A Survey of Chemical Constituents in National Fish Hatchery Fish Feed

Final Report for Science Support Project 01-FH-05

Alec G. Maule USGS-BRD, WFRC Columbia River Research Laboratory 5501A Cook-Underwood Rd. Cook, WA 98605 (509) 538-2299 x 239 alec_maule@usgs.gov

Ann Gannam US Fish & Wildlife Service Abernathy Fish Technology Center Longview, WA 98632

Jay Davis US Fish & Wildlife Service Western Washington Fish & Wildlife Office Lacey, WA 98503

January 2006

Abstract

Recent studies have demonstrated that various fish feeds contain significant concentrations of contaminants, many of which can bioaccumulate and bioconcentrate in fish. It appears that numerous organochlorine (OC) contaminants are present in the fish oils and fish meals used in feed manufacture, and some researchers speculate that all fish feeds contain measurable levels of some contaminants. To determine the presence and concentration of contaminants in feeds used in National Fish Hatcheries managed by the U.S. Fish & Wildlife Service, we systematically collected samples of feed from 11 hatcheries that raise cold-water species, and analyzed them for a suite of chemical contaminants. All of the samples (collected from October 2001 to October 2003) contained measurable concentrations of at least one dioxin, furan, polychlorinated biphenyl (PCB) congener, or dichlorodiphenyltrichloroethane (DDT) metabolite. All samples which were assayed for all contaminants contained one or more of those classes of compounds and most contained more than one; dioxin was detected in 39 of the 55 samples for which it was assayed, 24 of 55 contained furans and 24 of 55 samples contained DDT or its metabolites. There with 10- to 150-fold differences in the range in concentrations of the additive totals for PCBs, dioxins, furans and DDT. Although PCBs were the most commonly detected contaminant in our study (all samples in which it was assayed), the concentrations (range: 0.07 to 10.46 ng g^{-1} wet weight) were low compared to those reported previously. In general, we also found lower levels of organochlorine contaminants than have been reported previously in fish feed. Perhaps most notable is the near absence of OC pesticides—except for DDT (and its metabolites) and just two samples containing benzene hexachloride (Lindane). While contaminant concentrations were generally low, the ecological impacts can not be determined without a measure of the bioaccumulation of these compounds in the fish and the fate of these compounds after the fish are released from the hatcheries.

Table of Contents

List of Tables	
List of Figures	
List of Appendices	
Introduction	
Materials and Methods	
Sample collection and handling	
Analytical methods	
Data analyses	
Results	
Discussion	
OC contaminants in fish feed	14
Metals in fish feed	
Ecological implications	
Acknowledgements	19
References	
Appendix A	

List of Tables

Table 1. U.S. Fish and Wildlife Service Region, National Fish Hatchery (NFH) and fish species reared and fed at those hatcheries during the two-year study
Table 2. Metals and other contaminants assayed by the National Water Quality Laboratory orSevern Trent Laboratories, Inc.; proximate contents assayed by Abernathy Fish TechnologyCenter in fish feed samples collected from 11 National Fish Hatcheries between October2001 and October 2003.25
Table 3. Number of samples distributed to Abernathy Fish Technology Center (Center), National Water Quality Laboratory (USGS Lab) or Severn Trent Laboratory, Inc. (Severn) for analyses of lipids, moisture, ash and protein (proximate analysis), organochlorine
 pesticides (OCs), polychlorinated biphenyls (PCBs), dioxins, furans, and metals
 Table 5. Metals and other contaminants for which there was at least one value above detection limits when assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing within classes of compounds. All other totals were determined by independent assays
Table 6. Summary of dioxins, furans (total samples assayed = 55), PCBs (total samples assayed = 46) and organochlorine pesticides (total samples assayed = 55) detected in fish feed samples assayed by the USGS National Water Quality Lab or Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. DDT contains data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All other totals were determined by independent assays. Differences in the number of samples between the assayed total values and the additive totals are the result of some samples in which assay results are positive for totals in a class compounds, but none of the individual congeners were above detection limits, and vice-versa.
 Table 7. World Health Organization (WHO) toxic equivalents (TEQ; pg g⁻¹) for dioxins (congeners: heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, pentachlorodibenzo-p-dioxins, tetrachlorodibenzo-p-dioxin), furans (congeners: tetrachlorodibenzo furan, octachlorodibenzo furan) and PCBs (congeners: PCB -77, -105, -114, -118, -123, -126, -156, -157, -167, -189) detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Toxic equivalent factors for fish were used in the calculations (Van den Berg et al., 1998)
Table 8. Summary of metals detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. and the National Water Quality Laboratory in fish feed samples collected

- Table 10. Mean + standard deviation (SD) of constituents found in fish feed samples from six manufacturers collected from 11 National Fish Hatcheries between October 2001 and October 2003. Results for metals and DDT contain data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in parentheses

List of Figures

Figure 1. Fish feed o	quality control sam	ple analysis form	
i igui e it i isii ieeu e	1 autor control same		•••••••••••••••••••••••••••••••••••••••

List of Appendices

Appendix A. Raw Data from Contaminants Assays of Feed	
Collected from National Fish Hatcheries	. 40

Introduction

Fish can bioaccumulate, biomagnify and bioconcentrate contaminants that they ingest with their food or take up directly from the water via diffusion across the gills and skin (Gobas et al., 1999). The rate of accumulation is based in part on the quantity and form of the contaminants (Watanabe et al., 1997; Carline et al., 2004), water quality variables, and the age, size and nutritional status of the fish (Patrick and Loutit, 1978; Schaperclaus, 1986; Sorensen, 1991). A wide range of organochlorine chemicals (OCs) and metals have been documented in wild fish populations (deWit et al., 2003; Evenset et al., 2004), and more recently contaminants have been found in fish in aquaculture (Horst et al., 1998; Hites et al., 2004). Horst et al. (1998) found OCs, specifically chlordane compounds, in farmed salmon as well as fish meal, oil and food products made from those fish. Easton et al. (2002) found that the levels of OCs, polybrominated diphenyl ethers (PBDE; flame retardants) and metals detected in farmed salmon were likely a consequence of elevated levels of contamination found in commercial salmon feeds. Several researchers concluded that there was no salmon feed that did not contain significant levels of contaminants, that farmed salmon showed consistently higher levels of contaminants than did wild salmon from the Pacific Coast, and that there may be safety concerns for individuals who regularly consume farmed salmon produced with contaminated feed (Horst et al., 1998; Easton et al., 2002; Hites et al., 2004).

Contaminants enter the aquatic environment from a variety of sources. Many pesticides (including those that are banned in the USA) become bound to the soil and enter the aquatic environment in precipitation run-off or as aerially transported dust (MacLeod and Mackay, 2004; VanCuren, 2003). Other contaminants result from industrial chemicals (including byproducts of incineration), which can enter the atmosphere and be transported throughout the globe before deposition (deWit et al., 2003; Breivik et al., 2004). Many of the contaminants entering freshwater and marine ecosystems are persistent in the environment and, because they are also lipid soluble, tend to accumulate in the lipid depots of animals, and are passed from prey to predators (Muir et al., 1992). This accumulation leads to organisms at higher trophic levels having relatively higher levels of OCs and other lipophilic contaminants through the process of biomagnification. Thus, hatchery diets that contain a high percentage of meal and oil from pelagic, ocean fish will likely contain high amounts of contaminants of global concern.

Hatchery-raised fish might, in effect, be moved to a higher trophic level on the food chain than their wild counterparts by consuming feeds made from oil and meal derived from marine fish, as opposed to their natural food, which is comprised of, at least in part, freshwater invertebrates.

Organochlorine residues have been found in fish oil (Jacobs et al., 1997; Jimenez et al., 1996) and fish meal (Rumsey, 1980) used in fish food. Salmon feed can contain up to 30 % fish oil and 50 % fish meal, while trout feed generally contains less of both constituents (Horst et al., 1998). A pilot study by National Oceanic and Atmospheric Administration (NOAA) Fisheries measured relatively high levels of selected OCs, especially hexachlorobenzene, in pollock oil that was tested prior to being used as a carrier fluid in a blue mussel contaminant exposure study (G. Ylitalo, NOAA Fisheries, personal communication). Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) have been found in soybean meal (Rappe et al., 1998). Mac et al. (1979) found polychlorinated biphenyls (PCBs) and metabolites of dichlorodiphenyltrichloroethane (DDT), namely dichlorodiphenyltrichloroethylene (p, p DDE), in fish feeds. The levels detected in the feed varied with some lots having almost undetectable amounts while other lots contained levels of concern (R. Carline, USGS-BRD, personal communication). The NOAA Fisheries Science Center in Seattle, Washington, while trying to conduct an organochlorine-dosed feeding study to look at immune suppression in fish by contaminants, detected elevated levels of PCBs in fish feed received directly from the manufacturer (T. Collier, NOAA Fisheries, personal communication).

There are several reasons to be concerned about contaminants in fish feed. The primary concern is the possibility of human health impacts. The concentrations of contaminants in the fish and feeds reported by Hites et al. (2004) were not considered acutely toxic by the Food & Drug Administration (FDA). The Code of Federal Regulations, 21 CRF 109.30, states that the temporary tolerance for residues of PCBs in finished feed for food producing animals is 0.2 ppm; tolerance levels for edible portions of the fish is 2.0 ppm. However, the U.S. Environmental Protection Agency (EPA) guidelines and assumptions used by Hites et al. (2004) are designed to manage human health risks by providing risk-based consumption advice regarding contaminated fish. The combined concentrations of contaminants in the fish are what trigger the EPA consumption recommendations. To determine this, the EPA uses a toxic equivalency quotient (TEQ) or cumulative approach when assessing risk from compounds with similar modes of action. Concern for human health arises primarily over fish released for immediate catch and

consumption, fish held for broodstock then released to the public, or returning adult salmon consumed by Native Americans whose diets may contain more fish than other segments of the USA population. It is also likely that the accumulation of contaminants will reduce the quality of the fish in the hatchery and their survival after release, as exposure to certain persistent organic pollutants in urban Puget Sound estuaries have been linked to reduced growth rate and reduced disease resistance in juvenile salmon (Arkoosh et al. 1998, 2001).

The objective of the current study was to determine if fish feed used in some cold-water U.S. Fish & Wildlife Service (FWS) National Fish Hatcheries (NFHs) across the country contained measurable levels of contaminants. Even though it is possible that contaminants could be found in the water or physical structures of the hatcheries, feeds were chosen because the literature indicated they are a potential point source and they are universally used, i. e. more than one hatchery may use the same feed. Therefore, to reach the objective of this study, we collected samples of feed from six manufacturers used at 11 NFHs; samples were collected quarterly for two years and were assayed for a variety of OC pesticides, metals, PCBs, dioxins and furans. This work was not meant to be a comparison of feed companies but a survey of feeds that are used by the FWS at some of its facilities.

