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EXECUTIVE SUMMARY

We use two methods to assess the relative accuracy of the estimates of population size from the
Accuracy and Coverage Evaluation Revision II (A.C.E. Revision II) and Census 2000. One
method examines the quality of the census and A.C.E. Revision II through the construction of
confidence intervals for the census undercount rate corrected for bias as well as variance. The
other method uses a loss function analysis to compare the relative accuracy of the census and the
A.C.E. Revision II for states, counties, and places.

The construction of the confidence intervals incorporates both sampling and nonsampling error
derived from evaluations of components of error in the A.C.E. Revision II.. Since most of the
data available on the quality of the original A.C.E. are being incorporated in the A.C.E. Revision
II, the estimation of the net bias uses the data that were not included. The bias combined the error
due to inconsistent reporting of variables used in poststratification, the error due to using the
inmovers to represent the movers in the PES-C formulation of the dual system estimator (DSE),
and the error in the identification of duplicate enumerations in the census as measured by
administrative records. The estimate of the variance in A.C.E. Revision II included three error
components. These are the sampling error, the error due to the choice of the missing data model,
and the error due to the choice of the model for correcting for P-sample cases with enumerations
outside the search area.

The measure of accuracy used by the loss functions was weighted mean square error, with
weights set inversely proportional to the census counts for levels and to census shares for shares.
Mean square error equals the sum of variance and squared bias, and the bias and variance
estimates account for both sampling and nonsampling errors. Of course, the bias and variance
estimates will themselves have errors. The effect of omitting a variance component (if the
corresponding error is uncorrelated with other random effects) would be to overstate the accuracy
of the A.C.E. Revision II estimate and to understate the accuracy of the census, but we have not
identified significant omitted variance components. The effects of neglecting bias components
is more difficult to predict for two reasons: (1) positive biases may cancel with negative biases,
and (2) omitting biases affects the estimates of accuracy of both the A.C.E. Revision II estimates
and the census. Thus, in general, we cannot be certain whether omitted biases will tend to make
any given loss function analysis overstate or understate the comparative accuracy of the A.C.E.
Revision II estimates relative to the census. Further analysis could, in principle, be done to
investigate this.

Though not fully included in the loss functions, the effects of synthetic error were investigated in
another study (Griffin 2002). One source of synthetic error involves correcting the individual
post-stratum estimates for errors estimated at more aggregate levels (such as the corrections for
correlation bias and coding errors). Two of the variance components noted above (those related
to choice of imputation models and to accounting for P-Sample cases matching to census
enumerations outside the search area) were included in the loss functions, these components
reflect the level of the errors, not the synthetic errors from such corrections. Errors from other
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such corrections, such as the adjustments for correlation bias, were not reflected. Another source
of synthetic error is variations of census coverage within post-strata (something not captured by
synthetic application of post-stratum coverage correction factors for specific areas). Analyses
based on artificial populations that simulated patterns of coverage variation within post-strata
were done to assess whether omission of resulting synthetic biases from the loss function analysis
tilted the comparisons in one direction or another. These analyses did not in general change the
loss function results, though they had some limitations. It should be kept in mind that synthetic
error is expected to be more important the smaller are the areas whose estimates are being
compared, so that any limitations of the loss functions regarding synthetic error would be
expected to be more important in comparisons for small places or counties than for large places
or counties.

Although the loss function analysis incorporated all the components of error for which estimates
were available, and there are no known potentially large errors excluded (with the possible
exception of synthetic error discussed above), there may be other biases in the A.C.E. Revision II
estimates that were not included. We cannot ascertain whether omitted biases cause the loss
function for shares to favor the census or the A.C.E. Revision II, because the direction depends
on the signs of the correlations between the omitted biases and the expected undercount rate for
the areas considered. An alternative is a sensitivity analysis that examines the effect of different
amounts and distributions of error which would lead to estimates of the amounts and
distributions of error needed to change the indications from the loss function analysis.

Loss function analysis considered shares for five geographic groupings and levels for five
geographic groupings, with some overlap of groupings. The loss function analysis indicated that
the A.C.E. Revision II is more accurate than the census for every loss function considered with
the exception of levels for places with population of at least 100,000. When the places with
population of at least 100,000 are split into places with population between 100,000 and 1
million and places with population of at least 1 million, the loss function analysis indicates that
the bulk of the error in the A.C.E. Revision II for places with population of at least 100,000 lies
in the nine (9) places with population of at least 1 million. More research is needed to
understand the one exceptional result. The loss function analyses did not take synthetic
estimation error into account, but separate analyses (Griffin 2002) suggest that had synthetic
error been included, the conclusions would have been the same. The validity of the loss function
analysis depends on the quality of the estimates of components of error in the A.C.E. Revision II,
and some of those components are not accurately quantified. The resulting limitations on the
loss function analysis have been discussed above.

Considering the limitations, the bias-corrected estimate of the net undercount rate for the U. S. is
-0.33 percent while the A.C.E. Revision II estimate is -0.49 percent. The explanation for the
estimated bias appears to be due to error in the identification of duplicates since the effects of the
error due to inconsistent post-stratification variables and the error due to using inmovers to
estimate movers appear very small. Additional tabulations by enumeration and residency status
by domain would indicate whether the increase in the undercount rate arises from the effect of
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undetected duplicates in the P-Sample or the E-Sample. For example, if the evaluation detected
duplications of erroneous enumerations in the E-Sample, the A.C.E. Revision II estimate would
increase.

When we examine the 95 percent confidence intervals for the net undercount rates, we find that
neither the census nor A.C.E. Revision II estimates for Non-Hispanic Blacks, Non-Hispanic
Black Owners or Black Renters lie within their intervals. (Remember that both the interval and
the A.C.E. Revision II DSE are adjusted for estimated correlation bias.) This indicates an
undercount for Non-Hispanic Blacks, both for Owners and for Renters. Additional tabulations
by enumeration and residency status by domain and tenure would indicate whether the increase in
the undercount rate arises from the effect of undetected duplicates in the P-Sample or the E-
Sample. For example, if the evaluation detected duplications of erroneous enumerations in the
E-Sample, the A.C.E. Revision II estimate would increase. The estimate of a 2.78 percent
undercount rate for Blacks based on Demographic Analysis (Robinson and Adlaka 2002) does lie
within the 95 percent confidence interval.

The census estimate for Non-Hispanic Whites does not lie within the interval, indicating an
overcount. The intervals for all the other domains cover both the census and the A.C.E. Revision
II estimate.

When we consider groups defined by tenure and domain by tenure, the 95 percent confidence
intervals for the undercount rate in all groups cover the A.C.E. Revision II estimate with the
exception of the Black Owners and Black Renters as stated previously. However, the census
numbers for all Owners, NonHispanic White Owners, and Hispanic Owners do not fall within the
95 percent confidence interval for their undercount rates, indicating overcounts in these groups.
The intervals for the other groups do cover the census with the exception of Black Owners and
Black Renters mentioned above.

The major source of estimated bias in the A.C.E. Revision II concerns the estimation of census
duplicates. There are two evaluations of those estimates, Census and Administrative Records
Study (CARDS) (Bean and Bauder 2002) and Clerical Review of Census Duplicates (Byrne,
Beaghen, and Mulry 2002). The estimation of the bias in the loss function analysis is based on
CARDS. There are some discrepancies in findings from CARDS and CRCD. If these
differences were resolved, one or more of the conclusions from the outcome of the loss function
analysis could change. However, under the assumption that the A.C.E. Revision II estimates are
unbiased and the only error components are the estimated sampling and nonsampling variance
components, the loss function analysis finds that the A.C.E. Revision II estimates are more
accurate than the census for all groupings considered, even for levels for places with population
of at least 100,000. Further analyses assuming larger amounts of bias or a different distribution
of the bias would increase the knowledge of the limitations of the data.

In summary, when viewing the results of the loss function analysis, one must keep the
assumptions and limitations in mind, as well as realize that the effect of any omitted biases could
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be in either direction (increasing or decreasing the estimate of the relative accuracy of the census
versus the A.C.E. Revision II estimates). While the loss function evaluations suggest the
superiority of the A.C.E. Revision II estimates, concerns do remain about whether the bias
estimates used in the loss function analysis are of sufficient quality to assure the correctness of
the results.
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1. BACKGROUND

Two methods of assessing the relative accuracy of the Census and the A.C.E. Revision II are
using confidence intervals for the net undercount rate and a loss function analysis. We form the
confidence intervals for net undercount rate using estimates of net bias and variance for the
census coverage correction factors. Since most of the data available on the quality of the original
A.C.E. are being incorporated in the A.C.E. Revision II, the estimation of the net bias will use
the data that were not included. In the loss function analysis, we estimate loss by the weighted
Mean Squared Error (MSE), with the weight of the reciprocal of the census count for levels and
the reciprocal of the census share for shares. We estimate the aggregate loss for levels and shares
for states, counties, and places across the nation and for counties and places within state.

These methods for evaluating the accuracy of the census and an adjustment of the census have
been used previously (Mulry and Spencer 1993, 2001; CAPE 1992).

2. METHODOLOGY

Appendix A contains a detailed description of the methodology for the construction of the
confidence intervals for the undercount rate while Appendix B describes the loss function
methodology. Appendix C contains the specifications underlying the computer programs used to
calculate expected loss.

