyce et al. 2002).  This process was repeated 100 

times, and the average correlation coefficient was reported. 

Results 

There were a total of 1862 polar bear relocations within the spatial and temporal bounds of the 

study area.  The coastal 25 km buffer excluded 246 of these relocations from the analysis.  The majority 

of relocations associated with land or the coast occurred on Wrangel Island (n = 141).  Fifty-six 

relocations occurred along the Russia coast and 49 were along the Alaska coast, primarily in the vicinity 

of Barrow.  Final temporal filtering left a total of 1198 observations from 124 individual polar bears for 

building the RSF model (observations per bear: min. = 1, max. = 47, mean = 9.7 ± 7.3 STD).  Bear 

locations (used locations) were associated with 115,092 available locations, where each bear contributed 

between 71 – 4293 available locations (mean = 928.2 ± 693.9 STD), and each used location was 

associated with 21 – 100 available locations (mean = 96.1 ± 9.2 STD). 

Pearson correlations indicated high colinearity between A15 and A50, A50 and A75, and A15 

and NTICE (Table 2).  A15, A50, A75, and BATHY all had highly significant score χ2 results as single 

covariate models (Table 3), indicating the importance of these variables in explaining polar bear 
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distribution.  Because A50 had the highest score χ2 it was chosen as the initial covariate for model 

building.  Due to significant correlations between A50 and A15, and between A50 and A75, A15 and 

A75 were excluded from further model building.  The second model building step entered the quadratic 

for A50 (Table 3).  This was followed by the inclusion of BATHY, and concluded with the entry of the 

quadratic for NTICE (NTICE2; Table 3).  No covariates were identified for removal from the model 

during any of the backward steps.  The final RSF model was: 

RSF = exp((-0.01116 * A50) + (0.0000107 * A502) + (0.0003442 * BATHY) +  

 (0.06377 * NTICE) + (-0.0006086 * NTICE2)). 

Cross validation of the final model (Boyce et al. 2002) indicated the RSF distribution had high 

concordance with actual polar bear locations.  Three subgroups of polar bear locations, each with 100 

replicates, had mean correlations of 0.88, 0.92, and 0.88.  The average of these three correlations was 

0.89 ± 0.03 STD. 

The RSF model predicts that  polar bears selected ice concentrations near 53% and habitats near 

the 50 % ice contour (Fig. 3).  The response of polar bears to the 50 % contour was not linear; selection 

declined abruptly with increasing distance (Fig. 3).  Selection showed a slight increase at very great 

distances from the 50 % contour, which was likely an artifact of the A50 quadratic term since all 

observed polar bear locations were within 700 km of the 50 % contour.  Ice concentration by itself was 

not a useful predictor of polar bear distribution, but it became a useful predictor when considered 

collectively with A50 and BATHY (Table 3).  As with distance to the 50 % contour, the predicted 

response to ice concentration was not linear.  While polar bears were predicted to select high 

concentrations of sea ice by virtue of the positive contribution of NTICE in the model, predicted 

selection peaked at 52.7 % sea ice concentration owing to the model’s negative NTICE quadratic term.  
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The predicted response of polar bear locations varied inversely to ocean depth at a constant rate: as 

depth increased, predicted selection decreased at a constant rate. 

Assessing the Resource Selection Function 

In this section we evaluated the RSF model by examining the association between predicted and 

observed polar bear distributions.  We quantified these associations with the monthly and interannual 

variability of sea ice in the Chukchi Sea during autumn, and we also investigated sensitivity of the 

predictive ability of the final model to daily concordance between measured sea ice conditions and polar 

bear locations.  The robustness of this retrospective RSF for predicting recent polar bear distributions is 

explored and discussed with respect to recent sea ice conditions, which have changed substantially since 

1994. 

Extrapolating the RSF 

Every day between 1 September and 30 November (91 days), 1987 – 1994, and 1997 – 2005, we 

used the 1987 – 1994 model to calculate RSF values for each pixel across a 5 × 5 km pixel resolution 

grid.  This was done by subdividing each 25 km cell into twenty-five 5 km cells and calculating a RSF 

using sea ice covariates derived from the respective day’s passive microwave sea ice concentration 

estimates (Cavalieri et al. 1990), and bathymetry.  Within the grid of daily RSF values, all pixels outside 

the full study area were excluded (Fig. 1), as well as all open water (<15% ice concentration) pixels > 

50 km south of the 15 % ice concentration contour.  The remaining pixels were partitioned (Arc/Grid 

Slice Function, ESRI, Redlands, CA) into 20 intervals with the equivalent number of pixels, based on 

ranked percentiles of the RSF values.  Hence, the highest RSF interval (# 20) was comprised of the units 

with the uppermost 5% of the daily RSF values, and so forth, to the lowest RSF interval (# 1) which was 

comprised of the lowest 5%. 



 14

Although each of the 20 daily RSF intervals contained approximately the same number of pixels, 

their geographic areas were not exactly equivalent, because polar stereographic is not an equal area map 

projection.  Therefore, the area-extent of each daily RSF interval (N = 20) was adjusted using a Lambert 

azimuthal equal area map projection  The daily mean of the 20 intervals was used to represent the 

physical area for all 20 intervals of the respective day.  Ramifications of partitioning the RSF intervals 

in the polar stereographic projection were, however, found to be minor (~1 % error); the average CV 

among all of the adjusted daily means (N = 1729) was only 0.010 ± 0.003 STD. 

The characteristics of the daily RSF extrapolations reveal several important aspects about the 

behavior of the RSF in relation to the autumn sea ice dynamics (Fig. 4).  For a pixel to have 

membership in the daily study area, the pixel must occur: 1) within the primary study area (which 

excluded the nearshore zone, Figure 1); and 2) where sea ice concentration estimates were >15 % or 

within 50 km south of the 15 % ice concentration contour.  Because sea ice extent increased during the 

study period as the Chukchi Sea froze, size of the daily study area increased, and so the size of RSF 

intervals.  Total size of the daily study area is depicted by the combined extents of the upper 10 

(individually gray shaded) and the lower 10 (identical blue shade) RSF intervals (Fig. 4).  Hence, half of 

the daily study area is shaded gray and the other half is shaded blue.  Size of the daily study area is, by 

definition, approximately 20-times the size of any single respective-date RSF interval.  The seasonal 

effect on study area size, and size of the corresponding RSF intervals, caused by changes in sea ice 

extent is clearly apparent in Figure 4.  In this example, each RSF interval occupies approximately 

29,700 km2 on 15 September 1993, and 57,100 km2 on 15 November 1993. 

The 25 km coastal buffer did not fully exclude all nearshore pixels (Fig. 4).  This occurred where 

the presence of land caused the ice concentration estimates to incorrectly exceed 0 %, so they were 

retained within the daily study area.  Although inclusion of these anomalous pixels affected the total 
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daily study area size, their impact was considered to be minor since they represented such a small 

fraction of the total area. 

The highest RSF values predominated along the 50 % ice contour (Fig. 4). Northward of the 50 

% edge, the RSF values generally declined along a distance continuum unless modified by a 

discontinuity in ice concentration or bathymetry.  Since depth of the Chukchi Sea is relatively uniform 

over the continental shelf, effect of the bathymetry covariate only occurred when the ice edge was at 

high latitudes (e.g.,  15 September 1993 in the north central Chukchi Sea (~ 172° W – 177° W, > 75° N) 

when the 50 % ice contour was over relatively deep water).  RSF values also declined southward from 

the 50 % contour along a distance continuum, but this gradient was more strongly modified by the 

greater spatial variability of ice concentrations along the ice pack’s southern margin.  South of the 15 % 

ice contour, a pronounced drop in RSF values was realized as the ice concentrations rapidly yielded to 

open water.  Note the inclusion of ice-free water, as estimated by the 25 km resolution satellite sensor, 

was terminated, by definition, 50 km south of the 15 % ice contour. 