Materials and Methods

Sample collection and handling

We collected samples of feeds from 11 NFHs in U.S. Fish & Wildlife Service in the Pacific, Great Lakes, Northeast and Mountain-Prairie Regions (Table 1) over a two year period. All of the diets tested were made at commercial feed mills except the kelt diet (designated feed "C"). This diet was handmade at the hatchery (North Atteboro NFH) using shrimp paste, fish paste, beef liver, a commercial starter diet and the appropriate vitamins and minerals. The large quantity of raw materials gives this diet higher moisture content than the other commercial diets tested. All feeds were sampled according to the Association of Official Analytical Communities (AOAC) guidelines (Horwitz, 2000). Once each quarter beginning in October 2001 through October 2003, a pallet of feed bags (40 bags) was randomly selected at each NFH for sampling. Approximately 50-100 g of feed was collected from every fourth bag from the same lot of feed; thus, 10 samples were collected each quarter from each NFH. To sample bulk feeds, 10 samples

were collected from different parts of the load. A 99-cm (39-inch) Seeburo® chrome-plated trier was used for each bulk feed sampling. After sampling, the trier was disassembled, cleaned with soap and warm water, rinsed thoroughly and allowed to air dry. Each quarter the hatcheries were also provided with 10 chemically clean jars with labels for the feed samples. Samples of frozen fish feeds were placed in water tight containers (e.g., a Styrofoam box) with ice, sealed and placed in a cardboard box for shipping.

For each group of samples the fish-feed-sample analysis form provided by the Abernathy Fish Technology Center (Center) (Figure 1) was completed and included. Feed bag labels were supplied by the NFH when possible. All samples were shipped to the Center where one composite sample per NFH was made by pooling the 10 samples from each NFH and grinding them with a mortar and pestle. The mortar and pestle were cleaned by washing with enzyme soap, rinsing with water, washing with Acitionox soap, rinsing with water, rinsing twice with 10% HCl, and finally rinsing with acetone. This protocol was followed twice. Each composite feed sample was divided into four glass jars coded with the identifying NFH abbreviation, sample period (i.e., 1 through 8), and sample weight. One of these sub-sample jars was given a composite, as well as, a random number code, and was sent to a certified laboratory for contaminant analyses. The three remaining jars were placed in a -20° C freezer at the Center, where one jar of feed was used to determine proximate analysis. The two remaining jars are being stored as spare, archival samples.

Analytical methods

The feed sub-sample retained for proximate composition was analyzed at the Center for protein, lipid, moisture and ash according to the AOAC methods (Horwitz, 2000). A total of 101 other variables (including the totals of some classes of compounds, and metabolites) were measured on samples collected. Samples were sent to the USGS National Water Quality Laboratory (USGS Lab) for measurement of OC pesticides and trace metals (Table 2). Metals were assayed using the US EPA Method 3052 microwave-assisted, nitric acid digestion procedure (Hoffman, 1996). Aluminum, barium, boron, chromium, copper, iron, magnesium, manganese, strontium and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-OES). Arsenic, beryllium, cadmium, lead, molybdenum, nickel, selenium and vanadium were determined by inductively coupled plasma mass spectrometry (ICP-MS).

Mercury was determined by cold vapor atomic fluorescence (CVAF) following US EPA Method 7474. The analysis of fish feed samples for organochlorine pesticides was accomplished by gas chromatography with electron capture detection (GC/ECD) by USGS Laboratory Schedule 2101 (Leiker et al., 1995). Severn Trent Laboratories, Inc., Sacramento, CA (Severn) analyzed the feed for dioxins and furans (EPA method 8290, US EPA, 1995). Severn Trent Laboratories, Inc., Knoxville, TN (Severn) also assayed some of the feed samples. Severn analyzed for the same suite of OCs and metals as the USGS Lab (Table 2) using standard methods, including metals (except Hg) by US EPA method 6010B (US EPA 1996a), mercury by method 7471A (US EPA, 1995), 14 PCB congeners by US EPA method 1668 (US EPA, 1999), and OC pesticides by EPA SW 846 (US EPA, 1996b). Difficulty with the matrix (fish feed) was noted by both the USGS Lab and Severn.

Data analyses

We sampled different brands and different batches of feed to obtain an overall view, seasonally and through time, of contaminant levels in the feed. The feeds collected were formulated for several different fish life-stages (e.g., fry, parr, and broodstock) and have different compositions. All data were summarized by determining means (+/- 1 standard deviation, SD) based on the NFH where the samples were collected and by the manufacturer. We also determined the total contents of dioxins, furans, PCBs and DDT metabolites by summing the values from the congener-specific analyses. Our objectives in this study were to determine the presence and concentrations of contaminants in a cross-section of fish feeds used at NFHs. We were not interested in comparing between NFHs or manufacturers; therefore, we did not conduct statistical analyses to identify differences between mean concentrations of contaminants.

In our analyses we do not consider the detection limits of the assays; that is, only assay results that were above detection limits were included in this report and we did not speculate as to the significance of values below the detection limits. Our data summaries contain only positive values when there were often values that may equal "0" (i.e. non-detects). We do present the detection limits for the assays conducted and our tabular results do indicate total number of samples assayed as well as the number of positive values (i.e., sample size, N) used in the calculations. Furthermore, Severn attached qualifiers to some values when, after adjusting for

the dilution factor, those values were below the estimated minimum level (EML) or above the upper calibration level (UCL); these values are estimates. We included these values in our analyses. In order to compare our results to others in the literature, we calculated the toxic equivalency quotients (TEQ) for dioxin congeners found in our samples for which there are toxic equivalent factors (TEF) (i.e., 1, 2, 3, 4, 6, 7, 8-HpCDD; OCDD). Similar TEQs were calculated for furans (congeners: 2,3,7,8-TCDF; OCDF) and dioxin-like PCBs (congeners: DL-PCB -77, -105, -114, -118, -123, -126, -156, -157, -167, -189) and the total TEQ based on the World Health Organization's established TEFs for fish (Van den Berg et al., 1998).

Results

A total of 77 samples were collected all of which were assayed for proximate analysis (i.e., ash, lipids, moisture and protein content). The disparity in the number of samples received verses the 88 identified in the original design was due to the fact that some hatcheries either did not have fish all year or they did not feed their fish all year so they did not have new feeds to sample every quarter. Metals and other contaminants were measured in 46 to 55 samples (Table 3). Not all samples collected were assayed for all contaminants due to budget constraints. The remaining feed samples are archived at the Center. Detectable values were obtained for 55 of the 101 variables (Table 3). As indicated above, in our results we include only values that were greater than detection levels (Table 4). Excluding the values for proximate analyses and the totals that were the sums of other variables measured (e.g., Total PCBs = sum of the 14 congeners measured) there were 41 contaminants detected in the samples (Table 5). All of the samples contained measurable concentrations of at least one dioxin, furan, PCB congener, or DDT metabolite expressed per wet weight of feed. All samples assayed contained one or more of those compounds; 39 of 55 samples contained dioxins, 24 of 55 contained furans and 24 of 55 samples contained DDT or its metabolites (Table 6). Most of the samples contained more than one of these classes of compounds. There were 10- to 150-fold differences in the range in concentrations of the additive totals for PCBs, dioxins, furans and DDT (Table 6). In addition to DDT and its metabolites, the only pesticide detected was benzene hexachloride (BHC, also known as Lindane) found in two samples. Differences in the number of samples between the assayed total values and the additive totals are the result of some samples in which assay results are positive for totals in a class of compounds, but either none of the individual congeners were

above detection limits, and/or homologous congeners were detected. In order to compare our results to others in the literature, we calculated TEQs for dioxins (2,3,7,8, TCDD; 1,2,3,7,8 PeCDD; 1,2,3,4,6,7,8 HpCDD; and OCDD) and furans (2,3,7,8-TCDF and OCDF), and dioxin-like PCBs (Table 7). Metals were also present in all 55 samples for which they were assayed (Table 8). Beryllium (Be) was the only metal not found in any sample, and 12 of the other 18 metals were found in all 55 samples (Table 8).

In general, the proximate composition of feed (protein, moisture, lipid, ash) adds up to approximately 100 %. However, in some cases, the fiber and nitrogen-free extract (e.g., sugars, starches) that were not measured were in the feed at significant levels and, therefore, made up the difference seen in the proximate compositions (Tables 9 and 10). Table 9 summarizes the concentrations of components and contaminants based on the NFH from which the feed samples were collected, and Table 10 summaries components and contaminants based on the feed manufacturer. As we were not concerned with comparing manufacturers, we have coded the names (A through F). Rather than show all congeners and metabolites in these tables, we present the additive totals for dioxins, furans, PCBs, DDT metabolites and BHC, as well as mean percent composition of ash, lipids, moisture and protein, and mean concentrations of each of the metals. We also compared the results of our study to those reported previously by Mac et al. (1979) and Easton et al. (2002) in Table 11. All individual assay results above the minimum detection levels for the various contaminants are listed by NFH and date that they were received at the Center in Appendix A.

Discussion

OC contaminants in fish feed

In this study we have shown that some form of chemical contaminant occurred in all samples. In general, we found lower levels of OC contaminants than have been reported previously in fish feed. Perhaps most notable is the almost total lack of pesticides—except for DDT (and its metabolites) and just two samples containing BHC. Hites et al. (2004) reported detectable levels of dieldrin and toxaphene in 13 feed samples, which included six from Canada but none from the USA. Jacobs et al. (2002) found hexachlororobenzene (HCBs) and BHCs in eight feed samples of European manufacture. Hilton et al. (1983) formulated five test feeds using fish meal from several sources, and all of the resulting feeds had detectable concentrations

of dieldrin, heptachlor and chlordane. Our samples contained lower concentrations of total DDTs (range: 3.3 to 31.0 ng g⁻¹ wet weight; Table 6) than were reported by Mac et al. (1979) for several lots from one commercial feed manufacturer (means: 80 to 340 ng g⁻¹ wet weight), but our samples contained about the same concentration of DDT as another feed manufacturer they examined (means: 13 to 51 ng g⁻¹ wet weight). Feeds manufactured in Scotland reportedly had levels of total DDT (range: 34 to 52 ng g⁻¹ lipid adjusted; Jacobs et al., 2002), which would be three- or four-fold greater than ours if expressed as wet weight. It appears that the concentrations of DDT metabolites we found in feeds from three manufacturers were lower than those observed by Mac et al. (1979) and Easton et al. (2002) in samples from the same manufacturers several years previous (Table 11).