The construction of the confidence intervals incorporates both sampling and nonsampling error.
Since most of the data available on the quality of the original A.C.E. is being incorporated in the
A.C.E. Revision II, the estimation of the net bias will use the data that was not included. The bias
combined the error due to inconsistent reporting of variables used in poststratification (Bench
2002), the error due to using the inmovers to represent the movers in the PES-C formulation of
the dual system estimator (DSE) (Keathley 2002), and the error in the identification of duplicate
enumerations in the census as measured by administrative records (Bean and Bauder 2002). The
estimate of the variance in A.C.E. Revision II included three error components. These are the
sampling error, the error due to the choice of the missing data model (Kearney 2002), and the
error due to the choice of model for correcting for duplicate enumerations (Davis 2002).

Confidence intervals that incorporate the net bias as well as the variance for the net undercount
rate provide a method for comparing the relative accuracy of the census and the A.C.E.
Revision II estimates. We construct the intervals by estimating the net bias and variance in the
census coverage correction factor for each poststratum. Then we can estimate the bias and

variance V in the net undercount rate and form the 95% confidence interval for the net
undercount rate for a poststratum or a group of poststrata by

.
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Since corresponds to no adjustment of the census, one comparison of the relative accuracy
of the census and the A.C.E. Revision II estimates is based on an assessment of whether the
confidence intervals for the evaluation poststrata cover 0 and .

The loss function analysis uses the estimated bias and variance to estimate an aggregate expected
loss for the census and the A.C.E. Revision II for levels and shares for counties and places across
the nation and within state. The loss function is the weighted squared error, which also may be
described as the weighted Mean Squared Error (MSE). The weight for both the census loss and
the A.C.E. Revision II loss calculation is the reciprocal of the census count for levels and the
reciprocal of the census share for shares. The motivation for the selection of the groupings of
areas for the loss functions is the potential use of the A.C.E. Revision II estimates in the
postcensal estimates program.

Loss function analyses were carried for the following groups:
Levels
1. All Counties with population of 100,000 or less
2. All Counties with population greater than 100,000
3. All places with population at least 25,000 but less than 50,000
4. All places with population at least 50,000 but less than 100,000
5. All places with population greater than 100,000

State Shares
1. All Counties
2. All places

US Shares
1. All places with population at least 25,000 but less than 50,000
2. All places with population at least 50,000 but less than 100,000
3. All places with population greater than 100,000
4. All states

3. LIMITATIONS

• The estimated bias in the A.C.E. Revision II estimates may not account for all the sources
of bias or may not account for the included nonsampling error components well. This
could be a problem for some of the estimates derived from Census and Administrative
Records Study (Bean and Bauder 2002), for example (based on Clerical Review of
Census Duplicates (Byrne, Beaghen, and Mulry 2002)). Due to time limitations,
estimates of ratio-estimator bias are not included. Estimates of correlation bias used in
the A.C.E. Revision II are assumed to be without error.



3

• The estimated variance in the A.C.E. Revision II estimates may not account for all the
sources of variance or may not account for the included nonsampling error components
well, especially for error from choice of model for accounting for duplicates.

• Synthetic error, which is not included in the loss function analysis, may arise from two
sources. One source of synthetic error involves correcting the individual post-stratum
estimates for errors estimated at more aggregate levels (such as the corrections for
correlation bias and coding errors). Another source of synthetic error is variations of
census coverage within post-strata (something not captured by synthetic application of
post-stratum coverage correction factors for specific areas). Analyses based on artificial
populations that simulated patterns of coverage variation within post-strata were done to
assess whether omission of resulting synthetic biases from the loss function analysis tilted
the comparisons in one direction or another. These analyses did not in general change the
loss function results, though they had some limitations (Griffin 2002). It should be kept
in mind that synthetic error is expected to be more important the smaller are the areas
whose estimates are being compared, so that any limitations of the loss functions
regarding synthetic error would be expected to be more important in comparisons for
small places or counties than for large places or counties.

• The construction of the bias-corrected confidence intervals and the loss function analysis
excludes consideration of the following errors:
• synthetic estimation error
• response error and coding error in A.C.E. Revision II P-Sample residency and

match status and E-Sample correct enumeration status (e.g., conflicting cases)
• response error and coding error in A.C.E. Revision II P-Sample mover status
• error in Demographic Analysis sex ratios for correlation bias estimation
• error due to the model used to estimate correlation bias from Demographic

Analysis sex ratios
• error due to the model for estimating the effect of E-Sample cases with

• The expected loss could instead have been measured by a loss function other than squared
error weighted by the reciprocal of the census count.

• The effect of omitting a variance component (if the corresponding error is uncorrelated
with other random effects) would be to overstate the accuracy of the A.C.E. Revision II
estimate and to understate the accuracy of the census.

• The effects of neglecting bias components are more difficult to predict for two reasons:
(1) positive biases may cancel with negative biases, and (2) omitting biases affects the
estimates of accuracy of both the A.C.E. Revision II estimates and the census. The
direction of the effect of omitted biases on the comparison of accuracy depends on the
sign of a weighted sum of products of neglected biases and expected values of the
undercount estimates ( Mulry and Spencer 2001, p.6). The limitation of omitted biases
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does not predictably tilt the loss function analysis to “favor” either the A.C.E. Revision II
estimates or the census estimates in the comparisons of accuracy.

4. RESULTS

4.1 Confidence Intervals

Table 1 shows the variance components for the A.C.E. Revision II estimates of net undercount
rate for groups defined by race/Hispanic origin domain and tenure. The sampling variance was
estimated using an alternative variance estimator that treats the correlation bias correction factor
as a scalar. Table 2 displays 95 percent confidence intervals for the net undercount rate, tabulated
by evaluation poststratum. Figures 1 and 2 show graphs of the bias-corrected confidence
intervals and by domain and the cross-classification of domain by tenure, respectively.

Table 1. Variance components for the A.C.E. Revision II estimates of undercount rate (percent)

Domain & tenure group Census A.C.E.
Revision II
UC Rate

SE
sampling*

SE
imputation

model

SE
duplication

model

Total 273586997 -0.49 0.19 0.10 0.18
Owner 187924850 -1.25 0.19 0.07 0.16
Renter 85662147 1.14 0.35 0.18 0.21
AIAN on Reservations 540158 -0.88 1.53 1.48 0.54
AIAN on Res. Owner 366462 -0.74 1.62 1.79 0.62
AIAN on Res. Renter 173696 -1.17 1.94 0.98 0.37
AIAN off Reservations 1564953 0.62 1.30 0.14 0.28
AIAN off Res Owner 921447 -1.53 1.81 0.11 0.32
AIAN off Res Renter 643506 3.54 2.04 0.21 0.23
Hispanic 34538121 0.71 0.42 0.14 0.19
Hispanic Owner 16793484 -1.08 0.48 0.10 0.17
Hispanic Renter 17744637 2.35 0.58 0.18 0.21
Non-Hispanic Black 33469965 1.84 0.37 0.12 0.20
Black Owner 16547598 0.56 0.48 0.08 0.18
Black Renter 16922367 3.06 0.52 0.17 0.22
Hawaiian / PI 590208 2.12 2.61 0.28 0.41
NHPI Owner 306450 0.67 3.89 0.16 0.10
NHPI Renter 283758 3.64 3.41 0.53 0.72
Asian 9959604 -0.75 0.67 0.14 0.11
Asian Owner 6032323 -1.71 0.86 0.12 0.07
Asian Renter 3927281 0.68 0.94 0.17 0.18
Non Hispanic White 192923988 -1.13 0.19 0.09 0.17
White Owner 146957086 -1.46 0.19 0.06 0.15
White Renter 45966902 -0.07 0.40 0.19 0.21

*The standard error for sampling uses an alternative variance estimator.
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Table 2. 95 % Confidence Intervals for Undercount Rate (percent)

Domain & tenure
group

Census UC rate
bias-corrected

UC rate SE(UC)
Lower
bound

Upper
bound

Total US 273,586,997 -0.49 -0.33 0.28 -0.89 0.22
Owner 187,924,850 -1.25 -0.89 0.26 -1.41 -0.37
Renter 85,662,147 1.14 0.86 0.44 -0.02 1.74
AIAN on Res 540,158 -0.88 -1.41 2.29 -6.00 3.18
AIAN on Res Owner 366,462 -0.74 -1.49 2.54 -6.58 3.60
AIAN on Res Renter 173,696 -1.17 -1.23 2.48 -6.19 3.73
AIAN off Res 1,564,953 0.62 -0.49 1.43 -3.35 2.37
AIAN off Res Owner 921,447 -1.53 -2.91 1.95 -6.81 0.98
AIAN off Res Renter 643,506 3.54 2.79 2.21 -1.62 7.20
Hispanic 34,538,121 0.71 -0.18 0.49 -1.16 0.80
Hispanic Owner 16,793,484 -1.08 -1.63 0.54 -2.70 -0.55
Hispanic Renter 17,744,637 2.35 1.15 0.66 -0.17 2.47
Non-Hispanic Black 33,469,965 1.84 3.56 0.42 2.72 4.40
Black Owner 16,547,598 0.56 2.83 0.49 1.84 3.81
Black Renter 16,922,367 3.06 4.27 0.56 3.16 5.39
Hawaiian/PI 590,208 2.12 0.30 2.23 -4.16 4.76
NHPI Owner 306,450 0.67 -1.82 3.33 -8.47 4.84
NHPI Renter 283,758 3.64 2.49 2.91 -3.33 8.32
Asian 9,959,604 -0.75 -0.83 0.68 -2.19 0.54
Asian Owner 6,032,323 -1.71 -1.73 0.85 -3.44 -0.02
Asian Renter 3,927,281 0.68 0.53 0.96 -1.40 2.45
Non Hispanic White 192,923,988 -1.13 -1.04 0.27 -1.58 -0.50
NH White Owner 146,957,086 -1.46 -1.19 0.26 -1.70 -0.68
NH White Renter 45,966,902 -0.07 -0.57 0.48 -1.53 0.38
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The census numbers for all Owners, NonHispanic White Owners, and Hispanic Owners do not
fall within their intervals. The intervals for the other groups do cover the census with the
exception of Black Owners and Black Renters mentioned in the previous paragraph.