Seasonal and inter-annual variations among the RSF-interval distributions are illustrated in 

Figure 5.  A qualitative appreciation of the broad range of sea ice conditions that occurs in the Chukchi 

Sea during autumn can be attained by noting inter-annual differences in the general locations of the ice 

edge and the annual rates of ice formation (freeze up).  This variability has been attributed to variations 

in atmospheric circulation patterns that strongly influence regional air temperatures and ice motion 

regimes (for examples see: Maslanik et al. 1996, Rigor et al. 2002, Drobot and Maslanik 2003, 

Belchansky et al. 2005a).  Climate conditions during the previous winter can influence sea ice 

conditions the following autumn through heat exchange mechanisms affecting the onset of spring melt 

and duration of the summer melt season (Belchansky et al. 2004). 



 16

A fairly consistent pattern of within-year ice variability is revealed in Figure 5.  In 1987 – 1994, 

between-year autumn sea ice conditions were most variable during early September and then again 

during mid November. Little variability exists in late November after the entire Chukchi Sea freezes.  In 

early September, between-year variability was high with respect to total sea ice extent (e.g., 1988 vs. 

1990), and, it was also high with respect to the amount of area between the 15 % and 50 % ice contours 

(hereafter referred to as the marginal ice zone) (e.g. ,1987 vs. 1992).  Then, in mid-November, total sea 

ice extent was again highly variable between years (e.g.,1991 vs. 1994).  Notably, however, October 

was generally a period with less inter-annual variability.  During October, sea ice conditions in the 

Chukchi Sea more or less attained a balance between the extent of open and ice-covered water, while 

breadth of the marginal ice zone tended to be more consolidated as the lead systems froze and the ice 

edge propagated southward. 

Polar Bear Location Data 

We used all polar bear locations between during 1 September to 30 November, 1987 – 2005, for 

assessing the RSF (Fig. 1).  We maintained the filtering criteria of 1 standard-quality location per 

transmitter duty cycle (see page 5), however we did not use the temporal filter that was imposed in 

model building (restriction to consecutive locations separated by 2 – 7 days).  We also included 

locations during the first 2 weeks of September and the latter 2 weeks of November to assess the RSF 

outside of the seasonal window of its construct. Thus, our assessment of the RSF examined more polar 

bear locations than were used to develop the RSF. 

We considered 2 time periods for the RSF assessment.  First, 2709 locations collected between 

1987 and 1994 from 155 polar bears were selected for RSF evaluation during the period of its construct 

(Table 4).  Following 1994 satellite telemetry research in Alaska essentially ended.  Telemetry research 

resumed in the Beaufort Sea in 1997, resulting in a smaller number of polar bear locations (n = 827) 
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occurring in the Chukchi Sea between 1997 and 2005 (Table 4).  This second sample of 1997 – 2005 

locations was used for assessing performance of the retrospective RSF to contemporary conditions in 

the Chukchi Sea. 

Assigning Bear Locations to RSF Intervals 

Each polar bear location (Table 4) was intersected with its respective (same date) daily RSF-

value and RSF-interval map.  In addition to the RSF attributes, values of the RSF covariates and other 

ancillary data were recorded for each bear location: distance to the 15 %, 50 % and 75 % ice contours, 

bathymetry, sea ice concentration, and distance to the coast.  Bear locations outside the bounds of the 

daily study area including those on land, within the nearshore buffer zone, or on open water > 50 km 

south of the 15 % ice contour (Fig. 6) were excluded from the analysis (n = 606, or 17% of total) .  

Hence, the RSF assessment was restricted to polar bear locations that occurred >40 km from shore 

(termed “pelagic”), unless otherwise stated.  This left 2193 and 737 locations from 1987 – 1994, and 

1997 – 2005, respectively, for RSF assessment (Table 5).  The loss of polar bear locations due to coastal 

proximity became more important during the latter part of autumn, as the sea ice became more 

proximate to, or convergent with, the shoreline (Fig. 7).  Of the 606 bear locations that were < 40 km 

from the coast (Fig. 6), approximately 25% occurred in September, 25% in October, and 50% in 

November.  Although only 17% of the locations occurred <40 km offshore, 131 of the 250 (52%) total 

within-year bear individuals (Table 4) were relocated at least once within the nearshore (<40 km) zone 

during the 3-month autumn period. 

Polar Bear – RSF Associations 

When the polar bear location data in Table 5 were pooled over 16 September – 15 November 

and across 1987 – 1994 (the approximate analogous period used to derive the RSF), the frequencies of 
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polar bear locations (n=1425) occurring along an increasing RSF-interval gradient showed an 

exponential relationship (Fig. 8).  Over half (54%, n=766) of the polar bear locations occurred within 

the upper 2 combined RSF intervals, suggesting that approximately half of the bears in the Chukchi Sea 

were distributed across about 10% of the daily study area.  The proportion of polar bear occurrences 

increased to 68% within the upper 3 combined intervals (~ 15% of the area), and to 77% within the 

upper 4 combined intervals (~ 20% of the area). 

A very small fraction of bear locations (< 0.6 %, n = 8) occurred outside the daily study area 

during 16 September to 15 November, and were thus excluded from the assessment.  These 8 locations 

all occurred during the latter 2 weeks of September (over 3 different years) at open water (0 % ice) 

pixels that were >50 km south of the 15% ice contour.  These bears may have been using remnant ice 

floes that drifted south from the main ice pack that were too small to provide a sufficient passive 

microwave signature for detection by the ice concentration algorithm. 

Roughly 5% of all autumn (16 September – 15 November) pelagic bear locations across all years 

occurred south of the 15% ice contour.  Approximately 80% of these locations occurred within 50 km of 

the edge.  This 50 km zone was systematically retained in the daily study area because polar bears 

routinely utilize the southernmost fringe of the ice pack, but the 25 km resolution sea ice concentration 

maps often fail to accurately detect the presence of very low ice concentrations.  The majority of bear 

locations within the 50 km zone were associated with intermediate RSF intervals, because a very low 

(or nonexistent) ice concentration value (NTICE covariate) otherwise reduced the extrapolated RSF 

value (Fig. 4). 

We observed a modest amount of annual variability among the proportions of bear locations that 

occupied the upper 4 RSF intervals (Fig. 9).  When data from 1987 – 1994 were pooled, the upper 4 

RSF intervals contained 77% of the bear locations (Fig. 8), but when each year was examined 
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individually, the proportion of bear locations in the upper 4 intervals ranged from 65% in 1988 to 86% 

in 1990 (Fig. 9).  Between-year comparisons dramatically reduces sample sizes (Table 5), so they are 

less robust to issues of inter-annual transmitter deployment biases, the influences of different inter-

annual climate regimes, or behavioral nuances among individual bears.  Given that polar bear 

occupancy of the upper 4 RSF intervals ranged as little as 65 – 86% suggests that, for the years used to 

derive the RSF, the RSF was unaffected by the year-specific suite of sample sizes, environmental 

conditions, or behavioral repertoires. 

When bear location frequencies within the RSF intervals were partitioned across 2-week 

intervals spanning the autumn season, issues of inter-annual sampling bias are relaxed because each 2-

week interval more or less includes the same component of inter-annual variation.  The between-interval 

sampling intensity during 1987 –1993 was fairly equitable (Table 5).  Seasonally, the strongest 

associations between bear locations and the RSF intervals were observed in October, when the 

frequency of bear locations within the upper 4 combined intervals attained about 77 % (Fig. 10).  The 

frequency of bear locations in the uppermost RSF interval (# 20) imposed the greatest influence on the 

4-interval sum.  Before and after October, the bear-RSF associations diminished in a somewhat linear 

fashion.  The bear-RSF associations were strongest during the period of the RSF’s derivation (15 

September – 15 November). 