Although PCBs were the most commonly detected contaminant in our study (46 of 46 congener-specific analyses), the additive total concentrations of 14 dioxin-like PCB congeners ranged from 0.07 to 10.46 ng g⁻¹ wet weight (Table 6). These were low compared to total PCBs reported by Hites et al. (2004; range: ~ 10 to 95 ng g⁻¹ wet weight), Carline et al. (2004; range: 69 to 126 ng g⁻¹ wet weight), and Mac et al. (1979; means: 54 to 230 ng g⁻¹ wet weight). Hilton et al. (1983) also reported high concentrations of PCBs (100 to 2,120 ng g^{-1}) but these were expressed in dry weight of feed. It is, however, important to note that these values are probably not directly comparable as the methods used in these other studies considered more PCB congeners than the 14 in our additive totals. Easton et al. (2002) presented data on the same 14 PCB congeners as our study and are thus directly comparable, as is the total PCBs reported for various feeds in the Mac et al. study (1979). The range of total PCBs in feed from manufacturer A sampled in 1999 and reported by Easton et al. (2002) is less than that reported by Mac et al. (1979) (Table 11). Easton et al. (2002) also presented the sums of 14 PCBs for the same feeds and these were greater than what we assayed in our samples (Table 11). Furthermore, the maximum TEQ for PCBs in our samples was about one-half those in Easton et al. (2002) and from one- to two-orders of magnitude less that those reported in European fish feeds (Bell et al., 2005; Isosaari et al., 2004). In fact, the highest value from our samples (0.44 pg TEQ g^{-1}) was less than the lowest value (0.62 pg TEQ g^{-1}) reported in either of the European studies.

Bell et al. (2005) and Isosaari et al. (2004) combined TEQs for dioxins and furans in fish feeds and reported a range of 0.16 to 4.9 pg TEQ g^{-1} in eight samples. In the present study, the mean dioxin plus furan TEQ was 0.227 and the maximum value was 3.98 pg TEQ g^{-1} (Table 7).

It should be noted, however, that these values are skewed by two samples (out of 42) that contained 2.5 and 3.9 pg 1,2,3,7,8 PeCDD g⁻¹, which has a toxic equivalent factor of 1.0 (fish TEF value), as compared to TEFs ≤ 0.05 (Van den Berg et al., 1998) for all other dioxin and furan congeners in our samples. For example, one sample had an absolute concentration of 350 pg OCDD g⁻¹ but because its TEF = 0.0001, it contributes 0.035 pg TEQ g⁻¹. If these two PeCDD values are excluded, the mean dioxin/furan TEQ is 0.077 pg TEQ g⁻¹ and the maximum value is 0.581 pg TEQ g⁻¹. Bell et al. (2005) reported that the European Union allows up to 2.25 pg TEQ g⁻¹ in fish feed. Hites et al. (2004) presented combined dioxin, furan and dioxin-like PCB TEQs in 13 fish feed samples collected from Scotland, Canada and Chile. He reported TEQs of about 0.5 to 7.0 pg TEQ g⁻¹, as compared to our range of 0.0005 to 3.98 pg TEQ g⁻¹. Again, in the present study, two samples with PeCDD skew these comparisons.

Metals in fish feed

Metals found commonly in fish feed are contributed by the ingredients and by a mineral pack added by the manufacturer. Shearer et al. (1994) analyzed eight feeds from a Norwegian feed manufacturer for select metals. Generally, their results [Cu, 1.3-29.2 ppm (i.e., $\mu g g^{-1}$); Fe, 68.7-353 ppm; Mg, 1860-2100 ppm; Mn, 5-120 ppm; Zn, 170-380 ppm] were slightly higher than the values we report here (Table 7). In addition, guidelines from the Association of Feed Control Officials Official Publication (Hanks, 2000) indicate the maximum tolerable levels are for Cd, 0.5 ppm; Hg, 2.0 ppm; Se, 2.0 ppm; Cu, 25 ppm; and Pb, 30.0 ppm. These dietary levels in the feed, for a limited period, will not affect animal performance and should not produce unsafe residues in human food derived from the animal. Generally, our metal results fall below these tolerable levels. Many gaps exist in our understating of essential minerals for fish (i.e., without them there are clinical signs of deficiency); however, it appears that B, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, P, Se, and Zn are essential. The levels of these metals required by each species fish have not been defined.

Ecological implications

The presence of OCs and heavy metals (e.g., mercury) in fish food is of great concern because of human health implications, but also because of the effects of these compounds on the survival of fish after release from hatcheries, and impacts on the ecosystem into which they are released. Millions of dollars are spent each year in US Fish & Wildlife Service hatcheries to provide fish for recreational and commercial fisheries, and to supplement natural production of stocks listed under the Endangered Species Act. Most of the compounds measured in this study, including some of the metals, are known to bioaccumulate and biomagnify up the food web. However, to determine the level of bioaccumulation or the effects of these feeds on the fish, we would need information about the specific amounts of each feed fed to a specific group of fish throughout their life cycle and the levels of contaminants in the fish tissues. Macek (1968) reported that brook trout (*Salvelinus fontinalis*) fed DDT (2 mg kg⁻¹ body weight week⁻¹) for 31 weeks had 20-fold greater accumulated DDT than did control fish. Isosaari et al. (2004) reported that from 43% to 83% of the total mass of dioxins, furans, and PCBs fed to Atlantic salmon (*Salmo salar*) over 30 weeks accumulated in the tissue of the fish.

The majority of OCs are persistent in the environment and, because they are lipid soluble, tend to accumulate in the lipid depots of animals, and biomagnify up the food chain. Because of this biomagnification, hatchery fish that are fed for 6 to 24 months in a hatchery may accumulate OC concentrations in their flesh that are significantly higher than that in the feed (Isosaari et al., 2004; Lundebye et al., 2004). Well-fed fish will accumulate these lipophilic contaminants in fat depots in muscle and viscera where the toxic effects are muted. When fish stop feeding, however, the lipids are mobilized as an energy source and the OCs are redeposited in vital organs (e.g., brain, liver, heart, kidney; Jørgensen et al., 2002). Recent work with Arctic charr dramatically illustrates the impacts of this mobilization of OCs on physiological processes. Anadromous charr normally feed for only 6 to 8 weeks in the ocean—where they can accumulate OCs—and fast for the remaining 10 months of the year in freshwater. In a series of experiments, Jørgensen and colleagues contaminated charr with PCBs, fasted or fed the fish for 5 months, and then measured physiological responses. Contaminated charr had impaired responses to stress (Jørgensen et al., 2002), reduced immune responses leading to decreased disease resistance (Maule et al., 2005), and reduced growth and survival in saltwater a year after contamination (Jørgensen et al., 2004). It appeared that one mechanism of PCB's effect is interference with hormonal regulation of physiological processes at the level of the brain or pituitary (Aluru et al., 2004). These results suggest strongly that PCBs will reduce the fitness and survival of fish in the wild.

Hatchery fish released into the wild can be caught immediately in recreational fisheries or survive to grow. Grown fish might either be caught in tribal, commercial or recreational

fisheries, or survive to reproduce. Feeding these fish contaminated food can have negative impacts on the success of NFH operations, and the health of the ecosystem. For example, in the Pacific Northwest salmon are raised in hatcheries for 6 to 18 months and are released to emigrate to the ocean. Survival of these hatchery fish may be < 0.1% as compared to estimated survival as high as 10% in some emigrating wild salmon stocks. Upon release from hatcheries, these salmon do not feed while they adjust to the new environment and new food resources in rivers and streams. Lipid reserves in these fish decline for at least the first month after release possibly due to less efficient prey capture but also metabolic and biochemical changes due to smoltification (Rondorf et al. 1985; Hoar 1988). If there are OCs in lipid depots, they will be mobilized and re-deposited in organs where they will impair physiological functions necessary for survival (e.g., respond to stresses such as dam passage, entering the saltwater, resisting fish pathogens). If the availability of food is reduced—for example if poor ocean upwelling reduces nutrients available for the near-shore food web-more fats will be mobilized, increasing the deposition of contaminants in the organs, leading to greater physiological dysfunction and reduced survival. Some hatchery fish also become prey when released and will add any contaminants they contain to the food web-expanding the ecological impacts of these contaminants.

There are several experiments that could address the ecological impacts of exposing soon-to-be-released salmonids to contaminants: (1) measure the flow of contaminants from food to fish by assaying body burdens in fish during hatchery rearing; (2) measure contaminants in other parts of the rearing environment and determine the fish's uptake of them; (3) measure flow of contaminants within fish by simulating the period of fasting after release and measuring contaminants in muscle, brain, liver, and kidney over several months; (4) determine the impact of observed body burdens and organ levels of contaminants by conducting performance tests (i.e., predator avoidance, saltwater growth and survival, stress challenge and disease challenge) and measuring physiological functions (e.g., osmoregulation, physiological stress responses, immune responses); (5) determine the impact of contaminants on migration rates and survival after fish are released; (6) assess the movement of contaminants in the ecosystem.

Acknowledgements

We wish to thank the managers and employees of the eleven NFHs involved in this study—without their cooperation and help this study would not have been possible. We also thank the staffs of the USFWS Abernathy Fish Technology Center, the USGS National Water Quality Laboratory, and Severn Trent Laboratories, Inc for performing assays on samples. Jennifer Bayer, Michael Meeuwig, and James Seelye of the USGS Columbia River Research Laboratory were instrumental in developing the study design and early data analyses. We are grateful for the valuable reviews of this report provide by Gina Ylitalo of NOAA-Fisheries, and George Noguchi, James Haas, Dave Devault, Mike Millard and Judy Gordon of USFWS. The use of trade names does not imply endorsement by the U.S. Federal government. The findings and conclusions in the report are those of the authors and do not necessarily represent the views of the US Fish & Wildlife Service.