4.2 Loss Functions

The loss function analyses are available for all groups except the within state shares for all
places, which was planned but not completed. The bias estimate combines three error
components:
• error from inconsistent reporting of poststratification variables
• error from estimating the movers with inmovers
• error in the identification of E-sample cases with duplicates and P-sample cases that link

to enumerations outside the search area as measured by administrative records.

The variance includes components for the following:
• sample error
• error due to choice of imputation model
• error due to choice of the model for correcting for P-sample duplicates

The results indicate smaller expected loss for the DSE than the census for all of the shares
considered, and smaller expected loss for all of the levels except for all places with population
greater than 100,000. For insight, consider the following totals for all places with population of
at least 100,000 as estimated by the census, the A.C.E. Revision II DSE, and the Target, which is
equal to the DSE minus its estimated bias:

Census 71,829,465
A.C.E. Revision II 71,967,488
Target 71,512,212.

Comparison of the census and the target shows a net overcount in the census for these areas, but
the excess of the DSE over the target and the census indicates that the DSE estimated a net
undercount. Thus, the analysis indicates that DSE has either overestimated the number of census
misses or underestimated the number of duplicates or both. A tabulation of the CARDS results
would determine if it suggests that the A.C.E. Revision II missed large numbers of duplicates in
these areas. When CARDS finds duplicates for erroneous enumerations, the effect in the
estimation is to increase the correct enumeration rate.
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Table 3. Loss function results shares

Geo Group No. of
Areas

Census
Loss

DSE Loss Census Loss
/ DSE Loss

Census Loss
- DSE Loss

St Share All counties 3141 .001716411 .000590178 2.90829 .001126233

US Share Places >
25,000 and < 50,000

595 .000060290 .000016450 3.66513 .000043840

US Share Places >
50,000 and <100,000

322 .000054805 .000014229 3.85154 .000040575

US Share Places > =
100,000

223 .000035764 .000009452 3.78357 .000026311

US Share All states 51 .000023505 .000005291 4.44263 .000018214

Table 4. Loss function results levels

Geo Group No. of
Areas

Census
Loss

DSE Loss Census Loss
/ DSE Loss

Census Loss
- DSE Loss

Counties < =100,000 2617 15514.05 3730.64 4.15855 11783.41

Counties > 100,000 524 21810.87 9258.60 2.35574 12552.27

Places > 25,000 and
< 50,000

595 2785.92 966.25 2.88323 1819.67

Places > 50,000 and
<100,000

322 2537.46 1070.09 2.37127 1467.37

Places > = 100,000 223 3251.54 4271.10 0.76129 -1019.56

To gain further insight into the loss function results for levels for places with population of at
least 100,000, we examined loss function results when these places were separated into two
groups, those with population between 100,00 and 1 million and those with population of at least
1 million. We found that the loss functions still indicated less expected loss for the DSE for
levels for both groups of counties. For levels for places with population between 100,000 and 1
million, the ratio of census loss to DSE increased almost to 1. However, for levels for places
with population over 1 million, the ratio of census loss to DSE loss decreased substantially
compared to the ratio for levels for places with population of at least 100,000. This results
indicates that the bulk of the error in the A.C.E. Revision II for places with population of at least
100,000 appears to lie in the nine(9) places with population of at least 1 million. Additional
tabulations would aid in explaining this result.

Table 5. Loss function results levels
Geo Group No. of

Areas
Census Loss DSE Loss Census Loss /

DSE Loss
Census Loss -
DSE Loss

Counties > 100,000 and
< 1 million

490 16779.25 5726.92 2.92989 11052.33

Places > 100,000 and
< 1 million

214 2573.07 2671.02 0.96333 -97.95

Counties >1 million 34 5031.62 3531.68 1.42471 1499.94
Places > 1 million 9 678.47 1600.08 0.42402 -921.61
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Loss function analyses were also carried out under the assumption that the modeling of
duplicates was without error. The latter assumption served to increase the estimate of census loss
and decrease the estimate of DSE loss, but the findings were not qualitatively different than the
results discussed above.

Table 6. Loss function results shares (without variance from duplication modeling)

Geo Group No. of
Areas

Census
Loss

DSE Loss Census Loss
/ DSE Loss

Census Loss
- DSE Loss

St Share All counties 3141 .001726743 .000579856 2.97788 .001146886

US Share Places >
25,000 and < 50,000

595 .000060451 .000016288 3.71130 .000044163

US Share Places >
50,000 and <100,000

322 .000054911 .000014123 3.88803 .000040788

US Share Places > =
100,000

223 .000035813 .000009403 3.80848 .000026409

US Share All states 51 .000023566 .000005229 4.50659 .000018337

Table 7. Loss function results levels (without variance from duplication modeling)

Geo Group No. of
Areas

Census
Loss

DSE Loss Census Loss
/ DSE Loss

Census Loss
- DSE Loss

Counties < = 100,000 2618 15814.11 3430.60 4.60973 12383.52

Counties > 100,000 524 22370.33 8699.14 2.57156 13671.19

Places > 25,000 and
< 50,000

595 2841.12 911.05 3.11851 1930.07

Places > 50,000 and
<100,000

322 2593.61 1013.94 2.55795 1579.67

Places > = 100,000 223 3440.26 4082.37 0.84271 -642.11

Tables 8 and 9 show the loss function results when the Targets include only the bias due to
inconsistent reporting of poststratification variables, which is very near zero. Under the
assumption that the remaining errors are the only errors, this loss function analysis shows that the
A.C.E. Revision II estimate has less error than the census for levels and shares for all groups
considered, even for levels for places with population of at least 100,000.
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Table 8. Loss function results shares (assumes only bias is due to inconsistent
poststratification variables)

Geo Group Areas Census Loss DSE Loss Census Loss /
DSE Loss

Census Loss -
DSE Loss

St Share All counties 3141 0.001834008 0.000554593 3.30694 0.001279414

US Share Places > 25,000 and
< 50,000

595 0.000070066 0.000013295 5.27013 0.000056771

US Share Places > 50,000 and
<100,000

322 0.000064339 0.000011150 5.77039 0.000053189

US Share Places > = 100,000 223 0.000040845 0.000007713 5.29556 0.000033132

US Share All states 51 0.000028659 0.000004483 6.39283 0.000024176

Table 9. Loss function results levels (assumes only bias is due to inconsistent
poststratification variables)

Geo Group Areas Census Loss DSE Loss Census Loss /
DSE Loss

Census Loss -
DSE Loss

Counties < 100,000 2617 9420.74 2266.65 4.15624 7154.09
Counties > 100,000 524 10508.6 3622.92 2.90058 6885.63
Places > 25,000 and < 50,000 595 1623.26 430.03 3.77475 1193.23

Places > 50,000 and <100,000 322 1419.14 416.66 3.40598 1002.48

Places > = 100,000 223 2596.08 1257.78 2.06402 1338.3

5. CONCLUSIONS

Evaluations were performed on the A.C.E. Revision II estimates to estimate bias (systematic
error) and variance (random error) for use in constructing bias-corrected confidence intervals and
in a loss function analysis. The evaluations of bias were relatively limited because data that
previously were used to estimate bias were incorporated into the A.C.E. Revision II estimates in
order to correct for major errors discovered in the March 2001 A.C.E. estimates. The limited
data available for evaluation of bias does not itself reflect negatively on the A.C.E. Revision II
estimates; in fact, it is because of the corrections for major errors that we believe the A.C.E.
Revision II estimates to be of much higher quality than the March 2001 A.C.E. estimates.
Nevertheless, although the evaluations do account for the variance arising from the corrections
for bias, the corrections for bias in the A.C.E. Revision II estimates may themselves be subject to
bias, the magnitude of which has not been quantified. This is particularly true for the corrections
for correlation bias and for P-Sample cases that matched census enumerations outside the A.C.E.
search area.

The evaluations detected a small amount of bias in the A.C.E. Revision II estimate of the net
undercount rate at the national level, only 0.16 percent. The explanation for the estimated bias
appears to be due to error in the identification of duplicates since the effects of the error due to
inconsistent post-stratification variables and the error due to using inmovers to estimate movers
appear very small. Additional tabulations by enumeration and residency status by domain would
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indicate whether the increase in the undercount rate arises from the effect of undetected
duplicates in the P-Sample or the E-Sample. For example, if the evaluation detected duplications
of erroneous enumerations in the E-Sample, the A.C.E. Revision II estimate would increase.

Based on the bias-corrected 95-percent confidence intervals, both the census and the A.C.E.
Revision II estimates are too low for Non-Hispanic Blacks and both Non-Hispanic Black Owners
and Renters. The intervals show the census is too high for Non-Hispanic Whites, Owners, White
Owners, and Hispanic Owners. All other census and A.C.E. Revision II estimates are covered by
their bias-corrected 95-percent confidence intervals. The source of most of the bias estimate is
the CARDS evaluation of the identification of duplicates. Tabulations of the CARDS E-Sample
and P-Sample cases by race/ethnicity domain and enumeration (or residency) status would
explain how the bias arises.