The early September and late November intervals in Figure 10 are outside the temporal range of 

polar bear data that were used to derive the RSF.  The diminished bear-RSF association during these 

very-early and very-late autumn periods suggests that either the bears’ habitat selection criteria changed, 

or that environmental conditions changed, or both.  Addressing the former is beyond the scope of this 

study, but annual differences in very early and very late season sea ice conditions compared to the mid-

autumn period are apparent in Figure 5. 
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Freeze onset typically occurs after mid-September in the Chukchi Sea, so the marginal ice zone 

tended to be broader in early September compared to conditions after freeze up.  Breadth of the 

marginal ice zone under melt conditions is further exacerbated by melt ponding on the ice surface, 

which tends to reduce ice concentration estimates derived from microwave data (Comiso and Kwok 

1996).  After freeze conditions commence, ice forms within the melt ponds and open water leads of 

marginal ice zone, and thus the zone tends to shrinks in size. 

When the marginal ice zone is very broad, the specific “line” delineating the 50% ice contour is 

probably too explicit to possess robust RSF covariate qualities, compared to conditions when the 

marginal ice zone is narrow and a greater range of ice habitats (concentrations) are maintained within 

closer proximity to the 50% contour.  In other words, it is unlikely that polar bears specifically select the 

50% contour per se.  Rather, it is more likely that the 50% ice contour is spatially proximate to the 

density of ice concentration that is best for polar bear foraging. 

By late November, sea ice typically occupies the entire Chukchi Sea and the pelagic ice edge is 

often south of the Bering Strait (Fig. 5).  Bears selecting the pelagic ice edge would have presumably 

moved south of the study area.  Recall that most bears tend to move closer to the coast as the autumn 

season progresses (Fig. 7).  The bears that moved toward the coast tended to maintain fidelity with the 

higher RSF intervals because the 15%, 50% and 75% ice contours become coincident with the study 

area’s coastal boundary when the sea ice converges to within 25 km of shore (Figs. 4 and 5). 

Over the Chukchi Sea as a whole, the upper RSF intervals encompassed a majority of the 

unconsolidated pelagic pack ice during early autumn.  Additionally, a majority of the study area 

paralleled the coast after the ice converged with the shore during the latter part of the season (Fig. 5).  

This seasonal ice pattern also reflects the overall seasonal change in polar bear distributions, from the 

pelagic ice edge to more coastal environments.  Since the 50% ice contour parallels the coastline when 
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the ice converges with shore, the A50 covariate essentially served as a “distance to coast” surrogate in 

the RSF model. Consequently, the RSF was able to maintain robust association with the bear locations 

throughout the entire autumn season, despite the bears’ general mid-season distributional shift from the 

pelagic ice edge to more coastal regions. 

Distance to the 50% ice contour is the dominant covariate of the RSF, after which sea ice 

concentration influences the RSF magnitude (bathymetry notwithstanding since its effect is only 

realized at the northernmost latitudes).  The highest RSF interval (# 20) is associated with habitats that 

are in close proximity to the 50% contour and that contain intermediate ice concentrations (Fig. 11).  In 

conditions when the 50% contour abuts the study area’s coastline boundary, magnitude of the ice 

concentration covariate strongly influences the resulting RSF value, since distance to the 50% contour is 

effectively constant. 

When the 50% ice contour abuts the study area boundary and sea ice concentrations are high 

near the coast, the RSF values are diminished by virtue of the negative coefficient to the squared ice 

concentration covariate in the RSF.  If sea ice concentrations along the coastal boundary are 

intermediate, the RSF values remain relatively high.  An example contrasting these two conditions is 

captured by the RSF interval distributions on 15 November 1993 in Figure 5.  The 50% contour abuts 

the study area’s coastal boundary along northwest Alaska, and along the Chukotka Peninsula south and 

west of Wrangel Island.  On the Russian side, sea ice concentrations in the pixels along the coastal 

boundary of the study area on 15 November 1993 typically exceeded 90%, which reduced their RSF 

values and precluded their membership in the uppermost RSF interval (#20).  However, along the 

Alaska coastal boundary, sea ice concentrations were less (albeit > 50%), so the coastal RSF pixel 

values remained high and were assigned to the uppermost RSF interval. 
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Differential behavior of the RSF along the study area’s coastal boundary (when the 50% ice 

contour is coincident with the boundary) is solely dependent on local sea ice concentrations (since 

distance to the 50% contour and bathymetry are effectively constant).  Along coastal regions with 

prevalent ice motion, shearing, flaw lead zones, or persistent polynyas, ice concentrations along the 

boundary will typically be lower and the RSF values consistently higher than for coastal regions where 

more stable ice conditions favor higher ice concentrations, which in turn, slightly diminish the RSF 

values.  Whether these results indicate that bears “prefer” coastal regions with the former conditions 

(less ice), or whether it is an artificial expression of the bears’ selection for marginal ice concentrations 

along the pelagic ice edge is unclear.  The question requires further study.  In the meantime, caution 

should be exercised not to over interpret subtle differences among the upper RSF intervals when they 

occur along the study area’s coastal boundary. 

Temporal Sensitivity of the Bear–RSF Associations 

Above we evaluated actual observed bear-RSF associations, when the RSF extrapolations and 

the polar bear locations were the same date.  In this section, sensitivity of this temporal synchrony is 

evaluated.  For this analysis, the polar bear locations were offset ± 7 days, in 1-day increments, relative 

to the RSF date, and the bear-RSF associations were quantified for each daily offset. 

The proportion of polar bear locations occupying the combined upper-4 RSF intervals decreased 

by about 3% for each day the RSF map predated or post-dated the bear locations (Fig. 12).  Given the 

arguably high degree of temporal autocorrelation among daily increments of both sea ice conditions and 

the relocations of individual polar bears, it is not surprising that the bear-RSF associations maintained 

their integrity after the events were modestly desynchronized.  Nevertheless, the association consistently 

diminished over the ± 1-week intervals indicating that, on average, there is a functional near-real-time 

component to the bear-RSF association. 
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The proportion of bear locations occupying the uppermost RSF interval (# 20) was most 

sensitive to daily offsets between bear location dates and RSF dates (Fig. 13).   Strength of the 

association with the uppermost RSF interval rapidly diminished after about a ± 1 day period.  The effect 

was postponed and less pronounced in RSF interval # 19; effectively absent in RSF interval # 18, and 

was partially compensated within interval # 17.  Ice drift alone contributes, at least partially to 

disassociation between bear locations and the RSF intervals.  During autumn in the Chukchi Sea, ice 

drift velocities frequently exceed 10 km/d, and can be much greater during periods of strong winds 

(Norton and Gaylord 2004).  To what degree the polar bears passively drift with the ice and/or make 

compensatory movements to selected habitats is beyond the scope of this study, but the combination of 

these factors within the expanding autumn sea ice environment dictated the observed temporal 

sensitivity of the bear-RSF associations. 

Bear-RSF Associations During Recent Years 

In this section, RSF associations are examined for a recent (1997 – 2005) data set of tracking 

locations from satellite transmitters that were exclusively deployed on polar bears captured in the 

Beaufort Sea.  Occasionally, some Beaufort Sea bears range west into the Chukchi Sea.  All such 

autumn occurrences were extracted and evaluated with respect to extrapolations of the original, 

unmodified (1987 – 1994) RSF to assess robustness of the retrospective RSF under more contemporary 

sea ice conditions, albeit for a distinctly different population of polar bears. 

The recent bear locations were fully independent of those used to derive the RSF, but sample 

sizes were relatively small (Table 5) and their spatial distribution over the Chukchi Sea possessed an 

eastward and northern bias (Fig. 1).  Nevertheless, these were the best data available to evaluate how 

recent changes in sea ice conditions may have impacted the degree of association between bear 

distributions and the retrospectively-derived RSF. 
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The exponential character of the bear-RSF associations observed in the historical assessment 

(Fig. 8) is far less pronounced for the 1997 – 2005 polar bear locations (Fig. 14).  The relationship 

essentially plateaus over the upper RSF intervals, resulting in only 55 % of bear locations collectively 

occupying the 4 highest intervals, or top 20% of the study area.  The most striking difference between 

the two periods is the dramatic loss of association between the recent bear locations and the uppermost 

(# 20) RSF interval (Fig. 8 and 14). 