References

- Aluru, N., E.H. Jorgensen, A.G. Maule, and M. M. Vijayan. 2004. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr. American Journal of Physiology: Regulatory, Integrated and Comparative Physiology 287:R787-R793.
- Arkoosh, M. R, E. Casillas, P. Huffman, E. Clemons, J. Evered, J.E. Stein, and U. Varanasi. 1998. Increased susceptibility of juvenile chinook salmon from a contaminated estuary to the pathogen *Vibrio anguillarum*. Transactions of the American Fisheries Society. 127:360-374.
- Arkoosh, M. R., E. Casillas, E. Clemons, P. Huffman, A. N. Kagley, T. Collier and J. E. Stein. 2001. Increased susceptibility of juvenile Chinook salmon (*Oncorhynchus tshawytscha*) to vibriosis after exposure to chlorinated and aromatic compounds found in contaminated urban estuaries. Journal of Aquatic Animal Health 13:257-268.
- Bell, J.G. F. McGhee, J. R. Dick, D.R. Tocher. 2005. Dioxin and dioxin-like polychlorinated biphenyls (PCBs) in Scottish farmed salmon (Salmo salar): effects of replacement of dietary marine fish oil with vegetable oils. Aquaculture 243: 305-314.
- Breivik, K., R. Alcockb, Y.-F. Lic, R. E. Baileyd, H. Fiedlere, and J.M. Pacynaa. 2004. Primary sources of selected POPs: regional and global scale emission inventories. Environmental Pollution 128: 3–16.
- Carline, Robert of the U.S. Geological Survey BRD in University Park, Pennsylvania -Personal Communication on May 15, 2000.
- Carline, R. F., P. M. Barry and H. G. Ketola. 2004. Dietary uptake of polychlorinated biphenyls (PCBs) by rainbow trout. North American Journal of Aquaculture 66: 91-99.
- Collier, Tracy of the National Marine Fisheries Service Environmental Conservation Division in Seattle, Washington - Personal Communication on May 12, 2000.
- de Wit, C.A., Fisk, A.T., K. E. Hobbs, K.E., Muir, D.C.G., Gabrielsen, G.W., Kallenborn, R., Krahn, M.M., Norstrom, R.J., Skaare, J.U. 2003. Persistent Organic Pollutants Report, AMAP Assessment Report Phase II, Arctic Monitoring and Assessment Program. Oslo. Norway.
- Easton, M. D. L., D. Luszniak and E. Von der Geest. 2002. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed. Chemosphere 46: 1053-1074.

- Evenset, A., Christensen G.N., Stokvold, T., Fjed, E., Schlabach, M., Wartena, E., Grgor, D.
 2004. A comparison of organic contaminants in two high Artic lake ecosystems, Bjørnøya (Bear Island), Norway. Science of the Total Environment 318: 125-141.
- Gobas, F.A.P.C., J.B. Wilcockson, R.W. Russell, and G.D. Haffner. 1999. Mechanism of biomagnification in fish under laboratory and field conditions. Environmental Science and Technology 33:133-141.
- Hanks, A. 2000. Mineral feed contaminants. Pages 265-269 *In*, Official Publication of the Association of Feed Control Officials, Inc., Oxford, IN
- Hilton, J. W., P. V. Hodson, H. E. Braun, J. L. Leatherland and S. J. Slinger. 1983. Contaminant accumulation and physiological response in rainbow trout (*Salmo gairdneri*) reared on naturally contaminated diets. Can. J. Fish. Aquat. Sci. 40: 1987-1994.
- Hites, R., J. Foran, D. Carpenter, M. Hamilton, B. Knuth, S. Schwager. 2004. Global assessment of organic contaminants in farmed salmon. Science 303: 226-229.
- Hoar, W. S. 1988. The physiology of smolting salmonids. Pages 275-343 *In*, Fish Physiology Volume XI. The physiology of developing fish, Part B Viviparity and posthatching juveniles, W. S. Hoar and D. J. Randall, eds. Academic Press, Inc., New York.
- Hoffman, G.L. 1996. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory--Preparation procedure for aquatic biological material determined for trace metals: U.S. Geological Survey Open-File Report 96-362, 42 p.
- Horst, K., I. Lehmann and K. Oetjen. 1998. Levels of chlordane compounds in fish muscle, meal, -oil, and -feed. Chemosphere 36: 2819-2832.
- Horwitz, W (editor). 2000. Official Methods of Analysis of AOAC International, 17th Ed. Association of Official Analytical Communities International, 481 N. Frederick Ave., Suite 500, Gaithersburg, MD 20877-2417, publishers, 2200 pp.
- Isosaari, P., H. Kiviranta, O. Lie, A-K. Lundebye, G. Ritchie, and T. Vartianen. 2004. Accumulation and distribution of polychlorinated dibenzo-*p*-dioxin, dibenzofuran, and polychlorinated biphenyl congeners in Atlantic salmon (*Salmo salar*). Environmental Toxicology and Chemistry 23: 1672-1679.
- Jacobs, M. N., P. A. Johnston, C. L. Wyatt, D. Santillo and M. C. French. 1997. Organochlorine pesticide and PCB residues in pharmaceutical, industrial and food grade fish oils. Int. J. Environment and Pollution 8: 74-93.
- Jimenez, B., C. Wright, M. Keely, and J. R. Startin. 1996. Levels of PCDDs, PCDFs and Nonortho PCBs in dietary supplement fish oil obtained in Spain. Chemosphere 32: 461-467.

- Jørgensen, E. H., Ø. Ass-Hansen, A. Maule, J. Espen Tau Strand and M. M. Vijayan. 2004. PCB impairs smoltification and seawater performance in anadromous Arctic charr (*Salvelinus alpinus*). Comparative Biochemistry and Physiology, C 138: 203-212.
- Jørgensen, E. H., M. M. Vijayan, N. Aluru and A.G. Maule. 2002. Fasting modifies Aroclor 1254 impact on plasma cortisol, glucose and lactate responses to a handling disturbance in Arctic charr. Comparative Biochemistry and Physiology, C 132: 235-245.
- Leiker, T.J., Madsen, JE; Deacon, JR; Foreman, WT. 1995. Methods of analysis of the U.S. Geological Survey National Water Quality Laboratory - determination of chlorinated pesticides in aquatic tissue by capillary-column gas chromatography with electron-capture detection. U.S. Geological Survey, Earth Science Information Center, Denver, CO. 42 pp.
- Lundebye, A., M. Berntssen, O. Lie, G. Ritchie, P. Isosaari, H. Kiviranta, and T. Vartiainen. 2004. Dietary uptake of dioxins (PCDD/PCDFs) and dioxin-like PCBs in Atlantic salmon (*Salmo salar*). Aquaculture Nutrition 10: 199-207.
- Mac, M. J., L. W. Nicholson and C. A. McCauley. 1979. PCBs and DDE in commercial fish feeds. The Progressive Fish-Culturist 4: 210-211.
- Macek, K. J. 1968. Growth and resistance to stress in brook trout fed sublethal levels of DDT. J. Fish. Research Board of Canada 25:2443-2451.
- MacLeod, M., and D. Mackay. 2004. Modeling transport and deposition of contaminants to ecosystems of concern: a case study for the Laurentian Great Lakes. Environmental Pollution 28: 241–250.
- Maule, A.G., E. H. Jørgensen, M.M. Vijayan, and J.-E. A. Killie. 2005. Aroclor 1254 exposure reduces disease resistance and innate immune responses in fasted Arctic charr. Environmental Toxicology and Chemistry 24:117-124.
- Muir, D.C.G., Wagemann, R., Hargrave, B.T., Thomas, D.J., Peakall, D.B., Norstrom, R.J., 1992. Arctic marine ecosystem contamination. Science of the Total Environment 122: 75-134.
- Patrick, F. M. and M. W. Loutit. 1978. Passage of metals to freshwater fish from their food. Water Research 12: 395-398.
- Rappe, C., S. Bergek, H. Feidler and K. R. Cooper. 1998. PCDD and PCDF contamination in catfish feed from Arkansas, USA. Chemosphere 36: 2705-2720.
- Rondorf, D.W., M.S. Dutchuk, A.S. Kolok and M.L. Gross. 1985. Bioenergetics of juvenile salmon during the spring outmigration. Annual Report 1983. Bonneville Power Administration Contract DE-AI79-82BP35346. http://www.efw.bpa.gov/Publications/D35346-1.pdf.

- Rumsey, G. L. 1980. Adventitious toxins in feeds. *In*, Fish Feed Technology, Lectures from the FAO/UNDP Training Course in Fish Feed Technology, University of Washington, Seattle, WA October 9-December 15, 1978.
- Schaperclaus, W. 1986. Fish Diseases, Volume 2. Amerind Publishing Co. Pvt. Ltd., New Delhi.
- Shearer, K. D. T. Åsgård, G. Andorsdöttir and G. H. Aas. 1994. Whole body elemental and proximate composition of Atlantic salmon (*Salmo salar*) during the life cycle. Journal of Fish Biology 44: 785-797.
- Sorensen, E. M. B. 1991. Metal poisoning in fish. CRC Press, Boca Raton, FL. pp. 374.
- US EPA. 1995. Test Methods for Evaluating Solid Waste, SW-846. Third Edition. March 1995 Method 8290: Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by High Resolution Gas Chromatography/High Resolution Mass Spectrometry.
- US EPA. 1996a Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition, Final Update III, Revision 2, December 1996, Method 6010B.
- US EPA. 1996b. Test Methods for Evaluating Solid Waste, SW-846. Update III. December 1996 Method 8081: Organochlorine Pesticides by Gas Chromatography.
- US EPA. 1999. Method 1668, Revision A: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by HRGC/HRMS. EPA-821-R-00-002.
- VanCuren, RA. 2003. Asian aerosols in North America: Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States. Journal of Geophysical Research, D. Atmospheres 108: 20.
- Van den Berg M., Birnbaum L., Bosveld A.T.C., Brunström B., Cook P., Feeley M., Giesy P., Hanberg A., Hasegawa, R., Kennedy S.W., Kubiak T., Larsen J.C., van Leeuwen F.X.R., Liem A.K.D., Nolt C., Peterson R.E., Poellinger L., Safe S., Schrenk D., Tillitt D., Tysklind M., Younes M., Wærn F., Zacharewski T. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, and PCDFs for humans and wildlife. Environmental Health Perspectives 106:775–792.
- Watanabe, T., V. Kiron and S. Satoh. 1997. Trace minerals in fish nutrition. Aquaculture 151:185-207.
- Ylitalo, Gina of the National Marine Fisheries Service-Environmental Conservation Division in Seattle, Washington-Personal Communication on May 10, 2004.

Table 1. U.S. Fish and Wildlife Service Region, National Fish Hatchery (NFH) and fish species reared and fed at those hatcheries during the two-year study.

FWS		
Region	NFH	Species
		Steelhead
Pacific	Coleman	Fall Chinook
		Rainbow trout,
	Hagerman	Steelhead
	Spring Creek	Fall Chinook
	Quilcene	Coho, Chum
		Spring Chinook,
	Leavenworth	Steelhead
		Pallid sturgeon,
		Walleye, Pike,
Mountain-	Garrison Dam	Smallmouth bass
Prairie		
	Ennis	Rainbow trout
		Lake trout,
		Brook trout,
		Bass, Bluegill,
Great Lakes	Genoa	Sturgeon, Pike
	Jordan River	Lake trout
Northeast	North Attleboro	Atlantic salmon
	White Sulphur	Rainbow trout
	Springs	

Table 2. Metals and other contaminants assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc.; proximate contents assayed by Abernathy Fish Technology Center in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003.

