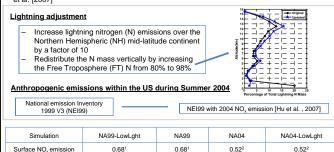


Transport of NO_v from the United States

Yuanyuan Fang¹(yfang@princeton.edu), Arlene Fiore², Larry Horowitz^{1,2}, Hiram Levy², Yongtao Hu³, Armistead Russell³ ¹ Program in Atmospheric and Oceanic Sciences, Princeton University, ² Geophysical Fluid Dynamics Laboratory, NOAA, ³ School of Civil and Environmental Engineering, Georgia Institute of Technology

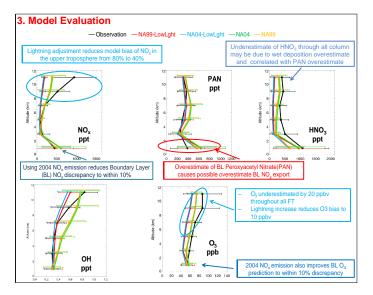
1. Introduction Motivation:

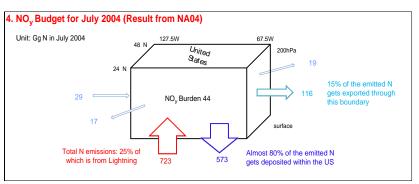
- The United States is a major source of anthropogenic nitrogen oxides (NO_x) (22% of the global anthropogenic emissions) [Olivier and Berdowski, 2001]
- Reactive nitrogen (NO_y) exported from the United States contributes to downwind O₃ production
- Powerplant NO, emissions have decreased from 1999 to 2003 by 50% [Frost et al., 2006] Lightning NO_x emissions may be higher than previous studies (e.g., 0.27 rather than 0.068 TgN for the Intercontinental Chemical Transport Experiment North America (INTEX-NA) period) [Hudman et al., 2007]

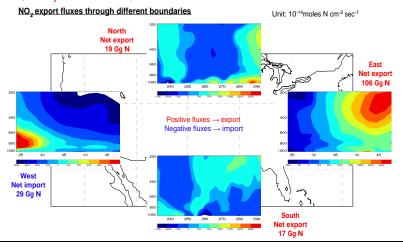

Objective of this work:

- Quantify the NO_y budget and export from the United States during Summer 2004 Investigate the budget sensitivity of NO_y to both the surface emission change and the lightning
- emission change Examine how NO_x emission changes affect O₃ chemistry and air quality

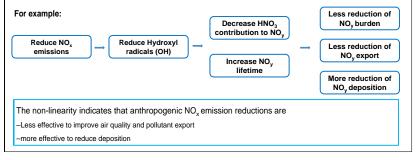
2. Model Description


Vertical distributed NO_x


- Model of Ozone of Related Tracers (MOZART4) [Emmons et al., in prep] is updated from MOZART2 [Horowitz., et al., 2003] with aerosol chemistry [Tie et al., 2003] Model Resolution: 1.9° latitude by 1.9° longitude, 64 vertical levels
- Meteorological fields are achieved from Global Forecast System every three hours Emissions: global anthropogenic, biomass burning and natural emissions are from Horowitz., et al. [2007]


0.038 0.205 0.205 0.038 emission³ using NEI99 2 using 2004 anthropogenic surface NO_er and emissions of other species from NEI99 ing NO_emission, aircraft and lightning NO_

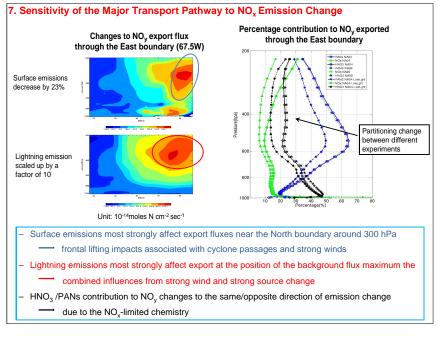
mission 4 original ightning emissions 5 lightning emissions scaled up and redistributed by a modified profile

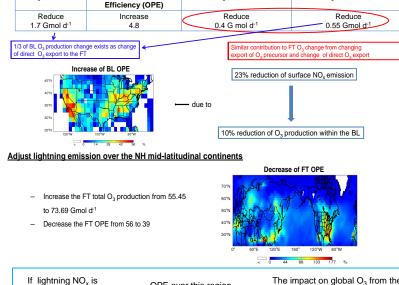

5. Major NO_v Export Pathway Pattern for July 2004 (Result from NA04)

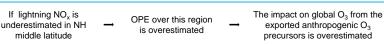
6. Budget Sensitivity to NO, Emission Change

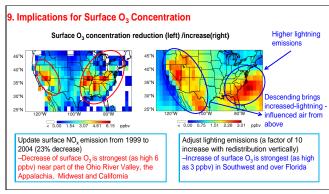
Δ deposition of NO _y more than	Δ Export and burden of NO _y	less than	Δ NO _x emissions (anthropogenic/lightning
	${\scriptstyle \Delta}$ deposition of NO_{y}	more than	

The non-linearity is caused by the NOx-limited chemistry during summertime




Transport of NO_y from the United States




Yuanyuan Fang¹(yfang@princeton.edu), Arlene Fiore², Larry Horowitz^{1,2}, Hiram Levy², Yongtao Hu³, Armistead Russell³ ¹ Program in Atmospheric and Oceanic Sciences, Princeton University, ² Geophysical Fluid Dynamics Laboratory, NOAA, ³ School of Civil and Environmental Engineering, Georgia Institute of Technology

8. Implications for O₃ Production from Lightning and Anthropogenic Emission Changes <u>Reduce surface emissions within the U.S. (i.e., update NO₃ emission from 1999 to 2004)</u> BL O₃ production BL O₃ Production FT O₃ production FT O₃ production Direct O₃ export to the FT

10. Conclusions

- 80% of N emitted within the United States is deposited and 15% is exported through the east boundary (as seen in Panel 4 and 5)
- NO_y export and burden respond less than proportional while NO_y deposition respond more than proportional to the NO_x emission change (as seen in Panel 6 and 7)
- Surface emission reduction causes direct O_3 export and export of O_3 precursors to decrease; these two decreases have comparable effects on FT O_3 budget (as seen in Panel 8)
- If lightning NO_x emissions is underestimated, the O₃ production efficiency is overestimated; as a result, the impact of exported anthropogenic O₃ precursors on global O₃ burden is overestimated (as seen in Panel 8)

11. References

Fang Y, Flore A. M., Horowitz L. W., et al (2008) Export of NOy from the United States in summer 2004 (in preparation)

Horowitz, L. W., et al. (2003), A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784, doi:10.1029/2002JD002853

Horowitz L. W., et al. (2006), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res, 112, D12S08. doi:10.1029/2006JD007747

Hudman, R C, et al. (2007), Surface and lightning sources of nitrogen oxides over the United States: magnitudes, chemical evolution, and outflow?, J Geophys. Res., doi:10.1029/2006JD007912

12. Acronyms and Abbreviations

-	
BL	Boundary Layer
FT	Free Troposphere
INTEX-NA	The Intercontinental Chemical Transport Experiment
N	Nitrogen
NEI99	The National Emission Inventory 1999
NH	Northern Hemisphere
NOx	Nitrogen Oxides
NOy	Reactive Nitrogen
OPE	O ₃ Production Efficiency
PAN	Peroxyacetyl Nitrate