Seasonally partitioning the recent bear-RSF associations revealed useful insights into probable 

causes of the diminished relationship.  Throughout September, the proportion of recent bear locations 

occupying the upper 4 RSF intervals remained quite low (~ 30 %), but then increased to about 60% for 

the remainder of the autumn season (Fig. 15).  RSF performance for October, 1997 – 2005 

(approximately 62%; Fig. 15) is similar to RSF performance for September, 1987 – 1994 

(approximately 70%; Fig. 10), which suggests a delay in autumn ice conditions during the later period.  

These results are likely the consequence of longer melt seasons in the Chukchi Sea during recent years 

(Belchansky et al. 2004).  Effectively, seasonal evolution of the sea ice environment to conditions 

resembling those of the 1987 – 1994 has been delayed later into the season. 

Freeze onset and the corresponding reduction in size of the marginal ice zone occurred, on 

average, about 2 weeks later during 1997 – 2005 compared to 1987 – 1994 (Fig. 16).  Since the RSF 

was derived from 1987 – 1994 data, after the marginal ice zone had decreased in size and more or less 

stabilized (mid September), it is not surprising that this retrospective RSF lacked strong association with 

recent polar bear distributions until similar seasonal ice conditions were established (i.e., early October). 

Average size of the daily study area decreased relative to the earlier period (1987 – 1994).  Since 

the daily study area is essentially defined by regions with > 0% ice cover (plus a 50 km southward 



 25

extension along the 15% ice contour), seasonal changes in study area size between the early and recent 

periods are effectively illustrated by the dynamics of open water area in the Chukchi Sea (Fig. 17). 

Figure 17 corroborates extension of the melt season during recent years.  It also illustrates a 

greater persistence of open water well into late November.  Note, however, these are generalized 

patterns that do not reflect the conditions of every year, as exemplified by 1999, 2000, and 2001 whose 

patterns are essentially indistinguishable from those of 1987 – 1994. 

Since average size of the study area decreased during recent years while size of the marginal ice 

zone increased, the proportional area of marginal ice relative to the daily study area increased to an even 

greater degree (Table 6).  Consider October, a month when sea ice conditions are somewhat 

standardized between the two periods because freeze onset had largely commenced but there was still a 

large fraction of open water in the Chukchi Sea (Figs. 5 and 18).  Average size of the daily study area in 

October was about 17% smaller during the recent years compared to the early years, and size of the 

marginal sea ice zone was about 25% larger (Table 6).  The net effect of these two changes in October 

resulted in a ~50% increase in the amount of the study area occupied by marginal ice.  This may be due, 

in part, to the younger age composition of sea ice in the Chukchi Sea (Belchansky et al. 2005b), which 

would enhance its propensity to shear and disperse under conditions of wind-driven divergent forcing. 

We speculate that lack of an exponential bear-RSF association during the recent years (Fig. 14) 

is partly due to the larger proportions of marginal ice occupying the recent study area.  Recall that 

distance to the 50 % ice contour has the greatest influence on the RSF magnitude.  As suggested earlier, 

if the marginal ice zone is small, a greater diversity of sea ice habitats will be positioned in closer 

proximity to the 50% contour compared to conditions when the marginal ice zone is large and more 

dispersed.  Thus, when the RSF is extrapolated over marginal ice zones that are considerably larger than 

those encountered in its retrospective derivation (i.e., the 1987 – 1994 period), the precise location of 
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the 50 % ice contour may be too spatially specific to maintain robust association with the habitats that 

are actually selected and used by polar bears in the pelagic sea ice environment.  However, this effect 

becomes irrelevant once the ice converges with shore and the 50% ice contour coincides with the study 

area’s coastal boundary. 

Caution should be exercised not to over-interpret any environmental explanations regarding 

bear-RSF associations that may differ between the early (1987 – 1994) and recent (1997 – 2005) 

periods.  The relatively small sample size of recent bears, which ranged primarily in the north-eastern 

Chukchi Sea, may have introduced a spatial bias sufficient to dominate the observed results. 

Seasonal RSF-Area Interactions 

Size of the daily study area increased during autumn as the sea ice expanded, so size of RSF 

intervals increased accordingly.  Consequently, a statement like “75% of the bear locations were 

associated with the upper 4 combined RSF intervals” is ambiguous in terms of the area (km2) 

encompassed by those intervals, the area of which is solely dependent on ice extent (i.e., date).  Figure 

19 illustrates this phenomenon by including an area component with the results presented in Figure 10.  

Information can be ascertained from Figure 19 by comparing bi-monthly responses for fixed values of 

interest on both the axes.  For example, 50% of the bear locations were associated with RSF intervals 

that occupied a cumulative area of about 70,000 km2 in early October, 90,000 km2 in late October, 

95,000 km2 in late September, 105,000 km2 in early September, 125,000 km2 in early November, and 

180,000 km2 in late November.  Alternatively, the area encompassing the uppermost 100,000 km2 of 

RSF values was associated with roughly 28% of the bear locations in late November, 42 % in early 

November, 48% in early September, 50% in late September, 56% in late October, and 64% in early 

October. 
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In terms of area-efficiency, bear-RSF associations were most favorable during the first half of 

October, when the cumulative proportion of polar bear locations over the cumulative RSF interval area 

consistently exceeded all other 2-week periods.  The logarithmic character of the curves in Figure 19 

suggests that the inflection points within each respective 2-week period may represent optimal 

conditions of RSF area-efficiency in terms of bear density. 

When results based on the recent polar bear locations (1997 – 2005) are illustrated analogously 

(Fig. 19, bottom), the logarithmic character of the bi-monthly curves yields to more linear ones because 

the bear-RSF relationship over the upper RSF intervals was generally flat (Fig. 14) versus exponential 

(Fig. 8).  The recent curves also encompass fewer bear locations per RSF unit area (a downward shift on 

the y-axis), owing to the diminished bear-RSF relationships throughout the season as described above.  

Similar to 1987 – 1994, the early half of October in 1997 – 2005 had the highest RSF-area efficiency, 

although the latter half of October was almost indistinguishable.  Both September periods were very 

inefficient during the recent years.  The compressed range of cumulative September RSF area along the 

x-axis during the recent years results from larger fractions of open water in the Chukchi Sea (Fig. 17), 

which causes a corresponding decrease in the RSF interval area.  For the 16 – 30 November period, the 

RSF-area efficiency was slightly higher during recent years compared to early years, which is not 

surprising given that the progression of autumn sea ice conditions has shifted later in the season. 

Discussion 

The distribution of polar bears in the Chukchi Sea is closely associated with the pelagic sea ice 

edge during autumn.  While the area of potential usable habitat is very large throughout autumn, most 

bears appeared to select a relatively narrow band of habitat composed of an even mixture of sea ice and 

open water.  Polar bears appeared to select the habitat zone where this even mixture of ice and open 

water transformed into higher proportions of sea ice.  The change in selected habitat was relatively 
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abrupt.  As the distance from the 50% ice contour increased , habitat selection rapidly decreased.  North 

of this contour the decrease in RSF was more gradual.  Therefore, while bears selected regions of ice 

comprised of approximately half ice and half water, the habitats in closer proximity to higher ice 

concentrations were selected most often.  The RSF was skewed to slightly higher concentrations of sea 

ice (Fig. 3 and 11). 

Polar bears also selected sea ice habitats where ocean depth was minimal.  The response to 

ocean depth is most pronounced during early autumn for years when the minimum ice extent places the 

bears’ ice habitat over deep waters of the Arctic basin.  As autumn freeze progresses the effect of ocean 

depth becomes less influential because most of the Chukchi Sea is relatively shallow and uniform. 

Selection for an even mixture of ice and open water in close proximity to higher concentrations 

of ice may reflect a strategy for choosing optimal hunting habitats while maintaining access to stable 

refuge habitats (Mauritzen et al. 2003).  A large proportion of water interspersed by an equal proportion 

of ice floes may provide a necessary mixture of stable platforms and abundant hunting habitats in leads 

between floes. 

