

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Fuel Spray Diagnostics Using X-Ray Radiography

Christopher Powell, Alan Kastengren

Center for Transportation Research

Zunping Liu, Jin Wang Advanced Photon Source

DOE Vehicle Technologies Program Advanced Combustion Team Leader: Gurpreet Singh

Purpose of Work

Sprays Have Significant Impact on Efficiency and Emissions

⇒Spray studies assist engine design

⇒Provide data for spray and engine computational models

⇒Critical for the development of new combustion strategies

Why Use X-Rays to Study Sprays?

⇒Lack of scattering provides unique information and insight

X-Ray Diagnostics Reveal the True Structure of Sprays

Visible Light Image

- Quantitative measurement of the fuel distribution
- Stringent test for spray models

Experiment Conditions Simulate an Operating Engine

- Recent Measurements performed at ambient pressure of 30 bar
- Gas density inside the spray chamber exceeds that of a lightduty diesel at TDC
- Long-term tests of x-ray pressure windows shows they are capable of further pressure increase

X-Ray Experiments				Light-Duty	Heavy-Duty
Ambient Pressure (bar)	Ambient Density (kg/m ³) (300K)		Crank Angle Degrees	Ambient Density (kg/m ³) (Mercedes 1.7L,	Ambient Density (kg/m ³) (CAT 3406E,
20	23			9 psi boost)	23 psi boost)
25	29		-20	17	30
30	35		-15	19	35
35	41		-10	21	41
40	46		-5	23	46
5			0	24	47

The Influence of Ambient Density on Diesel Spray Structure

Effect of ambient pressure is important for spray models, has been studied by several groups:

Cone Angle Dependence on Density					
Hiroyasu & Arai SAE 900475:	tan θ Q ρ ^{0.26}				
Naber & Siebers SAE 960034:	tan θ Q ρ ^{0.19}				
Araneo <i>et al.</i> SAE 1999-01-0525:	tan $ heta$ Q $ ho$ ^{0.5}				

- These correlations are only applicable far from nozzle, and have only been validated using light imaging
- X-ray radiography measures the fuel distribution, spray width can be determined quantitatively

Simple Correlation Describes How the Spray Width Changes With Ambient Density

X-Ray Measurements Highlight Flaws in Current Spray Models

- New measurements of diesel sprays under high pressure conditions show a strikingly asymmetric fuel distribution
- If one assumes that the spray is composed of fuel droplets, and the droplets are all the same size, illustrations of the droplet distribution can be generated:

Density contours of a slice through the spray 6 mm from nozzle, and droplet packing at several locations

- Current spray models assume spray is composed of discrete droplets, and that drag on one droplet is not influenced by neighboring droplets
- A new collaboration between Argonne and UW-ERC modeling group will use xray data to improve the existing droplet drag model and incorporate into KIVA

Technology Transfer

- **DOE AEC Working Group** Lab, university, and industrial partners.
- Robert Bosch GmbH –Dr. Philippe Leick spent five weeks at Argonne in June 2008, tests of "state-of-the-art" nozzle geometry for model development. Non-proprietary
- Caterpillar Heavy-duty project. Providing tech support for injection system.
- University of Illinois at Chicago Heavy-duty project. Experiments, spray modeling and model development
- Engine Research Center, UW-Madison Collaboration with engine modeling group, Nidheesh Bharadwaj to spend two months at Argonne in 2009
- Wayne State University Experiments, modeling, joint publication in preparation.
- Convergent Science commercial Engine model, using data for validation and development

Future Work

- Strengthen the link between x-ray spray studies and engine performance
 - Study hardware and conditions that match GM1.9 liter TDI
 - Engine is running at Argonne, other labs also have this engine
 - Enables direct comparison between x-ray measurements and Argonne's full suite of engine diagnostics: endoscopic imaging, emissions, performance.
 - Bosch has donated custom injectors built to our specs
- Measurements at elevated ambient temperature
 - X-ray pressure windows, co-evaporation of fuel and additive
- Collaboration with ERC modeling group
- Expand collaborations with industrial and university partners
- Lean-burn Gasoline? Fuels?