The loss function analysis examines the relative accuracy by using the estimates of sampling
variance and nonsampling bias and variance to estimate the aggregate expected loss for the
census and the A.C.E. Revision II for levels and shares for counties and places across the nation
and within state. The analyses indicated that the A.C.E. Revision II is more accurate than the
census for every loss function considered with the exception of levels for places with population
of at least 100,000. The bulk of the error in the A.C.E. Revision II for places with population of
at least 100,000 appears to lie in the nine (9) places with population of at least 1 million. More
research is needed to understand the one exceptional result. The validity of the loss function
analysis depends on the quality of the estimates of components of error in the A.C.E. Revision II,
and some of those components are not accurately quantified. The resulting limitations on the
loss function analysis are discussed in Section 3.

The major source of estimated bias in the A.C.E. Revision II concerns the estimation of census
duplicates. There are two evaluations of those estimates, Census and Administrative Records
Study (CARDS) (Bean and Bauder 2002) and Clerical Review of Census Duplicates (Byrne,
Beaghen, and Mulry 2002). The estimation of the bias in the loss function analysis is based on
CARDS. There are some discrepancies in findings from CARDS and CRCD. If these
differences were resolved, one or more of the conclusions from the outcome of the loss function
analysis could change. However, under the assumption that the A.C.E. Revision II estimates are
unbiased and the only error components are the estimated sampling and nonsampling variance
components, the loss function analysis finds that the A.C.E. Revision II estimates are more
accurate than the census for all groupings considered, even for levels for places with population
of at least 100,000. Further analyses assuming larger amounts of bias or a different distribution
of the bias would increase the knowledge of the limitations of the data.

In summary, when viewing the results of the loss function analysis, one must keep the
assumptions and limitations in mind, as well as realize that the effect of any omitted biases could
be in either direction (increasing or decreasing the estimate of the relative accuracy of the census
versus the A.C.E. Revision II estimates). While the loss function evaluations suggest the
superiority of the A.C.E. Revision II estimates, concerns do remain about whether the bias
estimates used in the loss function analysis are of sufficient quality to assure the correctness of
the results.
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APPENDIX A

Estimating Bias in the A.C.E. Revision II Estimates and Forming Confidence Intervals

Mary H. Mulry

This appendix describes a method for estimating the bias in the A.C.E. Revision II from four
sources of error under the assumption that all other errors are zero, or at least negligible. The
four sources of error are the error due inconsistency in the E-sample and P-sample reporting of
the characteristics used in defining the poststrata, the error in identifying cases with census
duplicates in both the E- and P-samples, the error due to using inmovers for outmovers in PES-C,
and ratio estimator bias.

In addition, we describe the construction of confidence intervals for adjustment factors for
estimation cells or aggregates of estimation cells, such as evaluation estimation cells.

We examine the errors with the current formulation of the match rate for the calculation of the
A.C.E. Revision II presented in “Summary of A.C.E. Revision II Methodology” (Kostanich
2002). We will use the same definitions of variables as found in the draft of Summary of A.C.E.
Revision II Methodology.

First we discuss the correct enumeration rate and the match rate defined in “Summary of A.C.E.
Revision II Methodology”. Then we discuss each of the four error components and develop how
to estimate the bias from their combined effect.

Correct enumeration rate for A.C.E. Revision II

The correct enumeration rate for poststratum i for the calculation of the A.C.E. Revision II from
Equation (5) of the draft of Chapter 6 is the following:

where
= total weighted E-sample in poststratum i.

= correct enumerations without a census duplicate in poststratum i

= double sampling adjustment for E-sample in Revision Sample poststratum . The Revision

Sample poststrata are collapsed A.C.E. sample poststrata.

= probability of that t is a correct enumeration (CEPROBF)
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= probability that enumeration t has a census duplicate outside the search area

= probability that enumeration t with a census duplicate outside the search area is retained after

unduplication (see draft of “Summary of A.C.E. Revision II Methodology”)

= E-sample weight for person t.

For ease of discussion, we rewrite the correct enumeration rate for poststratum i as

where

= correct enumerations with census duplicates in poststratum i .

Match rate for A.C.E. Revision II

The match rate for poststratum j for the calculation of the A.C.E. Revision II DSE from the draft
of Summary of A.C.E. Revision II Methodology is the following:

where

= P-sample nonmovers without a census duplicate in poststratum j

= P-sample nonmover matches without a census duplicate in poststratum j

= P-sample outmovers in poststratum j

= P-sample outmover matches in poststratum j

= P-sample inmovers in poststratum j

= double sampling adjustment for P-sample group G, where G = nm, om, or im, in Revision

Sample poststratum . The Revision Sample poststrata are collapsed A.C.E. sample poststrata.

= double sampling adjustment for matches in group G, where G = nm or om, in Revision

Sample poststratum .
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= probability that person s has a census duplicate outside the search area

= probability that person s with a census duplicate outside the search area is retained after

unduplication (see draft of “Summary of A.C.E. Revision II Methodology”)

= P-sample weight for person s. The weight is assumed to include the probability of

residence in draft Chapter 6, but that formulation needs to be reconsidered.

= probability of being a resident of the sample block on Census Day (RPROB).

= probability person s with a census duplicate was matched in production

= estimated proportion of P-sample persons in poststratum j with census duplicates outside the

search area who are not retained as resident nonmovers by the duplicate study because they
should have been coded as inmovers.

For ease of discussion, we rewrite the match rate for poststratum j as

where

= P-sample nonmovers with census duplicates in poststratum j

= P-sample nonmovers with census duplicates in

poststratum j who are not retained as nonmovers by the duplicate study because they should have
been coded as inmovers.

= P-sample nonmover matches with census duplicates in

poststratum j

Pr(Res) = probability of being a resident (RBROB)

Corrections based on results of CARDS
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Errors in the identification of census duplicates outside the search area may create a bias in the
dual system estimate designed for the A.C.E. Revision II This bias affects the estimation of the
E-sample correct enumeration rate and the P-sample match rate.

The Census and Administrative Records Duplication Study (CARDS) uses files created with
administrative records to examine the effectiveness of the Further Study of Person Duplication in
Census 2000 ( FSPD) methodology. The FSPD refines the methodology for identifying and
estimating the number of census duplicates. Using a computer matching algorithm, the study
performs a match of the cases in the E-sample and the A.C.E. population sample, called the P-
sample, to the census records for the entire nation. Links between the E-sample or the P-sample
and the census enumerations are referred to as duplicates. CARDS first links the E and P
samples to the administrative records and then attempts to confirm or deny duplicates identified
by the FSPD. In addition, CARDS also identifies duplicates missed by the computer study,
evaluates the FSPD process rules, and examines patterns of duplication.

The approach we are taking uses the results of the CARDS to correct the identification of cases
with duplicates in the E- and P-sample for the A.C.E. Sample and the Revision Sample, a
subsample of the A.C.E. Sample. We will use a research files for the E- and P-samples.
For each case in the E- and P-sample with a FSPD census duplicate, CARDS will report it as
correct, denied, or undetermined. CARDS also will identify cases in the E- and P-samples that
have census duplicates not identified by the FSPD. With these results we will create new
designations of cases with census duplicates, new values of the probabilities of having a census
duplicate, and new values of the probabilities of cases with census duplicates being retained after
unduplication.

First define new probabilities of having a census duplicate,

= probability of census enumeration t has a census duplicate, corrected with data from

administrative records,

= probability of P-sample person s has a census duplicate, corrected with data from

administrative records.

The steps for defining the corrected probabilities of having a census duplicate are as follows:

1. For census duplicates that CARDS denies:

• If in the E-sample, set = 0, and if t matches s in the P-sample, set the corresponding

= 0.

• If in the P-sample, set = 0, and if s matches t in the E-sample, set the corresponding

= 0.

2. For census duplicates that CARDS identifies, whether or not FSPD did:
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• If in the E-sample, set = 1, and if t matches s in the P-sample, set the corresponding

= 1.

• If in the P-sample, set = 1, and if s matches t in the E-sample, set the corresponding

= 1.

3. For census duplicates CARDS can not determine and cases without duplicates:

• If in the E-sample, set =

• If in the P-sample, set = .

Next recalculate the new probabilities of P-sample person with a census duplicate being retained

after unduplication, , using the method described in Appendix 6.1 in draft Chapter 6 and the

new set of cases with census duplicates and the new duplication probabilties. Also recalculate
the new probabilities of E-sample enumeration with a census duplicate being retained after

unduplication, .

With the new , , , and , calculate a new correct enumeration rate and a new match

rate. Let the superscript A denote a quantity calculated with the new , , , and .

.

Correcting match rate for error due to using inmovers for outmovers

PES-C uses the number of inmovers to estimate the number of outmovers to avoid a bias caused
by an underestimate of the number of movers. To examine the error caused by using the
inmovers to represent outmovers, we rake the number of outmovers to total inmovers. The
distribution of the raked outmovers may better describe the outmovers than the distribution of the
inmovers. Incorporating a correction in the match rate for using inmovers for outmovers
requires defining:

= estimate of inmovers in poststratum j after raking the outmovers to the inmovers.
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Correcting match rate for inconsistent poststratification variables

As discussed in “P-Sample match rate corrected for error due to inconsistent poststratification
variables”, inconsistency in the E-sample and P-sample reporting of the characteristics used in
defining the poststrata may create a bias in the dual system estimate (DSE). This bias affects the
estimation of the P-sample match rate.