Arthur et al. (1996), also using passive microwave data, examined habitat use by five female 

polar bears in the Chukchi Sea during 1990 and showed that those individuals used habitats with 25 – 

50 % ice cover, and secondarily habitats with 51 – 75 % ice cover.  Locations of the five bears 

investigated by Arthur et al. are part of this study.  The habitat selection we observed from a much 

larger sample size is similar to that reported by Arthur et al. (1996).  Our result differs, however, from 

the reported use of high ice concentrations by polar bears in the Beaufort Sea (Durner et al. 2004) and in 

the Canadian Arctic (Ferguson et al. 2000) where polar bears selected habitats with 95 % ice 

concentrations.  This suggests that habitat use may not be consistent among regions within the range of 

polar bear populations. 
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As autumn progressed and sea ice extent advanced toward and ultimately converged with the 

coastline, most bears tended to follow the advancing ice edge so their distribution generally shifted 

shoreward and southward. The RSF was able to emulate this seasonal distribution shift through its 

dependence on proximity to the 50% ice contour.  During early autumn, the 50% contour effectively 

tracked the southward propagation of unconsolidated ice as it approached the coastline.  Once the ice 

converged with shore, the 50% contour essentially coincided with the coastal periphery of the study area 

and acted as a proxy covariate for “distance to coast”.  Consequently, bears that followed the ice into 

coastal regions remained in high-value RSF habitats, as did any bears that remained affiliated with the 

pelagic ice contour.  This dual versatility of the RSF is its foremost attribute.  The RSF not only 

performed well overall (Fig. 8), it was fairly robust to inter-annual variability (Fig. 9). 

Bear-RSF associations were strongest in October (Fig. 10) because the sea ice was still mostly 

offshore, and breadth of the marginal ice zone was generally less than during September.  Under these 

conditions, regions in closer proximity to the 50% ice contour encompassed a majority of the 

unconsolidated sea ice habitats, and coastal habitats were largely unavailable.  Regardless if bears were 

using the unconsolidated ice contour for hunting or as a vehicle to gain imminent coastal access (e.g., 

females seeking maternity dens), the majority of this zone received high RSF values owing to both its 

close proximity to the 50% contour and its intermediate ice concentrations (Fig. 4). 

The RSF associations were lower in September (Fig. 10) possibly because September was a 

transitory month for ice formation. During early September and prior to the onset of freeze, the marginal 

ice zone tends to be broader (Fig. 16), so areas proximate to the 50% ice contour encompass 

proportionally less of the unconsolidated ice margin.  Since it is unlikely that polar bears specifically 

select the boundary of 50% ice concentration per se, the 50% contour lost its value as a robust spatial 

proxy to the habitat diversity of the overall marginal ice zone. 
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The diminished early-autumn RSF performance was exacerbated in the evaluation of recent 

(1997 – 2005) polar bear distributions (Fig. 15).  The poor September bear-RSF associations during 

recent years are consistent with extended melt seasons (Belchansky et al. 2004) and younger ice 

(Belchansky et al. 2005b) that would cause broader marginal ice zones to persist longer into the autumn 

season (Fig. 16).  After September, although the RSF never attained performance equitable to the earlier 

years (Figs. 10 and 15), approximately 60% of the recent bear locations did consistently occupy the 4 

upper RSF intervals – but a strong association with the uppermost RSF interval (# 20) was 

conspicuously lacking (Fig. 15).  This tells us that a retrospective RSF may not be useful for current 

September ice conditions in the Chukchi Sea, but the model continues to work reasonably well after 

September. 

Changes in the autumn sea ice in the Chukchi Sea over the past decade, raises the question as to 

whether the response by polar bears to contemporary sea ice features may be different from those of 

1987 – 1994.  A “functional response” (Mauritzen et al. 2003) of polar bears to changes in the 

proportion of likely hunting habitat and the proportion of stable refuge habitat is plausible.  Hence, there 

are additional questions concerning the applicability of this retrospective RSF for predicting 

contemporary polar bear distributions; however the efficacy of application to similar conditions appears 

to remain strong. Insufficient data exist, however, to examine if behavior of the present-day Chukchi 

Sea polar bear population still adheres to a model of retrospective selection criteria, especially in light of 

today’s substantially different sea ice conditions.  Although we present some results of bear-RSF 

associations using recent location data, it is very important to keep in mind that this is from a relatively 

small number of bears tracked in the northeast Chukchi Sea during recent autumns.  Most likely this is 

not a defensible surrogate for making inferences about the behavior of the entire Chukchi Sea 

population, which ranges as far west as Wrangel Island (Amstrup et al. 2004).  We can’t offer a solution 
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to this conundrum, except to suggest renewed research efforts in the Chukchi Sea.  The topic may 

warrant further consideration, but, because recent distribution data for the Chukchi Sea population do 

not exist, a contemporary RSF cannot be developed nor can a retrospective RSF be adequately assessed. 

 Any ad hoc solutions require imposition of one or more assumptions that may or may not be defensible.  

Also, this study is based exclusively on tracking data of adult female polar bears and makes the 

assumption that they are representative of all members of the population.  There is little data of autumn 

movements for other ages and sexes of polar bears to test this assumption, however. 

The methodology we employed necessarily omitted the nearshore coastal zone owing to the 

coarse resolution of the sea ice concentration data.  Consequently, the RSF model domain does not 

address the occupancy of habitats adjacent to the coastline, yet a considerable proportion of the Chukchi 

Sea polar bear population is known to utilize coastal areas during autumn (Fig. 6).  Hence, the RSF 

predictions of bear distribution become less and less comprehensive as the season progresses and more 

bears select habitats along the coast (Fig. 7).  Resource selection by the coastal component of the 

Chukchi Sea polar bear population during autumn is not addressed by this study, nor does it lend itself 

to the analysis of covariates derived from 25 km resolution sea ice concentration data.  A different RSF 

modeling approach is justified for polar bears occupying the coastal zone, perhaps one that considers 

different habitat covariates, and certainly one with higher spatial resolution.  Renewed research efforts 

on polar bears in the Chukchi Sea could address this concern. 

Stirling et al. (1993) suggested that the distribution of polar bears in the Arctic is dominated by a 

complex of sea ice characteristics rather than simply the presence or absence of ice.  Several studies in 

various regions of the Arctic (Arthur et al. 1996, Ferguson et al. 2000, Mauritzen et al. 2003, Durner et 

al. 2004) support this notion and bring forth some limitations of this study.  Our work is limited by the 

coarse resolution of passive microwave data (25 x 25 km pixels), and lacks information about ice age 
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and average floe size, which were important habitat features affecting polar bear distributions in the 

Beaufort Sea (Durner et al. 2004) and in the Canadian Arctic (Ferguson et al. 2000).  Nevertheless, our 

results agree with Stirling et al. (1993) and are generally consistent with other studies, suggesting our 

RSF model of polar bear habitat use during autumn in the Chukchi Sea for 1987 – 1994 is sound.  This 

also suggests that some patterns of habitat use may be consistent among polar bear populations in many 

different regions of the Arctic. 

There is utility in this RSF model for polar bear management.  Determining the status of wildlife 

populations is important for effective wildlife management.  Population status is also the most difficult 

information to obtain.  Polar bears are no exception to this.  Polar bears occur at low densities in a 

dynamic environment where it is logistically difficult to collect data.  Hence, it is useful to know where 

to look for polar bears if the interest is in determining population status.  The model that we present here 

may be applied by researchers in the field, mindful of the caveats that we have explained, to near-real 

time passive microwave imagery so that daily maps of the expected distribution of polar bears may be 

derived.  Such information is useful for allocating efforts in traditionally resource-limited field methods 

of polar bear studies, including line transect methodologies and mark-and-recapture techniques.  The 

model provides a relative probability of occurrence, which may be applied as a correction factor to 

encounter rates and field effort.  In the field, our model has practical significance for the day-to-day 

operations for researchers attempting to collect population data on polar bears.  The model lends itself 

well to standard GIS tools and could be used in stratifying survey effort (Fig. 20). 