Percent Ash	PCB 77	Aldrin
Percent Lipids	PCB 81	Chlordane (technical)
Percent Moisture	PCB 105	DCPA (Dacthal)
Percent Protein	PCB 114	Dieldrin
1,2,3,4,6,7,8-HpCDD	PCB 118	Endosulfan I
1,2,3,4,6,7,8-HpCDF	PCB 123	Endosulfan II
1,2,3,4,7,8,9-HpCDF	PCB 126	Endosulfan sulfate
1,2,3,4,7,8-HxCDD	PCB 156	Endrin
1,2,3,4,7,8-HxCDF	PCB 157	Endrin aldehyde
1,2,3,6,7,8-HxCDD	PCB 167	alpha-BHC
1,2,3,6,7,8-HxCDF	PCB 169	beta-BHC
1,2,3,7,8,9-HxCDD	PCB 170	delta-BHC
1,2,3,7,8,9-HxCDF	PCB 180	gamma-BHC (Lindane)
1,2,3,7,8-PeCDD	PCB 189	cis-Chlordane
1,2,3,7,8-PeCDF	PCB-Total	cis-Nonachlor
2,3,4,6,7,8-HxCDF	Aluminum (Al)	o,p'-Methoxychlor
2,3,4,7,8-PeCDF	Arsenic (As)	p,p'-Methoxychlor
2,3,7,8-TCDD	Barium (Ba)	trans-Chlordane
2,3,7,8-TCDF	Beryllium (Be)	trans-Nonachlor
OCDD	Boron (B)	Toxaphene
OCDF	Cadmium (Cd)	Heptachlor
Total HpCDD	Chromium (Cr)	Heptachlor Epoxide
Total HpCDF	Copper (Cu)	Hexachlorobenzene (HCB)
Total HxCDD	Iron (Fe)	Methoxychlor
Total HxCDF	Lead (Pb)	Mirex
Total PeCDD	Magnesium (Mg)	Oxychlordane
Total PeCDF	Manganese (Mn)	Pentachloroanisole (PCA)
Total TCDD	Mercury (Hg)	Decachlorobiphenyl
Total TCDF	Molybdenum (Mo)	4,4'-DDD
	Nickel (Ni)	4,4'-DDE
	Selenium (Se)	4,4'-DDT
	Strontium (Sr)	Total DDT
	Vanadium (V)	
	Zinc (Zn)	

Table 3. Number of samples distributed to Abernathy Fish Technology Center (Center),
National Water Quality Laboratory (USGS Lab) or Severn Trent Laboratory, Inc. (Severn) for
analyses of lipids, moisture, ash and protein (proximate analysis), organochlorine pesticides
(OCs), polychlorinated biphenyls (PCBs), dioxins, furans, and metals.

	Center	USGS Lab	Severn		Total Samples
Proximate analysis	77				77
PCB congeners			46		46
OCs		29	26		55
Dioxins, Furans			55		55
Metals		29	26		55
Sample not analyzed				22	22
No sample received				11	11

Table 4. Detection limits of assays performed on feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Detection limits of dioxins, furans and PCBs vary between assays; values shown are the highest minimum detection limits for all assays performed. Values for metals and OC pesticides are minimum detection limits for all assays. Assays were conducted at the National Water Quality Laboratory (USGS) or Severn Trent Laboratories, Inc (Severn).

				Detection Limit	S				
Severn		Severn			Severn	USGS		Severn	USGS
	(pg g ⁻¹)		(ng g⁻¹)		(µg	g⁻¹)		(µg	kg⁻¹)
1,2,3,4,6,7,8-HpCDD	2.40	PCB 77	0.028	Aluminum (Al)	3.30	1.00	Aldrin	3.7	5.0
1,2,3,4,6,7,8-HpCDF	3.60	PCB 81	0.025	Arsenic (As)	0.46	0.10	Chlordane	35.0	
1,2,3,4,7,8,9-HpCDF	4.20	PCB 105	0.023	Barium (Ba)	0.11	0.10	DCPA (Dacthal)		5.0
1,2,3,4,7,8-HxCDD	1.80	PCB 114	0.023	Beryllium (Be)	0.02	0.10	Dieldrin	5.5	5.0
1,2,3,4,7,8-HxCDF	1.50	PCB 118	0.024	Boron (B)	0.47	0.20	Endosulfan I	3.1	
1,2,3,6,7,8-HxCDD	1.50	PCB 123	0.023	Cadmium (Cd)	0.08	0.10	Endosulfan II	3.9	
1,2,3,6,7,8-HxCDF	1.40	PCB 126	0.030	Chromium (Cr)	0.40	0.50	Endosulfan sulfate	6.3	
1,2,3,7,8,9-HxCDD	1.60	PCB 156	0.035	Copper (Cu)	0.10	0.50	Endrin	5.1	5.0
1,2,3,7,8,9-HxCDF	1.70	PCB 157	0.035	Iron (Fe)	2.40	1.00	Endrin aldehyde	8.8	
1,2,3,7,8-PeCDD	2.30	PCB 167	0.027	Lead (Pb)	0.13	0.10	alpha-BHC	5.7	5.0
1,2,3,7,8-PeCDF	1.60	PCB 169	0.041	Magnesium (Mg)	1.80	0.008*	beta-BHC	5.7	5.0
2,3,4,6,7,8-HxCDF	1.80	PCB 170	0.046	Manganese (Mn)	0.07	0.10	delta-BHC	5.3	5.0
2,3,4,7,8-PeCDF	2.60	PCB 180	0.044	Mercury (Hg)	0.01	0.01	gamma-BHC	5.6	5.0
2,3,7,8-TCDD	0.98	PCB 189	0.032	Molybdenum (Mo)	0.21	0.10	cis-Chlordane		5.0
2,3,7,8-TCDF	0.64			Nickel (Ni)	0.34	0.10	cis-Nonachlor		5.0
OCDD	5.10			Selenium (Se)	0.25	0.10	o,p'-Methoxychlor		5.0
OCDF	4.40			Strontium (Sr)	0.04	0.10	p,p'-Methoxychlor		5.0
Total HpCDD	2.40			Vanadium (V)	0.21	0.10	trans-Chlordane		5.0
Total HpCDF	4.20			Zinc (Zn)	0.21	0.50	trans-Nonachlor		5.0
Total HxCDD	1.80						Toxaphene	150	200.0
Total HxCDF	3.40				* m	g L⁻¹	Heptachlor	4.6	5.0
Total PeCDD	10.00						Heptachlor Epoxide		5.0
Total PeCDF	7.60						Hexachlorobenzene		5.0
Total TCDD	0.98						Methoxychlor	6.0	
Total TCDF	2.50						Mirex		5.0
							Oxychlordane		5.0
							Pentachloroanisole		5.0
							4,4'-DDD	5.3	5.0
							4,4'-DDE	4.7	5.0
							4,4'-DDT	4.8	5.0

Table 5. Metals and other contaminants for which there was at least one value above detection limits when assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing within classes of compounds. All other totals were determined by independent assays.

1,2,3,4,6,7,8-HpCDD	PCB 156	Lead (Pb)
	PCB 157	
1,2,3,7,8-PeCDD		Magnesium (Mg)
2,3,7,8-TCDD	PCB 167	Manganese (Mn)
2,3,7,8-TCDF	PCB 170	Mercury (Hg)
OCDD	PCB 180	Molybdenum (Mo)
OCDF	PCB 189	Nickel (Ni)
Total HpCDD	Aluminum (Al)	Selenium (Se)
Total HpCDF	Arsenic (As)	Strontium (Sr)
Total PeCDD	Barium (Ba)	Vanadium (V)
Total PeCDF	Boron (B)	Zinc (Zn)
Total TCDD	Cadmium (Cd)	alpha-BHC
Total TCDF	Chromium (Cr)	delta-BHC
PCB 77	Copper (Cu)	4,4'-DDE
PCB 81	Iron (Fe)	Total DDT
PCB 105		Total Dioxins
PCB 114		Total Furans
PCB 118		Total PCBs
PCB 123		
PCB 126		

Table 6. Summary of dioxins, furans (total samples assayed = 55), PCBs (total samples assayed = 46) and organochlorine pesticides number of samples between the assayed total values and the additive totals are the result of some samples in which assay results are contains data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All other totals were determined by independent assays. Differences in the Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. DDT (total samples assayed = 55) detected in fish feed samples assayed by the USGS National Water Quality Lab or Severn Trent positive for totals in a class compounds, but none of the individual congeners were above detection limits, and vice-versa

4, -	8	1,2,3,7,8	2,3,7,8	2,3,7,8			Total	Total	Total	Total	Total	Total	Total	Total	Total
Compound HpCDD		PeCDD	TCDD	TCDF		-	HpCDF	PeCDD	TCDD	TCDF		Furans	PCB		BHC
Units	pg g_	pg g_	pg g_	pg g ^{_1}	pgg^{-1} pgg^{-1}	-1 pg g-1	pg g ⁻¹	pg g [_]	pg g ^{_1}	pg g ⁻¹	pg g_	pg g ⁻¹ 1	ng g ⁻	$\mu g k g^{-1}$	µg kg ⁻¹
Mean	10.4	3.2	0.55	1.29	36.2 10.0	0 16.93	3.00	12.80	0.69	1.33	38.08		1.76 1.94	11.33	21.50
SD	12.6	1.0		0.82	67.5	19.25	10	6.30	0.19	0.82	74.25	2.40	2.42	7.97	3.54
z	10	7	~	22	38	1 10	1	С	7	23	39	24	46	24	2
SE	4.0	0.7		0.17	11.0	60.9	-	3.64	0.14	0.17	11.89	0.49	0.36	1.63	2.50
Max value	44.0	3.9	0.55		3.80 350.0 10.00	00.99 00	3.00	19.00	0.82	3.80	394.00	12.30	10.46	31.00	24.00
Min Value	3.1	2.5	0.55	0.64	5.2 10.00	0 3.10	3.00	6.40	0.55	0.64	2.50	0.64	0.07	3.30	19.00

SD = standard deviation; N = number of samples with detectable values; SE = standard error of the mean

Table 7. World Health Organization (WHO) toxic equivalents (TEQ; pg g⁻¹) for dioxins (congeners: heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, pentachlorodibenzo-p-dioxins, tetrachlorodibenzo-p-dioxin), furans (congeners: tetrachlorodibenzo furan, octachlorodibenzo furan) and PCBs (congeners: PCB -77, -105, -114, -118, -123, -126, -156, -157, -167, -189) detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Toxic equivalent factors for fish were used in the calculations (Van den Berg et al., 1998).

	Mean	SD	Ν	SE	Min	Max
Dioxin TEQ	0.208	0.739	39	0.1183	0.0005	3.9486
Furan TEQ	0.064	0.041	22	0.0087	0.0320	0.1900
PCB TEQ	0.061	0.085	46	0.0125	0.0026	0.4144
Dioxin + Furan	0.227	0.708	42	0.1092	0.0005	3.9486
Total TEQs	0.237	0.647	52	0.0897	0.0006	3.9811

SD = standard deviation; N = number of samples with detectable values, each of the 52 total samples could contain 1, 2 or 3 of the classes of contaminants; SE = standard error of the mean; Min = minimum value detected above detection limits; Max = maximum value detected.