The analysis for the A.C.E. Revision II will follow a similar investigation as for the original
A.C.E. The basic approach is to estimate the inconsistency in the poststratification variables
using the matches and then assume that the rates also held for the nonmatches. The models used
for the inconsistency of the original A.C.E. poststrata (“Estimation of Inconsistent
Poststratification in the 2000 A. C. E.”, by Shelby J. Haberman and Bruce D. Spencer, 12/17/01)
were fitted in two steps, first (i) models for inconsistency of basic variables, and then (ii)
derivation of inconsistency probabilities for poststratification given the inconsistency
probabilities of the basic variables. The inconsistency probabilities led to an estimate of the bias
in the P-sample match rate that was used to estimate the bias in the DSE.

The approach we are taking for the Revised DSE is to calculate the proportions for the poststrata
for the A.C.E. Sample. The proportions will not be applied in calculations of the double
sampling adjustments based on the Revision Sample, a subsample of the A.C.E. Sample. We
assume the models in (i) and (ii) have been revised to reflect revisions to the variables used in the
P-sample poststratification. Incorporating a correction in the match rate for inconsistent
poststratification variables requires defining:

the proportion of group G persons enumerated in P-sample poststratum k who belong

to P-sample poststratum j, based on their E-sample poststratification variables. The estimation of
this proportion is based on the matched P-sample persons in group G. In this application, group
G may be nonmovers, outmovers, or inmovers.

Next we need to define the following quantities:

, for G = nm or nm-im
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Then we define the match rate corrected for the combination of error due to inconsistent
poststratification variables, errors in identifying census duplicates, and error from using inmovers
for outmovers, assuming no other errors are present, by the following:

.

Calculation of Bias in the A.C.E. Revision II

From the draft of the “Summary of A.C.E. Revision II Methodology”, the A.C.E. Revision II
estimate for estimation cell ij formed by the intersection of E-sample poststratum i and P-sample
poststratum j is

CBij

where

, with as the census imputations, as the late adds, as

the census count including the late adds, and CBij the correlation-bias adjustment factor.

Then the bias in the A.C.E. Revision II estimate due to the combination of error due to
inconsistent poststratification variables, errors in identifying census duplicates, and error from
using inmovers for outmovers, assuming no other errors are present, for the estimation cell ij is
given by

CBij .

When we add the correlation bias and the ratio estimator bias, we have the following bias
estimate for the A.C.E. Revision II in estimation cell ij.

.

[note: delete the middle term from the preceding equation]
where
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= the ratio estimator bias in the A.C.E. Revision II in estimation cell ij .

The calculation of the ratio estimator bias makes use of the replicates formed for calculating the

variance of the adjustment factors from the A.C.E. Revision II The calculation of is

independent of the calculation of and hopefully will be a by-product of the variance

calculations.

The bias in the adjustment factor for estimation cell ij is calculated by dividing the bias by the
census count

since the definition of the adjustment factor for estimation cell ij is

Calculation of variance of bias in A.C.E. Revision II

The calculation of the variance of considers the variance of each of the three terms separately.

For the loss function analysis we will assume that the variances of the correlation bias and the
ratio estimator bias are zero. When constructing confidence intervals, we will assume that the
multiplicative factor used to estimate correlation bias is a scalar and multiply the sampling

variance by the square of the multiplicative factor. The calculation of the variance of will

use the 32 replicates of the E- and P-samples. These replicates were constructed by first
partitioning the E- and P-samples into 32 groups and then removing a group. The replicate n is

the whole sample with the nth group removed. For each replicate n, we will calculate , n=

1,...,32, for each estimation cell ij. Then we will estimate the variance using a random group
estimator as follows:

.

We estimate the variance of the bias of the adjustment factor for estimation cell ij as follows:
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Forming confidence intervals

The confidence interval for the adjustment factor for the estimation cell ij for the A.C.E.

Revision II estimate uses both the bias and the variance as follows:

where

= the sampling variance for the adjustment factor

= the correlation bias correction factor

= the variance due to missing data.

Confidence intervals for adjustment factors for aggregates of estimation cells, such as evaluation
estimation cells, are defined using the same methodology. Estimates of the bias and variance as
well as confidence intervals may be formed analogously for the undercount rate.

Reference

Kostanich, Donna (2002) “Summary of A.C.E. Revision II Methodology”.DSSD A.C.E.
REVISION II MEMORANDUM SERIES #PP-35. Census Bureau, Washington, DC.
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Total Error Model and Loss Function Analysis

for the

A.C.E. Revision II Estimates of Population

Bruce D. Spencer

Draft 2.0

October 21, 2002

1. Overview

We consider estimation of expected loss when the loss functions are weighted sums of

mean squared errors (MSEs) of the form E(Xi – 2i)
2, with i referring to the population of an area

or other subgroup and Xi and 2i referring either to population levels (numbers of people) or to

shares (fraction of population in area or group i). The sums are taken over geographic areas, but

the methodology extends without modification to arbitrary subgroups such as residents of

geographic areas. Below, we will refer to areas.

The MSE is the sum of the variance and the squared bias. To estimate the squared bias,

we need to allow for the variance in the estimate of bias, because the expectation of the square of

a random quantity is equal to its variance plus the square of its mean. We show that, under

certain conditions, the point estimate of difference in expected loss between the unadjusted

census and the adjusted census estimates does not need to incorporate an allowance for variances

in the estimates of bias of the adjustment factors.
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In this section, we provide an overview of logic of the analysis. In section 2 we describe

the total error model and its implementation for the loss function analysis. Two different

methods may be used to compute variances for use in the loss function analysis. One method,

used in sections 2 and 3, below, is to store replicates; in some cases the replicates are based on

sample replicates (as in jackknife or other pseudo-replication estimation of variance) and in other

cases they are based on use of alternative models or assumptions. A second method, described

in sections 4 and 5, is to use estimated variance-covariance matrices as the basis for deriving the

variances and covariances needed in the loss function analysis. This method has been used in the

past but it is somewhat cumbersome in the current situation, when the matrices may have

dimensions of 104×104 or even greater. I do not expect that the method described in sections 4

and 5 will be used for the loss function analysis of the A.C.E. Revision II estimates in 2002. The

description is included here for completeness.

To make clear the logic of the analysis, consider any single area or subgroup and let the

following notation refer to population level or share, as the case may be. Here we suppress the

subscript i for simplicity.

2 true quantity

C census count (unadjusted)

D adjusted estimate

L = 2 - C, net undercount

U = D - C is the estimate of L

VD variance of D
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(1)

estimate of VD

$ bias of D

B estimate of $

VB variance of B

estimate of VB

VBD covariance of B and D

estimate of VBD

The MSE for the unadjusted census is L2, i.e., net undercount squared. If B is an unbiased

estimator of $, then an unbiased estimate of L is given by U - B. Recall that the expected value

of the square of a random variable is equal to the sum of its variance and the square of its

expectation. The variance of U - B is VD + VB - 2VBD and thus the expected value of (U - B)2 is

L2 + VD + VB - 2VBD. We therefore estimate the MSE for the unadjusted census by

The expected value of the estimator (1) is + +

Thus, if B is an unbiased estimator of $ and

is an unbiased estimator of VB + VD - 2VBD, the estimator of MSE for the
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(2)

(3)

(4)

(5)

census given by (1) is unbiased. Note that if the covariance VBD is estimated to be negligible,

then drops out of (1), and the estimator of MSE of the unadjusted census simplifies to

The MSE for the adjusted estimate, D, is $2 + VD. To estimate this MSE we use

which is unbiased if B is an unbiased estimator of $ and is an unbiased estimator of VD

- VB.

The excess MSE for the unadjusted census (C) relative to the adjusted estimate (D) is L2 –

($2 + VD), which we may estimate by (1) minus (3), or simply

If the covariance VBD is estimated to be negligible, then we may use (2) instead of (1) and

estimate the excess MSE by

In this case, the point estimate for difference in expected loss between the adjusted and

unadjusted census does not need to incorporate an allowance for . Previous loss function

analyses have assumed that VBD would be relatively small and could be ignored. The method
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described in section 3, below, for estimating MSEs does not rely on an assumption that VBD is

negligible.

The following sections describe the calculation of expected loss in more detail. We use

“area” as a general concept, and some care may be needed in practice. For example, if focusing

numbers in a demographic group in an area, the area should be taken to exclude the groups not of

interest.

2. Total Error Model

2.1. Overview

The following sources of error are considered in the total error model for the DSE:

a. Sampling variance (section 2.5.1)

b. Ratio-estimator bias (sections 2.5.2-2.5.3)

c. Bias due to inconsistency in the E-sample and P-sample reporting of the

characteristics used in assigning the poststrata (sections 2.5.2-2.5.3)

d. Bias from error in identifying P-sample and E-sample cases that are duplicate

enumerations in the census (sections 2.5.2-2.5.3)

e. Bias from error using inmovers for outmovers in PES-C (sections 2.5.2-2.5.3)

f. Correlation bias (sections 2.5.2-2.5.3)

g. Error due to choice of imputation model (section 2.5.4)

h. Error due to choice of modeling assumptions concerning duplication probabilities

and duplicate “survival probabilities” (section 2.5.5)

2.2. Input Variables from Production
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The following variables are produced by the census and the A.C.E. for population

estimation and are inputs for the loss function analysis. We note that the post-strata used for

adjusting for erroneous enumerations and for undercoverage will not be the same; we use the

term post-stratum to refer to an estimation cell that might involve a different E-sample and P-

sample poststratum.