In this report, we elucidated some complexities of polar bear habitat selection, revealing that 

bear distributions are affected by varying ice concentrations, distances to contours between ice 

concentration classes, and ocean depth.  We also demonstrated that the dynamics of autumn polar bear 

distribution in the Chukchi Sea can be generalized using habitat features extracted from coarse 
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resolution satellite imagery.  After applying our retrospective RSF model to a limited data set of 

contemporary polar bear locations, we found that the bear-RSF generalities persisted in the recent 

period, but strength of the associations diminished.  Renewed research efforts on polar bears in the 

Chukchi Sea are necessary to better understand the applied limitations of this retrospective RSF in 

present-day conditions.  Until then, we strongly caution against the use of this RSF for any 

contemporary applications without first giving thorough consideration to all of the topics discussed 

above that could severely limit its utility:  1) the implications of different sea ice conditions; 2) the 

distributions of males and subadults; and 3) the occupancy of nearshore habitats. 

Acknowledgements 

This analysis was requested and partially funded by the U.S. Fish and Wildlife Service.  

Additional funding came from the U.S. Geological Survey, Alaska Science Center.  We thank the 

following individuals for their review and improvements on an earlier draft of this report, including 

Thomas Evans, Chadwick Jay, Lyman McDonald, Karen Oakley and Thomas Smith.  Special 

appreciation is extended to Gerald Garner (deceased) of the Alaska Science Center, who deployed the 

majority of satellite radio collars on polar bears in the Chukchi Sea between 1987 and 1994. 

Literature Cited 

Amstrup, S. C.  2003.  Polar Bear (Ursus maritimus).  Pages 587 – 610 in G. A. Feldhamer, B. C. 

Thompson and J. A. Chapman, eds, Wild Mammals of North America Biology, Management and 

Conservation.  2nd edition.  The Johns Hopkins University Press, Baltimore.  1216 p. 

Amstrup, S. C., G. M. Durner, I. Stirling, N. J. Lunn, and F. Messier.  2000.  Movements and 

distribution of polar bears in the Beaufort Sea.  Canadian Journal of Zoology 78(6): 948 – 966. 



 34

Amstrup, S. C., and C. Gardner.  1994.  Polar bear maternity denning in the Beaufort Sea.  Journal of 

Wildlife Management 58: 1 – 10. 

Amstrup, S. C., T. L. McDonald, and G. M. Durner.  2004. Using satellite radiotelemetry data to 

delineate and manage wildlife populations.  Wildlife Society Bulletin 32(3):661-679. 

Arthur, S. M., B. F. J. Manly, L. L. McDonald, and G. W. Garner.  1996.  Assessing habitat selection 

when availability changes.  Ecology 77(1): 215 – 227. 

Belchansky, G. I., D. C. Douglas, and N. G. Platonov.  2004.  Duration of the Arctic sea ice melt 

season: regional and interannual variability, 1979–2001, J. Climate, 17, 67–80. 

Belchansky, G. I., D. C. Douglas, V. A. Eremeev, and N. G. Platonov.  2005a. Variations in the Arctic's 

multiyear sea ice cover:  A neural network analysis of SMMR-SSM/I data, 1979-2004. Geophysical 

Research Letters. 32: L09605. 

Belchansky, G. I., D. C. Douglas, and N. G. Platonov.  2005b.  Spatial and temporal variations in the 

age structure of Arctic sea ice. Geophysical Research Letters. 32: L18504. 

Boyce, M. S., P. R. Vernier, S. E. Neilsen, and F. K. A. Schmiegelow.  2002.  Evaluating resource 

selection functions.  Ecological Modeling 157: 281-300.  

Cavalieri, D., P. Gloerson, and J. Zwally. 1990, updated current year. DMSP SSM/I daily polar gridded 

sea ice concentrations, June to September 2001. Edited by J. Maslanik and J. Stroeve. Boulder, CO: 

National Snow and Ice Data Center. Digital media.  

Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen.  1997.  Passive microwave algorithms 

for sea ice concentration: comparison of two techniques, Remote Sens. Environ., 60: 357–384. 

Conover, W. J.  1980.  Practical nonparametric statistics.  John Wiley and Sons, New York.  493 pp. 

Cooper, A. B., and J. J. Millspaugh.  1999.  The application of discrete choice models to wildlife 

resource selection studies.  Ecology 80: 566-575. 



 35

Defense Mapping Agency.  1992.  Digital Chart of the World. Defense Mapping Agency, Fairfax, 

Virginia. (Four CD-ROMs). 

Drobot, S. D., and J. A. Maslanik.  2003.  Interannual variability in summer Beaufort Sea ice conditions: 

relationship to winter and summer surface and atmospheric variability, J. Geophys. Res. 108, 3233, 

doi:10.1029/2002JC001537. 

Durner, G. M., S. C. Amstrup, R. Neilson, and T. McDonald.  2004.  Using discrete choice modeling to 

generate resource selection functions for polar bears in the Beaufort Sea.  Pages 107 – 120 in S. 

Huzurbazar, ed., Resource Selection Methods and Applications.  Omnipress, Madison, Wisconsin.  

162 pp. 

Evans, T. J., A. S. Fischbach, S. Schliebe, B. Manly, S. Kalxdorff and G. York.  2003.  Polar bear aerial 

surveys in the eastern Chukchi Sea: a pilot study.  Arctic 56: 359 – 366. 

Fancy, S. G., L. F. Pank, D. C. Douglas, C. H. Curby, G. W. Garner, S. C. Amstrup, and W. L. Regelin.  

1988.  Satellite telemetry: a new tool for wildlife research and management.  U. S. Fish and Wildl. 

Resour. Publ. 172. 54pp. 

Ferguson, S. H., M. K. Taylor, and F. Messier.  2000.  Influence of sea ice dynamics on habitat selection 

by polar bears.  Ecology 81: 761 – 772. 

Garner, G. W., S. T. Knick, and D. C. Douglas.  1990.  Seasonal movements of adult female polar bears 

in the Bering and Chukchi Seas.  International Conference of Bear Research and Management: 219 – 

226. 

Huberty, C. J.  1994.  Applied Discriminant Analysis.  Wiley Interscience, New York. 

Johnson, C. J., S. E. Nielson, E. H. Merrill, T. L. McDonald, and M. S. Boyce. 2006. Resource selection 

functions based on use-availability data: theoretical motivation and evaluation methods. Journal of 

Wildlife Management. In press. 



 36

Keating, K. A., W. G. Brewster, and C. H. Key.  1991.  Satellite telemetry: performance of animal-

tracking systems.  Journal of Wildlife Management 55: 160-171. 

Klien, J. P., and M. L. Moeschberger.  1997.  Survival analysis, techniques for censored and truncated 

data.  Springer, New York, New York.  

Kuhfeld, W. F. 2000.  Multinomial Logit, Discrete Choice Modeling: An Introduction to Designing 

Choice Experiments, and Collecting, Processing, and Analyzing Choice Data with the SAS System, 

SAS Technical Report TS-621, SAS Institute, Cary, NC.  

Maslanik, J. A., M. C. Serreze, and R. G. Barry.  1996.  Recent decreases in Arctic summer ice cover 

and linkages to atmospheric circulation anomalies, Geophys. Res. Lett.: 23, 1677–1680. 

Manly, B. F. J., L.L. McDonald, D. L. Thomas, T. L. McDonald, and W.P. Erickson.  2002.  Resource 

Selection by Animal Statistical Design and Analysis for Field Studies.  Second edition.  Kluwer 

Academic Publishers, Dordrecht, The Netherlands. 

Mauritzen, M., S. E. Belikov, A. N. Boltunov, A. E. Derocher, E. Hanson, R. A. Ims, Ø. Wiig and N. 

Yoccoz.  2003. Functional responses in polar bear habitat selection.  Oikos 100: 112 – 124.  

McCracken, M. L., Manly, B. J. F., and Vander Heyden, M.  1998.  The use of discrete-choice models 

for evaluating resource selection.  Journal of Agricultural, Biological, and Environmental Statistics.  

3: 268–279. 

