

... for a brighter future

Visualization of In-Cylinder Combustion R&D

Stephen Ciatti October 30, 2008 USCAR Directors Meeting

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Purpose of Work

- Utilize in-cylinder combustion imaging to enable the implementation of low temperature combustion in a production automotive engine
- Integrate results with other national laboratories and industry
 - Using a common platform GM 1.9L TDI diesel engine
 - SNL
 - UW-ERC
 - ORNL
- Focus upon gasoline-like (low cetane) fuels
 - Opportunity to work with energy company using low octane (~60) fuel
- Maintain relatively high power densities (~10 bar BMEP) while retaining high efficiency and low emissions

Challenges to Automotive Powerplants

- Transportation powerplants need three characteristics for success
 - Power density
 - High efficiency
 - Low emissions
- "Low cost" not explicitly considered, but always in mind
- Most LTC concepts have been successful in generating high efficiency and low emissions – sacrificing power density (generally <5 bar BMEP)
 - MK, UNIBUS, etc
 - HCCI
 - HECC
- At 2.5 bar BMEP and 3000 RPM, a 1.9L engine produces 11.9 kW (15.9 bhp)
- Can a different trade-off be made that retains more power density?

BTE and NOx Performance of Argonne Engine

Specific Goals of this Project

- Using a low cetane fuel, operate a modern automotive diesel engine whereby the ignition of the fuel occurs after the end of injection
 - Avoid diffusion flame and related soot/NOx problems
 - Avoid need of throttle to control power output
- Use advanced engine with great flexibility
 - High pressure diesel direct injection
 - Multiple injection per cycle capability
 - Variable EGR with advanced turbo
 - Swirl control
- Utilize advanced UV and visible light imaging to characterize combustion and operating regimes
 - Crank-angle resolution
 - Emission chemiluminescence for OH*, CH*
 - Absorption chemiluminescence for species concentration and combustion temperature
 - Soot radiation to detect any diffusion flame (if it exists)

Prior Argonne Work in This Area

- Hydrogen engine direct injection
 - Combustion imaging for OH*
 - OH* intensity related to NOx emissions
 - Combustion temperature using OH* spectroscopy
- Automotive diesel soot radiation imaging
 - 1999 version of Mercedes 1.7L TDI
 - SunDiesel comparison with standard diesel
 - Soot temperature and soot concentration with 2-color pyrometry
- 2-D imaging, combined with traditional performance and emissions measurements, provides a powerful tool to evaluate technologies

VisioScope[™] used to study combustion of SunDiesel[™] in a 4-cylinder, LD engine.

- Slight modification to engine provides access.
- Engine can be operated full speed/full load – all conditions.
 - 4000 RPM, 100% Load
- Other tools can be used simultaneously.
 - Emissions measurements
 - Pressure measurements
- Illumination capability is available (2nd access port).
 - Spray/mixture formation in pre-combustion phase
 - Part of next experiment matrix

Images obtained at 2500 RPM and 50% load.

- Automotive "cruise" point
- Consistent test conditions
 - 705 bar injection pressure
 - 26.16 µs injection duration
 - Injection timing set at 3,6, 9, and 12 deg BTDC
 - Allow load to "float" with timing change or fuel change
- Example of optical access shown
- Injector rotated to maintain window cleanliness

Digital image analysis sheds light upon soot mechanisms.

- 2-D details from imaging show where soot is formed/oxidized.
- Soot formation is actually higher for SunDieselTM.
- Soot oxidation is more rapid for SunDieselTM.
 - Different soot characteristics
 - · Low sulfur, low aromatic
- Chemistry mechanisms and fluid mechanics are important for overall soot reduction!

SunDiesel[™]

Hydrogen engine application of UV optics

DI case comparing early injection (quasi-PFI) to later injection at global Φ =1.0

(Spark timing=5°CA ATDC)

Summary

- Opportunity for high efficiency and low emissions over a variety of engine speeds exists with LTC concepts
- Low power density is a significant obstacle to marketplace acceptance for LTC
- Using in-cylinder combustion imaging in a production engine can enable advanced strategies for improved power density
- Engine test cell and instrumentation are functional
 - Baseline diesel data compares well with benchmark data
- Data will be relevant to industry using production engine with available fuels
- Install endoscopic hardware and open controller to enable LTC operation