Ni census count (unadjusted estimate) for area i

H number of poststrata (or estimation cells)

HE number of E-sample poststrata

HP number of P-sample poststrata

Cih census count for area i, poststratum h, against which adjustment factor is applied, 1 # h #

H

Ci
E

h census count for area i, E-sample poststratum h, against which E-sample adjustment

factor is applied, 1 # h # HE

Ci
P

h census count for area i, P-sample poststratum h, against which P-sample adjustment

factor is applied, 1 # h # HP

Ci vector of area i census counts across poststrata, to be multiplied by adjustment factors

= (Ci1, . . . , CiH)T

Ci
E vector of area i census counts across E-sample poststrata, to be multiplied by E-sample

adjustment factors

= (Ci
E

1, . . . , Ci
E

HE)T

Ci
P vector of area i census counts across P-sample poststrata, to be multiplied by P-sample

adjustment factors



29

= (Ci
P

1, . . . , Ci
P

HP)
T

fj
E adjustment factor for E-sample poststratum j, 1# j # HE. Note: these are assumed to

include adjustments for II cases.

fk
P adjustment factor for P-sample poststratum k, 1# k # HP

fh adjustment factor for poststratum h based on E-sample poststratum j and P-sample

poststratum k

= fj
E fk

P

fE vector of E-sample adjustment factors for E-sample poststrata

fP vector of P-sample adjustment factors for P-sample poststrata

f vector of adjustment factors for poststrata

= (f1, . . . , fH)T

Di adjusted estimate for area i

= fTCi

2.3. Bias Estimates

The following variables related to bias will be produced during the total error analysis.

bh estimated bias in fh

b estimated bias of f

= (b1, . . . , bH)T

Bi estimated bias in adjusted estimate for area i

= bTCi

Ti “target” estimate for area i
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= (f – b)TCi = Di - Bi

The vector b will be estimated as the sum of two components, b = bmeas + bdup-modeling, with

bmeas estimate of net bias due to errors (b) - (f) in section 2.1.; see section 2.5.2,

bdup-modeling estimate of net bias from error (h) in section 2.1; see section 2.5.5.

2.4. Variance Estimates

Estimates of variance will be produced for Di, Ti. and Bi. Two methods of estimation will

be considered. Primarily, we will consider the use of replicates to develop the variance estimates

for levels and shares. That method will avoid explicit use of a variance-covariance matrix. A

second method will be described in section 4 that will explicitly use a variance-covariance

matrix.

estimate of variance due to error (a) in section 2.1; see section 2.5.1

estimate of variance due to error (a) in section 2.1; see section 2.5.3

estimate of variance due to error (a) in section 2.1; see section 2.5.3

estimate of variance due to error (g) in section 2.1; see section 2.5.4

estimate of variance due to error (h) in section 2.1; see section 2.5.5

The following overall variances are estimated as in section 2.5.6.
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2.5. Summary Statistics Used to Develop Bias and Variance Estimates

2.5.1. Sampling Variance

The Census Bureau will prepare K replicates of the factors, based on sample replicates. It

is possible that the factors may be vectors with full vector for f, or alternatively that the vectors

will consist of a subvector of P-sample factors and a subvector of E-sample factors – the latter

will involve less computer storage. The replicates of the factors may be used to compute

variances of f and Di’s.

To generate the sampling variance of Di, one would compute K estimates, say Di(k), 1 # k

# K, and derive the variance estimate accordingly, say (This same technique

applies whether D refers to a population level or a share.)

2.5.2. Point Estimates of Bias Related to Data, Bias Related to Sampling, and Correlation Bias

There are a number of sources of bias in f. Mulry (2002) describes the estimation of error

due to inconsistency in the E-sample and P-sample reporting of the characteristics used in

assigning the poststrata, the error in identifying P-sample and E-sample cases that are duplicate

enumerations in the census, error due to using inmovers for outmovers in PES-C, ratio estimator

bias, and correlation bias. (If the A.C.E. Revision II estimates incorporate adjustments for
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correlation bias, the remaining correlation bias will be assumed to be negligible.) An estimate of

b reflecting those sources of error will be produced by taking the difference between the

production f and a version of f adjusted for the errors described earlier in this paragraph; the

estimate will be denoted by bmeas.

2.5.3. Sampling Error of Point Estimates of Bias Related to Data and Sampling

A set of 32 sample replicates for use with the simple jackknife procedure has been

developed at the Bureau by Katie Bench. Corresponding to each replicate, a value of f and a

value of bmeas will be computed. The replicates may be used to compute sampling variances of b

and Ti’s. They may also be used to compute variances of f and Di’s, as an alternative to the

replicates discussed in section 2.5.1 above. The replicates do not account for uncertainty in

correlation bias estimates.

To generate the sampling variance of Bi and Ti, use the 32 replicates to develop Bi[k], Di[k],

and Ti[k] = Di[k] – Bi[k], 1 # k # 32. Then derive the variance estimates accordingly, say

We will ratio-adjust these in accordance with the

variance estimate of Di based on K replicates,

and

with (The purpose of 8i is to ratio-adjust the variance estimates

for Di using as controls the variance estimates based on larger numbers of replicates, while

ensuring consistency among the sampling variance estimates for Di, Ti, and Bi.)
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2.5.4. Error from Choice of Imputation Model

Spencer (2002, section 3, step 7) provides for the construction of replicates that reflect

error due to choice of imputation model. There are 128 replicates of vectors of factors, which we

will denote by fimpute(k), 1 # k # 128. Note: it is assumed that the vectors of factors include

adjustments for II cases.

To generate the variance of Di from choice of imputation model, one would first compute

128 estimates of Di, one from each of fimpute(k), say 1 # k # 128. For example, if fimpute(k) is

a vector referring to the adjustment factors and Di refers to a population level for area i, one sets

= (fimpute(k))TCi and if Di refers to a population share, one sets

= (fimpute(k))TCi /Gj (fimpute(k))TCj. One would then derive the variance estimate accordingly,

say with (This same

technique applies whether D refers to a population level or a share.)

2.5.5. Failure of Assumptions in Modeling Duplication

An additional source of bias arises from error in the modeling assumptions concerning

duplication probabilities and duplicate “survival probabilities” in the A.C.E. Revision II

estimates (See Kostanich (2003), Chapter 6). To reflect this source of error, L alternative

modeling assumptions will be used to generate alternative estimates of f, say fdup-modeling(R), 1 # R #

L. (This is to occur during the production of the production factors, f.) The hypothetical bias

due to modeling error in the production estimate when the alternative model k is true is
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bdup-modeling(R) = f – fdup-modeling(R).

It is reasonable to consider that no particular alternative model is correct, but still that the

model used in the production estimate is incorrect. In this case, the modeling error may be

treated as a random bias, in a manner similar to the treatment of the failure of the model

underlying imputation of unresolved match, correct-enumeration, or residency status (Spencer

2002), and bdup-modeling(R) will be set to zero. To generate the variance of Di from failure of

assumptions for modeling duplication, one would take the L estimates, fdup-modeling(R), 1 # R # L,

compute the corresponding L values of Di, say 1 # R # L, and derive the variance estimate

accordingly, say and derive the variance estimate accordingly, say

with (This same

technique applies whether D refers to a population level or a share.)

2.5.6. Overall Variances

The overall variance of Di is the sum of the sampling variance, variance from choice of

models of duplication, and variance from choice of imputation model. Set

The variance of Bi is estimated as

The variance of Ti is estimated by the sum of the sampling variance of Ti, the variance in

Di from choice of models of duplication, and variance in Di from choice of imputation model.

Set
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3. Loss Function Calculations Based on Replicates

Aggregate loss functions for levels and shares are based on weighted sums and

differences of MC,i and MD,i. Define

MC,i Mean-Square Error (MSE) for Unadjusted Estimate of Level or Share for Area i

MD,i Mean-Square Error (MSE) for Adjusted Estimate of Level or Share for Area i.

= (Ni – Ti)
2 – .

= Bi
2 + .

These estimates may be used to estimate the corresponding MSEs in loss functions.

4. Variance-Covariance Matrices

Define the following variance-covariance matrices for adjustment factors.

E| f,sampling estimated sampling variance-covariance matrix of f, of dimension H × H

E| f,imputation estimated variance-covariance matrix of f, of dimension H × H, reflecting error

due to choice of imputation models for unresolved status.

E| f,dup-modeling estimated variance-covariance matrix of f, of dimension H × H, reflecting error

due to choice of modeling assumptions concerning duplication probabilities and

duplicate “survival probabilities”. It is possible that E| f,dup-modeling will be set to

zero.

E| f estimated variance-covariance matrix of f, of dimension H × H
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= E| f,sampling + E| f,imputation + E| f,dup-modeling

It is possible that E| f,sampling will be provided (e.g., by Douglas Olson), in which case E| f can

be computed as described above. Alternatively, it may be estimated from the K replicates

described in section 2.5.1. As a final, although less precise method, E| f,sampling may be estimable

from the 32 replicates of f described in section 2.5.3.

The variance-covariance matrix for imputation error will be developed as described in

Spencer (2002, section 2, step 7), with one possible modification. If the variance-covariance

matrix described there is for the poststratum-level DSEs, the jk entry in the matrix must be

divided by C.jC.k, with the subscript “.” denoting national level census count for the poststratum.