McDonald, T. L., B. F. J. Manly, R. Nielson, and L. Diller.  2006. Discrete choice modeling in wildlife 

studies exemplified by Northern spotted owl nighttime habitat selection.  Journal of Wildlife 

Management, in press. 

Norton, D.W., and A. G. Gaylord.  2004.  Drift velocities of ice floes in Alaska's northern Chukchi Sea 

flaw zone: determinants of success by spring subsistence whalers in 2000 and 2001. Arctic 57:347-

362.  



 37

Rigor I. G., J. M. Wallace, and R. L. Colony.  2002.  Response of sea ice to the Arctic Oscillation. J. 

Climate, 15: 2648–2663. 

Stirling, I., D. Adriashek, and W. Calvert.  1993.  Habitat preferences of polar bears in the western 

Canadian Arctic in late winter and spring.  Polar Record 29: 13 – 24.  

Stirling, I., N. J. Lunn, and J. Iacozza.  1999.  Long-term trends in the population ecology of polar bears 

in western Hudson Bay in relation to climatic change.  Arctic 52:294-306. 

Stirling, I., and C. L. Parkinson.  2006.  Possible effects of climate warming on selected populations of 

polar bears (Ursus maritimus) in the Canadian Arctic.  Arctic 59:261-275. 

Stirling, I., C. Spencer, and D. Andriashek.  1989.  Immobilization of polar bears (Ursus maritimus) 

with Telazol®.  Journal of Wildlife Diseases 25: 159 – 168. 

Wiig, Ø.  2005.  Are polar bears threatened?  Science 309: 1814 – 1815. 



 38

 

Table 1.  Main effects (covariates), quadratics of main effects, and interactions 

between main effects for a resource selection function of polar bear habitat use in the 

Chukchi Sea, 1987-1994. 

Covariate code Description 

A15 Distance (km) to the 15 % ice concentration contour 

A50 Distance (km) to the 50 % ice concentration contour 

A75 Distance (km) to the 75 % ice concentration contour 

A152 A15 quadratic 

A502 A50 quadratic 

A752 A75 quadratic 

NTICE Ice concentration (%) 

NTICE2 NTICE quadratic 

BATHY Ocean depth (m) 

BATHY2 BATHY quadratic 

A15*NTICE A15 and NTICE interaction 

A50*NTICE A50 and NTICE interaction 

A75*NTICE A75 and NTICE interaction 

A15*BATH A15 and BATHY interaction 

A50*BATH A15 and BATHY interaction 

A75*BATH A15 and BATHY interaction 

NTICE*BATH NTICE and BATHY interaction 
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Table 2.  Correlation matrix of covariates considered for a 

resource selection function for polar bears in the Chukchi Sea, 

15 September to 14 November, 1987 – 1994. Significant 

correlations (r ≥ |0.6|) are indicated in bold text.  See Table 1 for 

a description of covariates. 

  bathy a15 a50 a75 

ntice -0.23 0.60 0.37 -0.07 
 <.0001 <.0001 <.0001 <.0001 
bathy - -0.43 -0.42 -0.25 
  <.0001 <.0001 <.0001 
a15  - 0.89 0.46 
   <.0001 <.0001 
a50   - 0.66 
        <.0001 
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Table 3.  Sequence of model building of a resource selection 

function for polar bears in the Chukchi Sea, 15 September to 14 

November, 1987 – 1994.  Model building began with A50 (largest 

single covariate score chi-sq.) 

Model Parameter estimate 

(standard error) 

Score χ2 

(covariate entry) 

P 

(covariate entry) 

A15 -0.00741(0.0006279) 144.6026 <0.0001 

A50 -0.01479(0.0008452) 335.4296 <0.0001 

A75 -0.00685(0.0006842) 102.9724 <0.0001 

NTICE -0.0003150(0.00125) 0.0636 0.9354 

BATHY 0.0005074(0.0000739) 51.5663 <0.0001 

A50 

A502 

-0.02074(0.00110) 

0.0000212(0.00000227998) 

 

126.4511 

 

<0.0001 

A50 

A502 

BATHY 

-0.02022(0.00111) 

0.0000209(0.00000229346) 

0.0002742(0.0000765) 

 

 

13.1083 

 

 

0.0003 

A50 

A502 

BATHY 

NTICE 

-0.02062(0.00112) 

0.0000213(0.00000229969) 

0.0003064(0.0000775) 

0.00481(0.00143) 

 

 

 

11.3501 

 

 

 

0.0008 

A50 

A502 

BATHY 

NTICE 

NTICE2 

-0.01116 (0.00147) 

0.0000107(0.00000259101) 

0.0003442(0.0000777) 

0.06377(0.00672) 

-0.0006086(0.0000662) 

 

 

 

 

86.9893 

 

 

 

 

<0.0001 
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Table 4.  Total number of all satellite telemetry locations and polar bears considered for the RSF assessment, including 

observations < 40 km from the coast, by year and 2-week interval during autumn in the Chukchi Sea.   

 
 Number of Locations   Number of Individual Bears 

Year 

Sep 
01-
15 

Sep 
16-
30 

Oct 
01-
15 

Oct 
16-
31 

Nov 
01-
15 

Nov 
16-30 Total 

% 
Total  Year 

Sep 
01-
15 

Sep 
16-
30 

Oct 
01-
15 

Oct 
16-
31 

Nov 
01-15 

Nov 
16-30 Total 

Early          Early        
1987 31 39 35 51 58 46 260 9.6  1987 10 14 13 14 15 15 22 
1988 54 35 22 27 25 37 200 7.4  1988 16 11 9 9 8 12 22 
1989 74 64 70 63 71 61 403 14.9  1989 21 20 18 22 19 17 27 
1990 116 109 106 103 87 99 620 22.9  1990 33 29 27 26 23 23 35 
1991 50 46 49 44 42 43 274 10.1  1991 17 16 15 13 12 11 21 
1992 81 53 69 91 78 83 455 16.8  1992 23 20 20 23 21 24 28 
1993 79 79 68 83 60 57 426 15.7  1993 30 24 25 24 22 19 33 
1994 22 13 9 7 12 8 71 2.6  1994 8 7 5 3 4 2 12 

Total 507 438 428 469 433 434 2709 100.0  Total 158 141 132 134 124 123 200 
                  
Recent          Recent        

1997  1    4 5 0.6  1997  1    1 2 
1998 5 14 16 20 17 20 92 11.1  1998 3 2 2 3 3 3 6 
1999 2 13 28 24 15 13 95 11.5  1999 2 4 6 4 3 2 7 
2000      2 2 0.2  2000      2 2 
2001 2 4 11 16 14 20 67 8.1  2001 1 2 3 4 4 2 5 
2002     4 3 7 0.8  2002     2 1 2 
2003 3  1 2 2 1 9 1.1  2003 1  1 1 1 1 2 
2004 13 11 21 19 35 55 154 18.6  2004 1 2 4 3 6 8 10 
2005 27 65 86 70 80 68 396 47.9  2005 4 7 9 9 11 10 14 

Total 52 108 163 151 167 186 827 100.0  Total 12 18 25 24 30 30 50 
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Table 5.  Total number of all satellite telemetry locations and polar bears considered for the RSF assessment, after 

removal of observations < 40 km from the coast, by year and 2-week interval during autumn in the Chukchi Sea.   