Zn	$\log g^{-1}$	142.76	26.06 1.78 42.36	55	5.71	258.54	14.20
>	_ പി വി നി	2.07	1.78	54	0.24	9.44	0.22
Mn Hg Mo Ni Se Sr V Zn	hg g'	45.94	26.06	55	3.51	È	4.52
Se	_ പി വ	2.48 4	0.68	55	0.09	3.80	0.25
īz	' പ വ	3 2.35	1.39	55	0.19		0.42
Mo	ng ¹	0.76	45.94 0.03 0.52	47	0.08	0.12 2.28	0.16
Hg	ິ ກີ ດີ	0.03	0.03	52	0.00	0.12	0.01
Mn	പ്പ വ	84.31	45.94 (56	6.19	196.00	3.60
Mg	_ရ nd အ	1763 8	429	55	58	2640	212
- Pb	ا_ع bu	0.78	1.11	25	0.22	5.82	0.10
Ее	hg g ⁻¹	353.9 0.78		55	18.2 0	622.0 5	15.0
Cu	<u>µg gʻ</u> lug <u>gʻ</u> lug <u>gʻ</u> lug <u>gʻ</u> lug <u>gʻ</u> l	10.54	5.43	55	0.73	29.83	1.20
۔ ت	hg g ⁻¹	1.50	0.74	53	0.10	4.70	0.67
		0.39	0.21	55 41	0.03	0.89	0.08
Al As Ba B Cd	ug g ⁻	61.50 2.62 6.67 5.28 0.39	3.97 2.23	55	0.18 0.54 0.30	8.17 15.30 9.80	0.25 0.20 0.63
Ba	- အ nd အ	6.67	3.97	55 55	0.54	15.30	0.20
As	່ລິ Dh	2.62	50.30 1.37	55			0.25
ہ ع	Units	61.50	50.30	55	6.78	226.00	1.94
Metal	Units	Mean	SD	z	SE	Max value	Min value 1.94

SD = standard deviation; N = number of samples with detectable values; SE = standard error of the mean

of constituents found in fish feed samples collected from 11 National Fish Hatcheries	Results for metals and DDT contain data from the two labs using different assays (see	Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All	other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in parentheses.
O) of constituents found in fish feed samples collected	3. Results for metals and DDT contain data from the t	otal Furans and Total PCBs were determined by sumn	spendent assays. Numbers (n) of samples positive for t
Table 9. Mean + standard deviation (SD)	between October 2001 and October 2003.	Methods). Total DDT, Total Dioxins, To	other variables were determined by indel

Hatchery	Ash	Lipids	Moisture	Protein	Total Dioxins	Total Furans	Total PCB	Total DDT	BHC
Colomoto	(%)	(%) 107±23	(%) 12 4 ± 0 4	(%) 150±20	(pg g ^{_1})	(bd g_)	(ng g [_]) 1 24 ± 0 e0	(µg/kg) 8 00 ± 0 57	(hg/kg)
Coleman (6)	0.4 ± 0.4 (6)	10.7 ± 2.3 (6)	13.4 ± 9.4 (6)	40.9 ± 2.0 (6)	9.30 ± 4.04 (3)	(1)	1.24 ± 0.03 (4)	0.00 ± 0.37 (2)	ł
Ennis	8.5 ± 1.1	12.9 ± 1.0	9.0 ± 0.7	43.9 ± 2.7	13.05 ± 4.16	0.73	0.53 ± 0.42	4.90 ± 0.71	ł
(8)	(8)	(8)	(8)	(8)	(4)	(1)	(5)	(2)	
Garrison Dam (6)	8.5 ± 0.4 (6)	19.5 ± 0.7 (6)	11.7 ± 7.1 (6)	47.1 ± 1.0 (6)	168.9 ± 171.5 (4)	0.96 ± 0.33 (3)	1.86 ± 1.58 (3)	25.00 ± 5.66 (2)	1
Genoa	8.2 ± 0.9	17.0 ± 1.8	8.1 ± 1.0	44.7 ± 2.3	19.82 ± 7.87	1.15 ± .07	1.59 ± 1.49	6.90	ł
(6)	(6)	(6)	(6)	(6)	(5)	(2)	(5)	(1)	
Hagerman	8.5 ± 1.7	15.5 ± 2.8	7.6 ±1.3	47.5 ± 3.4	34.5 ± 40.3	1.17 ± 0.30	2.17 ± 1.70	11.37 ± 7.87	24.0
(8)	(8)	(8)	(8)	(8)	(4)	(3)	(5)	(3)	(1)
Jordan River	9.0 ± 0.9	14.8 ± 2.6	7.4 ± 1.2	47.4 ± 3.6	7.51 ± 1.61	0.64	0.24 ± 0.10	5.83 ± 0.67	I
(7)	(7)	(6)	(6)	(6)	(3)	(1)	(4)	(3)	
Leavenworth (8)	7.9 ± 1.5 (8)	18.9 ± 3.7 (8)	15.2 ± 8.5 (8)	48.3 ± 3.4 (8)	39.75 ± 29.34 (2)	0.74 ± 0.08 (3)	1.88 ± 0.59 (4)	20.47 ± 10.81 (3)	I
North Attleboro	6.7 ± 0.3	9.5 ± 0.7	42.8 ± 1.6	34.8 ± 2.3	35.45 ± 40.7	0.72 ± 0.06	1.43 ± 0.37	1	19.0
(5)	(5)	(5)	(5)	(5)	(2)	(2)	(4)		(1)
Quilcene (8)	8.3 ± 1.2 (8)	20.4 ± 2.3 (8)	6.0 ± 1.0 (8)	51.0 ± 1.6 (8)	5.7 ± 3.3 (3)	ł	1.73 ± 0.90 (4)	4.00 (1)	ł
Spring Creek	8.5 ± 1.1	17.5 ± 2.5	12.7 ± 6.8	48.1 ± 1.3	6.33 ± 0.81	1.80	1.09 ± 1.92	9.77 ± 5.69	1
(7)	(7)	(7)	(7)	(7)	(3)	(1)	(4)	(3)	
White Sulphur	7.7 ± 1.2	17.0 ± 2.4	7.5 ± 2.0	43.2 ± 18	60.25 ± 91.2	5.18 ± 4.84	9.87 ± 0.52	10.75 ± 5.88	ł
Springs (8)	(8)	(8)	(8)	(7)	(4)	(4)	(3)	(4)	

Table 9. Continued

I

Hatchery	Aluminum	Arsenic	Barium	Boron	Cadmium	Chromium	Copper	lron	Lead
	(µg g ^{_1})	(µg g ⁻¹)	(µg g ^{_1})	(µg g ^{_1})	(µg g ^{_1})	(µg g ⁻¹)	(µg g ^{_1})	(µg g ^{_1})	(µg g ^{_1})
Coleman	67.58 ± 61.88	2.35 ± 0.43	5.65 ± 3.22	5.61 ± 2.04	0.38 ± 0.17	1.43 ± 0.67	8.55 ± 1.82	271.5 ± 150.7	0.62 ± 0.40
	(4)	(4)	(4)	(4)	(3)	(4)	(4)	(4)	(3)
Ennis	82.00 ± 41.74	1.85 ± 0.54	11.96 ± 2.1	7.51 ± 1.28	0.32 ± 0.24	1.52 ± 0.61	10.11 ± 1.87	370.9 ± 73.3	0.78 ± 0.05
	(7)	(7)	(7)	(7)	(4)	(7)	(7)	(7)	(2)
Garrison Dam	67.18 ± 62.50	2.92 ± 0.18	5.88 ± 2.69	5.21 ± 2.48	0.42 ± 0.29	1.32 ± 0.29	7.07 ± 1.49	414.3 ± 38.3	0.39 ± 0.17
	(4)	(4)	(4)	(4)	(3)	(3)	(4)	(4)	(2)
Genoa	92.45 ± 61.23 (58)	1.81 ± 1.02 (5)	7.80 ± 4.43 (5)	6.75 ± 3.56 (5)	0.09 ± 0.01 (2)	2.60 ± 1.40 (4)	8.40 ± 4.89 (5)	400.0 ± 221.3 (5)	ł
Hagerman	56.43 ± 46.69	2.66 ± 0.76	4.33 ± 2.19	4.03 ± 1.69	0.53 ± 0.40	1.53 ± 0.56	8.92 ± 1.82	398.8 ± 60.8	0.46 ± 0.38
	(5)	(5)	(5)	(5)	(3)	(5)	(5)	(5)	(2)
Jordan River	60.02 ± 25.19	2.34 ± 1.15	9.30 ± 3.03	6.09 ± 1.70	0.31 ± 0.12	1.43 ± 0.51	12.55 ± 4.75	388.7 ± 109.6	1.06 ± 0.42
	(5)	(5)	(5)	(5)	(4)	(5)	(5)	(5)	(4)
Leavenworth	15.75 ± 9.62	2.73 ± 0.81	2.83 ± 1.28	2.96 ± 0.70	0.46 ± 0.30	1.09 ± 0.47	7.65 ± 1.63	275.8 ± 115.9	0.46 ± 0.08
	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(2)
North	26.50 ± 5.33	6.19 ± 2.23	1.75 ± 0.33	3.64 ± 0.75	0.37 ± 0.07	1.54 ± 1.21	25.68 ± 5.42	202.3 ± 134.1	0.10 ± 0.01
Attleboro	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(2)
Quilcene	16.94 ± 8.89	1.89 ± 0.46	2.91 ± 0.58	3.96 ± 1.42	0.48 ± 0.11	1.01 ± 0.21	8.89 ± 2.49	206.9 ± 51.6	0.29 ± 0.02
	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(2)
Spring Creek	73.42 ± 23.47	2.98 ± 0.92	9.02 ± 1.32	4.76 ± 1.87	0.33 ± 0.17	1.89 ± 0.66	9.71 ± 3.50	474.8 ± 95.8	0.40 ± 0.15
	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(3)
White Sulphur Springs	128.45 ± 76.41 (4)	2.44 ± 0.53 (4)	10.43 ± 1.19 (4)	7.11 ± 1.00 (4)	0.34 (1)	1.38 ± 0.57 (4)	10.94 ± 4.95 (4)	444.0 ± 35.4 (4)	2.39 ± 2.98 (3)