The matrix may also be estimated from the 128 replicates described in section 2.5.4.

The variance-covariance matrix E| f,dup-modeling may be estimated from the vectors fdup-

modeling(R), 1 # R # L, as described in section 2.5.5. Weighted moments may also be considered, if

there is reason to consider weighting some of the alternatives more than others. We will set

either (or both) of E| f,dup-modeling and bdup-modeling to zero – model bias will be taken to be random

(with mean zero) or fixed (with mean either non-zero or zero).

Sampling error, error due to choice of imputation model, and error due to choice of

modeling assumptions concerning duplication probabilities and duplicate “survival probabilities”

are taken to be independent.

Define the following variance-covariance matrices involving bias estimates for

adjustment factors.

E| b estimated variance-covariance matrix of b, of dimension H × H
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E| fb estimated cross-covariance matrix of f and b, of dimension H × H

, of dimension 2H × 2H

E| f-b estimated variance-covariance matrix of f - b

= E| f + E| b - 2E| fb

The source for estimating E| b will be 32 sample replicates developed by Katie Bench. A

collection of 32 values of b will be computed with respect to the replicates, and the variance-

covariance matrix computed accordingly. At the same time, 32 values of f will be computed, one

per replicate, and variance-covariance matrices E| f,sample and E| fb will be computed. (If E| f,sample was

developed separately (e.g., by Douglas Olson), as described above, it may be desirable to

compute a correlation matrix, say Rfb by from the replicate-based estimates, E| b, E| f,sample, and E| fb,

and then to re-estimate E| fb by using the Rfb and E| b along with the original E| f,sample. The matrix

Rfb will be of independent interest, because if its (off-diagonal entries) are small enough then we

can use (2) and (5) instead of the more complicated (1) and (4).

5. Loss Function Analysis Based on Variance-Covariance Matrices

When we are estimating loss functions for shares based on variance-covariance matrices,

the calculations are more complex than in section 3.
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5.1. Loss Functions for Levels

Aggregate loss functions for levels are based on weighted sums and differences of MC,i

and MD,i. Now we use the following estimates for levels.

= (Ni – Ti)
2 – Ci

T E| f–bCi

= Bi
2 + Ci

TE| f Ci – Ci
TE| b Ci

Aggregate loss functions for levels are based on weighted sums and differences of MC,i and MA,i.

5.2. Loss Functions for Shares

Consider area i’s share of aggregation G, where G is a union of areas. The unadjusted

share is Nshare,i = The adjusted share is Dshare,i = The target share is Tshare,i =

The bias of the adjusted share is estimated by Bshare,i = Dshare,i - Tshare,i.

5.2.1. Replications

For estimating variances of shares, we use replicates. As described below, only one set of

Q replicates of f and b need to be generated. That set will service all of the loss functions for

shares when the same specification of underlying variances is used. The value of Q is initially

set at 1000.
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Generate Q 2H×1 vectors z(q), 1 # q # Q, from a multivariate normal distribution with

mean zero and variance-covariance matrix E| . Let the vector x(q) denote vector of the first H

components of z(q) and let the vector y(q) denote the remaining H components of z(q); in other

words, consider z(q) as a two H×1 vectors stacked on each other,

Observe that x(q) is distributed as the random error in f, y(q) is distributed as the random error in

b, and the covariance between x(q) and y(q) is E| fb.

Define replicates of the adjustment factors f and bias estimates b by f(q) = f + x(q) and b(q) =

b + y(q) for 1 # q # Q. Replicates of adjusted estimates of shares and target values of shares are

based on the replicates f(q) and b(q), and the variances and covariances are derived from the

replicates.

Specifically, notice that the adjusted share for area i may be written as Dshare,i =

The q-th replicate of the adjusted share is

The sample variance among the Q values of is used to estimate the variance of Dshare,i.

Denote the variance estimate by VD,share,i.

Similarly, the q-th replicate of the target share is defined by
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The sample variance among the Q values of is used to estimate the variance of Tshare,i.

Denote the variance estimate by VT,share,i.

The q-th replicate of the bias in the adjusted share is defined by

The sample variance among the Q values of is used to estimate

the variance of Bshare,i. Denote the variance estimate by VB,share,i.

5.2.3 MSEs for Shares

The MSE for the unadjusted estimate of share for area i is estimated by

= (Nshare,i – Tshare,i)
2 – VT,share,i

and the MSE for the adjusted estimate of share for area i is estimated by

= Bshare,i
2 + VA,share,i – VB,share,i.

If there is zero correlation between f and b, then in we may replace VT,share,i by

the sum, VD,share,i + VB,share,i. The aggregate loss functions for shares are based on weighted sums

and differences of MC,share,i and MD,,sharei.
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APPENDIX C

Bias Estimation and Loss Function Analysis for A.C.E. Revision II.

Randy ZuWallack

I. Introduction

The purpose of this document is to document the computer design for calculating loss functions

as described in Bruce Spencer's October 21, 2002 draft (now Appendix B), "Total Error and Loss

Function Analysis for the A.C.E. Revision II Estimates of Population." The loss functions are

weighted sums of mean squared errors over the groupings of geographic areas below. Variance

estimates are calculated using replication methods developed from several different sources,

which are discussed in the Inputs section.

We will look at loss functions of both population levels and shares for geographic groupings of

states, counties and places. The design below describes the analysis for a level. The calculations

for a share are equivalent to that of a level except the estimates in each area are relative to the

total of the estimates over all areas.

The geographic groupings of interest are:

Levels: All counties with population of 100,000 or less

All counties with population greater than 100,000

All places with population at least 25,000 but less than 50,000

All places with population at least 50,000 but less than 100,000
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All places with population greater than 100,000

Shares within state: All counties

All places

Shares within U.S.: All places with population at least 25,000 but less than 50,000

All places with population at least 50,000 but less than 100,000

All places with population greater than 100,000

All states

The design below is general enough to encompass all the above geographic groupings as well as

any others. The only piece of information that varies with the above data groupings is the level

of geography for the poststratified census counts as described in the input section.

II. Loss Function analysis

To calculate the average loss, , for the geographic groupings above, we estimate the averageL

mean squared error, , over all areas in the geographic grouping for both the Census and the$M

DSE:
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andL
M

CC
C,i

ii

= ∑
$

L
M

CDSE
DSE,i

ii

=∑
$

To do this, we need to first estimate the mean squared error for the areas in the data groupings.

Let Ci = Census count for area i

Di = DSE for area i

Bi = Estimated bias of DSE for area I

Ti = Di - Bi = 'Target' estimate for area i

Estimated MSE of the census count for area i is , and the estimated$ $M (C T ) V(T )C,i i i
2

i= − −

MSE of the DSE for area i is . The variance terms for the target and$ $ $M B V(D ) V(B )DSE,i i
2

i i= + −

the DSE are further broken down into three contributors: sampling, imputation, and duplication

modeling. These variance contributors are assessed individually and then pieced together to form

the two terms, and$ $ $ $V(D ) V (D ) V (D ) V (D )i sampling i imputation i dup modeling i= + + −

. The calculations for estimating these$ $ $ $V(T ) V (T ) V (D ) V (D )i sampling i imputation i dup modeling i= + + −

pieces as well as are discussed in the sections that follow.

The equations above are applicable for levels and shares alike, as are the variance estimation

calculations in the sections that follow. The difference is the definitions of Di, Bi, and Ti. For
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population levels, , , and , where h denotes the poststrata.D Di hi

h

=∑ B Bi hi
h

=∑ T Ti hi
h

=∑

For population shares, , , andD D Di hi
h

hi
hi

=∑ ∑∑ B B Bi hi
h

hi
hi

=∑ ∑∑

.T T Ti hi
h

hi
hi

=∑ ∑∑

III. Inputs

1) Census counts - A file containing poststratified census counts for all states, counties and

places. There is one record per geographic area and one variable per poststrata. Randy ZuWallack

will create this file from the poststratified micro-level census file.

2) Replicate CCFs used for DSE variances - A file of replicate CCFs used for DSE variance

estimation. There is one record per replicate and one variable per poststrata. The double

sampling factor for each replicate used in the variance estimation is also included on this file.

Doug Olson will create this file as part of his DSE variance estimation system.

3) Replicate CCFs used for measurement bias estimates - A file of replicate CCFs used for

measurement bias estimation. There is one record per replicate and one variable per poststrata.

Katie Bench will create this file as part of her measurement bias estimation system.
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4) Replicate measurement bias estimates - A file of replicate bias estimates used for

measurement bias estimation. There is one record per replicate and one variable per poststrata.

Katie Bench will create this file as part of her measurement bias estimation system.

5) Replicate CCFs used for imputation variance estimation - A file of replicate CCFs used for

imputation variance estimation. There is one record per replicate and one variable per poststrata.

Anne Kearney will create this file as part of her imputation variance estimation system.

6) Alternative CCFs due to duplicatation modeling assumptions - A file of CCFs based on

various duplicatation modeling assumptions. There is one record per alternative and one variable

per poststrata. Eric Schindler will create this file.

Based on the above input files, define the following matrices:

C =[Cih]IHH, a matrix of census counts where H is the number of poststrata and I is the number of geographic areas in

the grouping (states, counties, or places). This is taken from input file 1.

f = [fh]1HH, a vector of CCFs where H is the number of poststrata. Use replicate 0 from input file 2 to form this vector.

f(K) = [f(k)h]KHH, a matrix of replicate CCFs where H is the number of poststrata and K is the number of replicates. This

is taken from input file 2.