 
 Number of Locations   Number of Individual Bears 

Year 

Sep 
01-
15 

Sep 
16-
30 

Oct 
01-
15 

Oct 
16-
31 

Nov 
01-
15 

Nov 
16-30 Total 

% 
Total  Year 

Sep 
01-
15 

Sep 
16-
30 

Oct 
01-
15 

Oct 
16-
31 

Nov 
01-15 

Nov 
16-30 Total 

Early          Early        
1987 27 33 25 47 52 40 224 10.2  1987 9 13 10 13 13 13 21 
1988 41 22 14 23 17 30 147 6.7  1988 15 8 5 8 6 10 21 
1989 72 63 70 61 47 51 364 16.6  1989 20 19 18 21 16 16 26 
1990 111 100 96 83 59 80 529 24.1  1990 31 27 25 24 22 20 35 
1991 37 40 41 39 31 27 215 9.8  1991 13 12 11 12 11 10 16 
1992 65 30 56 77 63 61 352 16.1  1992 21 12 16 21 21 22 27 
1993 66 68 54 55 28 37 308 14.0  1993 25 22 22 19 14 12 31 
1994 15 6 6 7 12 8 54 2.5  1994 6 4 3 3 4 2 9 

Total 434 362 362 392 309 334 2193 100.0  Total 140 117 110 121 107 105 186 
                  
Recent          Recent        

1997  1    4 5 0.7  1997  1    1 2 
1998 5 14 16 20 17 15 87 11.8  1998 3 2 2 3 3 3 6 
1999 2 13 28 20 3 8 74 10.0  1999 2 4 6 4 1 2 7 
2000      2 2 0.3  2000      2 2 
2001 2 4 11 14 7 17 55 7.5  2001 1 2 3 3 3 2 5 
2002      2 2 0.3  2002      1 2 
2003 3  1 2 2  8 1.1  2003 1  1 1 1  2 
2004 13 11 21 19 31 54 149 20.2  2004 1 2 4 3 5 7 9 
2005 27 65 86 64 70 43 355 48.2  2005 4 7 9 8 10 9 13 

Total 52 108 163 139 130 145 737 100.0  Total 12 18 25 22 23 27 47 
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Table 6.  Average monthly size of the daily study area, the marginal ice zone, 

and the proportional area of marginal ice within the study area, during (and % 

change between) the early (1987-1994) and recent (1997-2005) periods 

investigated. 

PERIOD MONTH N STUDY  
AREA (km2 103) 

MARGINAL  
ICE (km2 103) 

PROPORTION 
MARGINAL ICE 

 
1987-1994 SEP 240 906.7 115.8 12.8 

1997-2005 SEP 270 713.4 200.3 28.1 

% Change SEP  -21.3 73.0 119.9 
 
1987-1994 OCT 248 1022.6 85.5 8.4 

1997-2005 OCT 279 852.7 106.7 12.5 

% Change OCT  -16.6 24.7 49.5 
 
1987-1994 NOV 240 1172.2 63.9 5.5 

1997-2005 NOV 270 1129.2 79.9 7.1 

% Change NOV  -3.7 25.0 29.8 
 
1987-1994 ALL 728 1033.7 88.4 8.6 

1997-2005 ALL 819 897.9 128.7 14.3 

% Change ALL  -13.1 45.6 67.7 
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Figure 1.  Boundary of the full Chukchi Sea study area (intermediate gray) as defined by a 25 

km x 25 km rasterized polygon that encompassed offshore (>25 km) waters between 170°E–

156°W and 66°N–80°N.  Dot symbols denote all polar bear satellite relocations within 170°E–

156°W and 66°N–80°N that were collected during the autumn months (September–

November), mostly from an early-vintage field study (1987–1994) of the Chukchi Sea bear 

population (red), and exclusively from a recent-vintage field study (1997–2005) of the Beaufort 

Sea bear population (blue).   
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Figure 2.  Example of a rasterized 25 km shoreline buffer for the Chukchi Sea, compared to a 

true 25 km buffer, for a polar bear resource selection function (RSF).  This rasterized buffer 

eliminated contaminated shoreline pixels, and associated polar bear locations, from the RSF 

modeling. 
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Figure 3.  Response of the resource selection function for polar bears in the Chukchi Sea 

during autumn to changes in distance to the 50% ice edge (A), ocean depth (B), and total sea 

ice concentration (C).  Covariates not shown in each chart were held constant at their mean 

values (distance to 50% edge: 78.5 km; depth: -329.3 m; ice concentration: 61.3 %). 
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Figure 4.  Distribution maps of individual RSF intervals 11-20 (gray shaded gradient, dark to 

light) and pooled RSF intervals 1-10 (blue) for 15 September (left) and 15 November (right), 

1993.  The 50% and 15% ice edges are shown as cross-hatched and broken lines. Dot 

symbols denote individual polar bear locations recorded on the respective day. 

 



 48

Figure 5.  Daily RSF distribution maps at 15-day intervals beginning 1 September and ending 

30 November, 1987-1994.  Map shading and symbols are analogous to Figure 3. 
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Figure 6.  Frequency of autumn (Sep-Nov) polar bear locations in the Chukchi Sea (1987-

2005) within distance intervals from the coastline.  Negative values are onshore, positive 

values are offshore.  Note the distance interval thresholds are not equal across the y-axis.  

Locations above the dashed line (< 40 km offshore) were excluded from the RSF assessment. 

 



 50

Figure 7. Proportion of all polar bear locations (Table 2) during 1-week periods, within 5 

distance intervals to the coastline, 1987-1994.  Note that range of the distance interval 

thresholds are not equivalent. 
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Figure 8.  Frequencies of pelagic polar bear locations within 20 equal area RSF intervals 

along an increasing RSF-value gradient.  Polar bear data from 15 September-15 November, 

1987-1994. 
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Figure 9. Annually (1987-1993) partitioned frequencies of pelagic polar bear locations within 

each of the respective year’s 4 upper RSF intervals, and their consolidate sum.  Polar bear 

data from 15 September-15 November.  1994 is not shown due to small sample size (Table 3).   

 

Figure 10. Seasonally partitioned frequencies of pelagic polar bear locations within 2-week 

periods between 01 September-30 November for the 4 upper RSF intervals, and their 

consolidate sum.  Polar bear data from 1987-1994. 

 



 53

Figure 11.  Frequency response surface of pelagic polar bear locations with respect to sea ice 

concentration and RSF interval.  RSF intervals 17-20 are gray-shaded for visual 

discrimination.  Polar bear data from 15 September-15 November, 1987-1994. 
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Figure 12.  Frequencies of polar bear locations within the upper 4 combined RSF intervals, 

when the bear location dates are offset in daily increments relative to the dates of the RSF-

interval maps.  Polar bear data from 15 September – 15 November, 1987-1994. 
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Figure 13.  Frequencies of polar bear locations partitioned within each of the 4 upper RSF 

intervals, for bear location dates that were offset in daily increments relative to the dates of the 

RSF-interval maps.  Relativity of the offsets is analogous to Fig. 11.  Polar bear data from 15 

September – 15 November, 1987-1994. 
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Figure 14.  Frequencies of pelagic polar bear locations within 20 equal area RSF intervals 

along an increasing RSF-value gradient.  Polar bear data from 15 September-15 November, 

1997-2005. 
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Figure 15. Seasonally partitioned frequencies of pelagic polar bear locations within 2-week 

periods between 01 September-30 November for the 4 upper RSF intervals, and their 

consolidate sum.  Polar bear data from 1997-2005. 
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Figure 16.  Daily area of the marginal ice zone (15-50% concentration) during autumn in the 

Chukchi Sea: 1987-1994 (top) and 1997-2005 (bottom). 
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Figure 17.  Daily area of ice-free water during autumn in the Chukchi Sea: 1987-1994 (top) 

and 1997-2005 (bottom). 
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Figure 18.  Daily RSF distribution maps at 15-day intervals beginning 1 September and 

ending 30 November, 1998-2005.  Map shading and symbols are analogous to Fig. 3. 
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Figure 19.  Cumulative frequency of polar bear locations occupying cumulative increments of 

the upper 6 RSF intervals as a function of the total area encompassed by the respective RSF 

interval, partitioned across 2-week intervals during autumn, and averaged for the periods 

1987-1994 (top) and 1997-2005 (bottom). 
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Figure 20.  Example of the application of a polar bear resource selection function to help 

stratify aerial survey transects for polar bears in the Chukchi Sea.  Transects (10 per day; 

length: ≥25 km – 100 km) shown were randomly selected within a 100 km radius from fictitious 

icebreaker ship locations and within standardized RSF values ≥ 0.5.  The RSF was derived 

from the final model in this report (see Results) using SSM/I sea ice concentration data for 

each respective date shown. 

 