Table 9. Continued

Hatchery	Magnesium رباط م ⁻¹)	ő	Mercury	Molybdenum	Nickel	Selenium	Strontium	Vanadium // מימי לי)	Zinc (un o ⁻¹)
Coleman	(1639 ± 116 (4)	38.20 ± 10.43 (4)	0.02 ± 0.01 (4)	(19 9) 0.50 ± 0.15 (4)	2.54 ± 0.91 (4)	2.26±0.33 (4)	36.9 ± 14.39 (4)	3.09 ± 0.47 (3)	115.41 ± 12.4 (4)
Ennis	2221 ± 238	122.06 ± 44.2	0.02 ± 0.01	0.80 ± 0.24	2.52 ± 1.05	2.40 ± 0.50	34.34 ± 8.82	1.70 ± 0.85	186.30 ± 27.8
	(7)	(7)	(6)	(7)	(7)	(7)	(7)	(7)	(7)
Garrison Dam	1550 ± 92	107.1 ± 56.29	0.07 ± 0.05	0.44 ± 0.22	1.91 ± 0.25	3.20 ± 0.54	58.4 ± 38.22	1.06 ± 0.19	155.81 ± 11.7
	(4)	(4)	(4)	(3)	(4)	(4)	(4)	(4)	(4)
Genoa	1564 ± 811	52.72 ± 28.26	0.01 ± 0.00	0.98 ± 0.35	1.87 ± 0.86	2.15 ± 1.07	20.26 ± 9.3	0.89 ± 0.38	119.44 ± 59.2
	(5)	(5)	(3)	(4)	(5)	(5)	(5)	(5)	(5)
Hagerman	1447 ± 246	85.02 ± 39.24	0.06 ± 0.03	0.52 ± 0.43	2.03 ± 1.46	2.40 ± 0.46	60.36 ± 32.8	1.76 ± 1.99	136.9 ± 25.58
	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
Jordan River	2108 ± 312	120.20 ± 6.14	0.02 ± 0.01	1.16 ± 0.74	3.00 ± 0.75	2.10 ± 0.65	37.79 ± 9.12	2.42 ± 0.94	158.17 ± 10.4
	(5)	(5)	(5)	(4)	(5)	(5)	(5)	(5)	(5)
Leavenworth	1513 ± 152	66.33 ± 37.73	0.05 ± 0.02	1.28 ± 0.43	2.33 ± 1.35	2.46 ± 0.82	65.81 ± 24.2	2.21 ± 1.82	111.36 ± 16.5
	(4)	(4)	(4)	(2)	(4)	(4)	(4)	(4)	(4)
North Attleboro	1742 ± 548	79.65 ± 22.88	0.05 ± 0.02	0.31 ± 0.04	2.95 ± 3.30	2.86 ± 0.95	91.64 ± 28.9	0.75 ± 0.61	198.00 ± 63.8
	(4)	(4)	(4)	(2)	(4)	(4)	(4)	(4)	(4)
Quilcene	1775 ± 394	31.49 ± 12.81	0.03 ± 0.02	0.33 ± 0.07	1.43 ± 0.66	2.67 ± 0.59	47.07 ± 13.1	1.71 ± 1.22	105.55 ± 17.0
	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)
Spring Creek	1953 ± 324	130.66 ± 50.1	0.02 ± 0.01	0.82 ± 0.28	3.75 ± 1.90	2.62 ± 0.67	41.52 ± 12.1	5.34 ± 3.10	168.63 ± 30.4
	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
White Sulphur	1609 ± 287	92.38 ± 14.06	0.01 ± 0.00	1.55 ± 0.81	1.90 ± 0.36	2.19 ± 0.66	21.42 ± 4.32	2.15 ± 0.88	108.60 ± 23.1
Springs	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)

different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes National Fish Hatcheries between October 2001 and October 2003. Results for metals and DDT contain data from the two labs using of compounds. All other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in Table 10. Mean + standard deviation (SD) of constituents found in fish feed samples from six manufacturers collected from 11 parentheses.

Feed					Total	Total	Total	Total	
Manufacturer	Ash	Lipids	Moisture	Protein	Dioxins	Furans	PCB	DDT	BHC
	(%)	(%)	(%)	(%)	(pg g ^{_1})	(pg g ^{_1})	(ng g ^{_1})	(ng g ^{_1})	(ng g ⁻¹)
A	8.9±1.0	17.2 ± 2.3	22.8 ± 2.0	46.9 ± 2.7	28.52 ±	1.04 ± 0.43	2.56 ± 1.07	18.83 ±	ł
(10)	(10)	(10)	(10)	(10)	19.34 (6)	(9)	(9)	9.18 (7)	
Ш	7.8 ± 1.1	20.8 ± 2.5	6.6 ± 1.2	49.9 ± 2.7	5.83 ± 2.71	1	1.32 ± 0.84	4.00	ł
(14)	(14)	(14)	(14)	(14)	(4)		(2)	(1)	
U	6.7 ± 0.3	9.5 ± 0.7	42.8 ± 1.6	34.8 ± 2.3	36.20 ±	0.72 ± 0.06	1.02 ± 0.57	ł	ł
(2)	(2)	(2)	(2)	(5)	39.60	(2)	(4)		
Ω	8.8 ± 1.0	16.8 ± 2.3	7.9 ± 1.3	46.6 ± 2.8	(∠) 54.83 ±	0.93 ± 0.42	1.85 ± 1.38	8.97 ± 5.69	24.0
(21)	(21)	(21)	(21)	(19)	106.48 (15)	(10)	(14)	(9)	(1)
ш	8.4 ± 0.9	15.2 ± 2.5	8.2 ± 2.1	46.1 ± 3.3	20.95 ±	0.64	0.41 ± 0.52	6.57 ± 3.80	19.0
(19)	(19)	(19)	(19)	(19)	37.70 (7)	(1)	(12)	(9)	(1)
ш	7.7 ± 1.3	17.0 ± 2.5	7.5 ± 2.0	43.2 ± 1.8	60.25 ±	5.18 ± 4.84	9.87 ± 0.52	10.75 ±	ł
(8)	(8)	(8)	(8)	(8)	91.19 (4)	(4)	(3)	5.88	
					(+)			(t)	

per
ntin
S
<u>.</u>
\subseteq
—
Fable

ManufacturerAluminumArsenicBarium $(\mu g g^{-1})$ $(\mu g g^{-1})$ $(\mu g g^{-1})$ $(\mu g g^{-1})$ A $45.14 \pm 3.11 \pm 0.30$ 4.93 ± 3.31 B 51.55 (7) (7) (7) (7) (7) (7) (7) (7) B $16.12 \pm 1.90 \pm 0.40$ 2.93 ± 0.52 9.34 (10) (10) (10) C $28.75 \pm 5.66 \pm 3.09$ 4.18 ± 4.69 (4) (4) (4) (4) D $89.88 \pm 2.34 \pm 0.86$ 7.44 ± 4.18 48.72 (15) (15) (15)	Barium ($\mu g g^{-1}$) ($\mu g g^{-1}$) (7) (7) (7) (7) (10)	Boron ($\mu g g^{-1}$) 4.33 ± 2.36 (7)	Cadmium رام م ⁻¹)	Chromium	Copper	Iron	Lead
$(\mu g g^{-1})$ 45.14 ± 51.55 51.55 (7) 16.12 ± 9.34 9.34 (10) 28.75 ± 3.88 (4) 89.88 ± 48.72	$\begin{array}{ccc} (\mu g \ g^{-1}) \\ 1 & 4.93 \pm 3.31 \\ (7) \\ 1 & (7) \\ 1 & (10) \end{array}$	(µg g ⁻¹) 4.33 ± 2.36 (7)	(IIC C_1)	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{c} 45.14 \pm \\ 51.55 \\ (7) \\ (7) \\ 16.12 \pm \\ 9.34 \\ (10) \\ 28.75 \pm \\ 3.88 \\ (4) \\ 89.88 \pm \\ 48.72 \end{array}$	 4.93 ± 3.31 (7) 2.93 ± 0.52 (10) 	4.33 ± 2.36 (7)		(, 6 6rl)	(hg g ^{_1})	(hg g ^{_1})	(hg g ^{_1})
$\begin{array}{c} 51.55\\ (7)\\ (7)\\ 16.12 \pm\\ 9.34\\ (10)\\ 28.75 \pm\\ 3.88\\ (4)\\ 89.88 \pm\\ 48.72\end{array}$	(7) 2.93 ± 0.52 (10)	(2)	0.48 ± 0.26	1.54 ± 0.60	6.57 ± 1.06	374.29 ±	0.53 ± 0.19
(7) 16.12 ± 9.34 (10) 28.75 ± 3.88 (4) 89.88 ± 48.72) 2.93 ± 0.52 (10)		(9)	(9)	(2)	91.71	(2)
16.12 ± 9.34 (10) 28.75 ± 3.88 (4) 89.88 ± 48.72) 2.93 ± 0.52 (10)					(2)	
	(10)	3.86 ± 1.20	0.45 ± 0.13	1.03 ± 0.24	9.18 ± 2.10	190.70 ±	0.29 ± 0.10
		(10)	(10)	(10)	(10)	49.96	(4)
						(10)	
	9 4.18 ± 4.69	4.82 ± 1.77	0.37 ± 0.07	3.40 ± 3.23	21.98 ± 8.95	267.8 ±	0.10 ± 0.01
		(4)	(4)	(4)	(4)	119.0	(2)
						(4)	
	5 7.44 ± 4.18	6.19 ± 2.85	0.35 ± 0.36	1.92 ± 0.93	8.60 ± 3.01	395.13 ±	0.67 ± 0.33
	(15)	(15)	(2)	(14)	(15)	124.34	(4)
						(15)	
E 61.89 ± 2.39 ± 0.97	8.87 ± 3.21	5.40 ± 1.71	0.32 ± 0.17	1.42 ± 0.60	12.06 ± 5.09	411.0 ±	0.80 ± 0.46
	(15)	(15)	(13)	(15)	(15)	131.2	(2)
(15)						(15)	
2.44 ± 0.53	0.4	7.11 ± 1.00	0.34	1.38 ± 0.57	10.94 ± 4.95	444.00 ±	2.39 ± 2.98
76.41 (4)	(4)	(4)	(1)	(4)	(4)	35.36	(3)
						(4)	