DS = [DSi]KHK, diagonal matrix of K double sampling factors. This is taken from input file 2.
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f(J) = [f(j)h]JHH, a matrix of replicate CCFs where H is the number of poststrata and J is the number of replicates. This

is taken from input file 3.

b = [bh]1HH, a matrix of bias estimates where H is the number of poststrata. Use replicate 0 from input file 4 to form

this vector.

b(J) = [b(j)h]JHH, a matrix of replicate bias estimates where H is the number of poststrata and J is the number of

replicates. This is taken from input file 4.

f(m) = [f(m)h]MHH, a matrix of replicate CCFs where H is the number of poststrata and M is the number of replicates.

This is taken from input file 5.

f(L) = [f (l)h]LHH, a matrix of alternative CCFs where H is the number of poststrata and L is the number of alternatives.

This is taken from input file 5.

IV. Sampling variance

For all I geographic areas, the sampling variance needs to be calculated for three terms, the DSE,

the estimated measurement bias and the estimated target. We are using two sets of replicates to

estimate these three components. The first set of replicates was developed during the estimation

of direct DSE variances at the poststrata level. The second, much smaller set was developed for

the purpose of estimating measurement bias. For consistency, variance estimates based on the

second set of replicates are ratio adjusted to conform to the larger set of replicates.
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First, we estimate the sampling variance of the DSE for area I, Di, using the simple Jackknife

replication formula with the double sampling factor DSk applied to each replicate:

$ ,V (D )
K 1

K
DS (D D ) where D (1/ K) Dsampling i k i(k) i

2

k 1

K

i i(k)
k 1

K

=
−

− =
= =
∑ ∑

Using matrix calculations, we estimate this variance component for all I geographic areas as

follows:

Let D(K)= [Di(k)]IHK, matrix of K replicated DSEs used in variance estimation for I areas

COVD(K) = [covsamp(Di, DiN)]IHI, estimated sampling covariance matrix for I area DSEs.

1) Calculate D(K) =
Cf

Cf 1 Cf 1

(K)

(K) (K)

′

′ ′ ′ ′ =






−

×

if a level

where (1,1, ... ,1) if a share1 IDIAG( ) ,1

Note: DIAG is a function that creates a diagonal matrix from the elements of a vector.

2) Calculate COVD(K) = (1-1/K)( D(K) - (1/K)D(K)11N)DS(D(K) - (1/K)D(K)11N)N, where 1N=(1, 1, …, 1)1HK

3) Create VD(K), by extracting the terms for all I geographic areas from the diagonal of$V (D )sampling i

COVD(K).

Next, we estimate the sampling variance of the measurement bias and target estimate for area I,

Bi and Ti respectively, using the simple Jackknife replication formula and then ratio adjusting the

estimates to concur with :$V (D )sampling i

$ ~
,V (T ) V (T ) =

J 1

J
(T T ) where T (1/ J) Tsampling i sampling i i(j) i

2

j 1

J

i i(j)
j 1

J

=
−

− =
= =
∑ ∑λ λi i
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and$ ~
V (B ) V (B ) =

J 1

J
(B B ) ,whereB (1/ J) Bsampling i sampling i i(j) i

2

j 1

J

i i(j)
j 1

J

=
−

− =
= =
∑ ∑λ λi i

λ i =
V (D )

J 1

J
(D D )

V (D )

V (D )

sampling i

i(j) i
2

j 1

J

sampling i

sampling i

$ $

~
−

−

=

=
∑

Likewise, using the following matrix calculations, we estimate these variance components for all

I geographic areas:

Let D(J) = [Di(j)]IHJ, matrix of J replicated DSEs used in variance estimation for I geographic areas

COVD(J) = [covsampling(Di, DiN)]IHI, estimated sampling covariance matrix for I area DSEs.

COVB(J) = [covsampling(Bi, BiN)]IHI, estimated sampling covariance matrix for I areas bias estimates.

COVT(J) = [covsampling(Ti, TiN)]IHI, estimated sampling covariance matrix for I area target estimates.

7 = [8i]IH1, ratios for adjusting and for all I areas.$V (T )sampling i
$V (B )sampling i

First, we calculate 8i for all I areas:

1) Calculate D(J) =
Cf

Cf 1 Cf 1

(J)

(J) (J)

′

′ ′ ′ ′ =






−

×

if a level

where (1,1, ... ,1) if a share1 IDIAG( ) ,1

2) Calculate COVD(J) = (1-1/J)( D(J) –(1/J)D(J)11N)( D(J) - (1/J)D(J)11N)N, where 1N=(1, 1, …, 1)1HJ

3) Create VD(J), by extracting the terms for all I geographic areas from the diagonal of~
V (D )sampling i

COVD(J).
4) For all I areas, calculate 8i by dividing the i-th element of VD(K) by the i-th element of VD(J). Create 7 =

[8i]IH1.
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Similarly, we calculate :$V (T )sampling i

1) Calculate T(J) =
C(f b

C(f b 1 C(f b 1

(J) (J)

(J) (J) (J) (J)

− ′

− ′ ′ − ′ ′ =






−

×

)

) ( ) ) ,

if a level

where (1,1, ... ,1) if a share1 IDIAG 1

2) Calculate COVT (J) = (1-1/J)( T(J) –(1/J)T(J)11N)( T(J) - (1/J)T(J)11N)N, where 1N=(1, 1, …, 1)1HJ

3) Create VT(J)
*, by extracting the terms for all I geographic areas from the diagonal of~

V (T )sampling i

COVT(J).
4) Calculate VT (J) by multiplying the elements of VT (J)

* by the corresponding elements of 7.

Finally, we calculate as follows:$V (B )sampling i

1) Calculate B(J) = D(J) - T(J)

2) Calculate COVB (J) = (1-1/J)( B(J) – (1/J)B(J)11N)( B(J) – (1/J)B(J)11N)N, where 1N=(1, 1, …, 1)1HJ

3) Create VB(J)
*, by extracting the terms for all I geographic areas from the diagonal of~

V (B )sampling i

COVB(J).
4) Calculate VB (J) by multiplying the elements of VB (J)

* by the corresponding elements of 7.

V. Imputation variance

To estimate the imputation variance of the DSE for area I, Di, we are using a set of replicates

developed for assessing the error due to the choice of the imputation model. The replication

variance formula is:

$V (D )

(D D )

M 1
,where D (1/ M) Dimputation i

i(m) i
2

m 1

M

i i(m)
m 1

M

=

−

−
==

=

∑
∑
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We estimate this variance component for all I geographic areas using the matrix calculations that

follow.

Let D(M)= [Di(M)]IHM, matrix of M replicated DSEs used in imputation variance estimation for I areas.

COVD(M) = [covimp(Di, DiN)]IHI, estimated imputation covariance matrix for I area DSEs.

1) Calculate D(M) =
Cf

Cf 1 Cf 1

(M)

(M) (M)

′

′ ′ ′ ′ =






−

×

if a level

where (1,1, ... ,1) if a share1 IDIAG( ) ,1

2) Calculate COVD(M) = 1/(M-1)( D(M) - (1/M)D(M)11N)(D(M) - (1/M)D(M)11N)N, where 1N=(1, 1, …, 1)1HM

3) Create VD(M), by extracting the terms for all I geographic areas from the diagonal of$V (D )imputation i

COVD(M).

VI. Duplication modeling variance

To estimate the duplication modeling variance of the DSE for area I, Di, we are using a set of

estimates generated under different modeling assumptions. The formula for estimating this

variance component using the L alternatives is:

$ ,V (D )

(D D )

where D (1/ L) Ddup-modeling i

i(l) i
2

l 1

L

i i(l)
l 1

L

=

−

−
==

=

∑
∑L 1
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We estimate this variance component for all I geographic areas using the matrix calculations that

follow.

Let D(L)= [Di(L)]IHL, matrix of L replicated DSEs used in imputation variance estimation for I areas.

COVD(L) = [covdup-modeling(Di, DiN)]IHI, estimated dup-modeling covariance matrix for I area DSEs.

1) Calculate D(L) =
Cf

Cf 1 Cf 1

(L)

(L) (L)

′

′ ′ ′ ′ =






−

×

if a level

where (1,1, ... ,1) if a share1 IDIAG( ) ,1

2) Calculate COVD(L) = 1/(L-1)( D(L) - (1/L)D(L)11N)(D(L) - (1/L)D(L)11N)N, where 1N=(1, 1, …, 1)1HL

3) Create VD(L), by extracting the terms for all I geographic areas from the diagonal of$V (D )dup-modeling i

COVD(L).

VII. Total Error and Average Loss

All components are available for calculating MSEs as described in section II. First, calculate the

census counts, the bias estimates, and the targets for the I areas:

Ci = Ci1, where Ci is the ith row of C and 1N=(1, 1,…, 1)1HH

Bi = Ci bN

Ti = Ci (f-b)N

Then, for each of the I elements in the vectors created above and in section II, calculate the

estimated MSEs:

$ $ $ $M (C T ) [V (T ) V (D ) V (D )]C,i i i
2

sampling i imputation i dup modeling i= − − + + −

$ $ $ $ $M B V (D ) V (D ) V (D ) - V (B )DSE,i i
2

sampling i imputation i dup modeling i sampling i= + + + −
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Finally, calculate the estimated loss of the census count and DSE by weighting the MSE

estimates by the inverse of the census count and summing over all I areas:

andL
M

CC
C,i

ii

= ∑
$

L
M

CDSE
DSE,i

ii

=∑
$