Table 10. Continued

Feed									
Manufacturer	Magnesium	Manganese	Manganese Mercury N		Nickel	Selenium	Strontium	Vanadium	Zinc
	(hg g_)	(hg g [_])	(hg g])						
A	1579 ± 158	91.84 ±	0.06 ± 0.04	0.93 ± 0.62	2.38 ± 1.27	2.71 ± 0.89	65.58 ±	2.56 ± 2.35	129.71 ±
	(2)	49.93	(2)	(4)	(2)	(2)	29.26	(2)	26.62
		(2)					(2)		(2)
В	1737 ± 333	31.04 ±	0.03 ± 0.02	0.41 ± 0.21	1.75 ± 0.92	2.54 ± 0.56	47.76 ±	2.06 ± 1.27	106.80 ±
	(10)	10.70	(10)	(10)	(10)	(10)	12.18	(6)	14.27
		(10)					(10)		(10)
J	2099 ± 552	113.95 ±	0.05 ± 0.02	0.51 ± 0.36	1.65 ± 0.91	2.99 ± 0.82	86.37 ±	1.22 ± 0.77	208.74 ±
	(4)	57.64	(3)	(3)	(4)	(4)	36.19	(4)	53.69
		(4)					(4)		(4)
Δ	1629 ± 526	67.56 ±	0.04 ± 0.03	0.68 ± 0.36	2.14 ± 0.98	2.39 ± 0.65	36.57 ±	1.31 ± 0.84	147.14 ±
	(15)	29.43	(13)	(13)	(15)	(15)	27.54	(15)	48.68
		(15)					(15)		(15)
ш	1953 ± 391	123.02 ±	0.02 ± 0.01	0.88 ± 0.46	3.26 ± 1.90	2.35 ± 0.65	40.68 ±	2.80 ± 2.48	160.00 ±
	(15)	33.86	(15)	(13)	(15)	(15)	12.49	(15)	21.47
		(15)					(15)		(15)
L	1609 ± 287	92.38 ±	0.01 ± 0.00	1.55 ± 0.81	1.90 ± 0.36	5	21.42 ±	2.15 ± 0.88	108.60 ±
	(4)	14.06	(4)	(4)	(4)		4.32	(4)	23.06
		(4)					(4)		(4)

Table 11. Total PCBs, 14 dioxin-like PCBs (DL-PCBs), toxic equivalents (TEQ; pg g⁻¹) for the DL-PCBs, and DDT metabolites (ng g⁻¹ wet weight) in feed from specific manufacturers (A, B and D) as reported in three studies spanning about 25 years. Values for Pre-1979 are the range of means from Mac et al. (1979); values for 1999 are data from 1 or 2 assays presented in Easton et al. (2002); values for 2001-2003 are ranges of results from this report, not including those below detection levels. Sample sizes are in parentheses; for this report, we also report total number of samples examined.

		Pre-1979	1999	2001-2003
Α				
Т	otal PCBs	100 - 230 (n = 3-4)	43 & 107 (2 samples)	ND
14	DL-PCBs	ND	6.7 & 4.4	1.4 - 4.0 (n = 6 of 10)
	TEQ	ND	0.312 & 0.261	0.046 to 0.135
DDT m	etabolites	10 - 340 (n = 3-4)	50 & 50 (2 samples)	8.4 - 31.0 (n = 7 of 10)
В				
Т	otal PCBs	ND	90.2 (1 sample)	ND
14	DL- PCBs	ND	5.2	0.4 - 3.0 (n = 7 of 14)
TEQ (me	ean <u>+</u> SE)	ND	0.177	0.015 to 0.041
DDT m	etabolites	ND	30.7 (1 sample)	4.0 (n = 1 of 14)
D				
Т	otal PCBs	54 - 60 (n = 3)	ND	ND
14	DL-PCBs	ND	ND	0.6 - 4.8 (n = 14 of 19)
	TEQ	ND	ND	0.004 to 0.125
DDT m	etabolites	13 - 51 (n = 3)	ND	4.4 - 20.0 (n = 6 of 19)

ND - no data available

Figure 1. Fish feed quality control sample analysis form.

1	y Fish Technology Center Nutrition Program ty Control Sample Analysis Form
Hatchery Name:	Hatchery Contact Person:
Today's Date:	Feed Manufacturer:
Date of Feed Manufacture:	Date Feed Received:
Lot Number (if any):	Size of Feed:
Comments (i.e. Have any problems bee sample in?): Please provide the name of the feed.	n observed with the fish? Why are you sending this

Appendix A Raw Data from Contaminants Assays of Feed Collected from National Fish Hatcheries

(values > minimum detection levels; assays conducted at several laboratories, some using different methods; please see Methods)

Tot HpCDF pg g ⁻¹								3.000	
Tot HpCDD pg g^{-1}			3.100 3.300	66.000 19.000	6.100	8.000		11.000	
OCDF pg g ⁻¹									
OCDD pg g ⁻¹	14.000 8.300 6.200	17.000 11.000 8.200 16.000	31.000 33.000	350.000 200.000	20.000 17.000	12.000 15.000 27.000	12.000 19.000	16.000 100.000	19.000
$TCDF$ pg g^{-1}	0.920	0.730	1.300 0.930	0.640	1.100 1.200		1.100 0.890	1.600	1.100
TCDD pg g ⁻¹									
PeCDD pg g ⁻¹									
HpCDD pg g ⁻¹			3.100 3.300	44.000 11.000	3.300	4.800		6.400	
HATCHERY (NFH)	Coleman Coleman Coleman Coleman	Coentai Ennis Ennis Ennis Ennis Ennis	Garrison Dam Garrison Dam	Garrison Dam Garrison Dam Garrison Dam Garrison Dam	Genoa Genoa	Genoa Genoa Genoa	Hagerman Hagerman	Hagerman Hagerman	Hagerman Hagerman * Det consist of section of
DATE*	11/09/01 02/01/02 05/23/02 09/12/02 02/19/03	00/10/00 10/16/01 12/19/02 04/08/02 06/22/02 10/30/02 02/10/03 07/30/03	11/19/01 11/19/01	09/13/02 12/23/02 07/14/03 12/19/03	10/25/01 09/26/02	02/14/03 02/14/03 07/12/02	12/31/01 01/02/02	04/19/02 06/28/02 11/18/02	02/10/03 07/02/03 08/08/03

PCB 156 ng g ⁻¹	0.065	0.100 0.049			0.049		0.028		0.057			0.180	0.048	0.048		0.180	0.063			0.063	0.029	0.230	0.170		0.074	0.043		0.087		
PCB 126 ng g ⁻¹																														
PCB 123 $ng g^{-1}$																0.028						0.046						0.015		
PCB118 ng g ⁻¹	0.210 0.560	0.840 0.310)))		0.290		0.130 0.130	0.071	0.330			1.400	0.340	0.360		1.400	0.320		0.200	0.410	0.230	1.500	1.100	0.140	0.600	0.270		0.730		
PCB114 ng g ⁻¹												0.050										0.034								
PCB105 ng g ⁻¹	0.094 0.220	0.260			0.089	0000	0.046 0.046		0.120			0.410	0.120	0 110		0.410	0.095		0.064	0.130	0.071	0.480	0.360	0.052	0.220	0.089		0.240		
Tot PeCDD pg g ⁻¹																					6.400									_
HATCHERY (NFH)	Coleman Coleman	Coleman Coleman	Coleman	Finis	Ennis	Ennis Ennis	Ennis	Ennis	Ennis	EUUIS	Garrison Dam	Garrison Dam	Garrison Dam Garrison Dam	Garrison Dam	Garrison Dam	Genoa	Genoa	Genoa	Genoa	Genoa	Genoa	Hagerman	надегтап							

Aluminum µg g ⁻¹	5.610	140.000	96.600	28.100			110.000	137 000	000.70	41.300	/6./00	29.900	49.500	123.000		14 100		12.000		129.000	113.000		1.940	167.000		76.600	124.000	92.700		16.500	9.600	30.300	83.800	131.000		67.400		
Protein %	49.400	45.400	44.500	45.200	43.900	47,000	45.800	45 600	10,000	44.000	42.700	41.200	40.300	47.500	46.300	46 000	16 200	40.000	40.400	48.500	47.800	47.500	42.200	48.000	44.100	43.600	47.100	43.100		45.700	46.300	45.500	53.000	46.200	46.800	52.600	43.800	
Moisture %	8.400	24.400	9.100	6.300	26.400	5.500	8.800	10,000	00000	9.000	8.400	9.400	9.300	8.400	7.900	20,700			0.300	8.100	8.500	5.800	8.400	6.400	7.700	9.000	8.200	9.100		8.800	7.300	6.900	7.900	8.600	7.100	8.800	5.100	
Lipids %	20.600	16.800	18.000	22.400	16.800	17.700	14.700	13 400			11.400	12.100	12.900	12.800	13.000	19 200	10 600		19.200	20.300	19.200	20.400	17.900	18.700	15.500	16.400	19.000	14.700		16.800	17.700	17.000	14.700	16.000	16.000	16.600	16.700	
Ash %	8.600	8.400	8.100	7.800	8.900	8.600	9.400	0000	7 500	000-1	1.600	7.200	8.400	8.500	10.300	8.500		0.000	9.100	8.600	8.400	7.800	7.400	9.100	8.400	7.300	9.300	7.400		8.600	8.700	8.300	10.300	8.100	8.200	10.900	9.000	4
Tot PCB ng g ⁻¹	0.434	1.370	2.437	0.708				0 828	0.000	0.000	0.447	0.227	0.071	1.074			00000	0.000		0.932	0.956		4.208	1.011		0.572	1.393	0.772		4.809	3.527	0.341	1.428	0.887		2.004		
PCB 77 ng g ⁻¹			0.036																				0.060							0.130								
167 ng g^{-1}			0.061														0000	0000					0.090				0.037	0.027		0.100	0.087					0.035		
PCB 157 ng g ⁻¹		0.065	0.100	0.049				0 040	0	0000	0.029			0.057			00100	0.100	0100	0.048	0.048		0.180	0.063			0.063	0.029		0.230	0.170		0.074	0.043		0.087		
HATCHERY (NFH)	Coleman	Coleman	Coleman	Coleman	Coleman	Coleman	Ennis	Ennis		2 . IIII I	Ennis	Ennis	Ennis	Ennis	Ennis	Garrison Dam				Garrison Dam	Garrison Dam	Garrison Dam	Genoa	Genoa	Genoa	Genoa	Genoa	Genoa	:	Hagerman								

2500 10.475 153.000 0.164 1798 25.900 7,500 7,323 347.000 0.911 1545 414.00 7,500 7,3200 139.000 0.911 1545 414.00 7,500 7,300 139.000 0.911 1545 414.00 15,300 8.902 450.000 0.746 2229 79.100 15,300 8.902 450.000 0.746 2229 79.100 13,500 11.928 324.000 0.746 2229 79.100 13,100 11.900 344.000 249.000 2640 156.000 13,100 11.800 249.000 0.512 147.000 2290 13,100 11.800 477.000 0.512 147.000 52.900 13,100 11.800 477.000 0.512 147.000 52.900 14,1000 8.100 0.512 1470 52.900 56.400 14,1000 8.100 8.400 0.512 <		н <u>д</u> р	barium µg g ⁻¹	Copper µg g_1	lron µg g1	Lead µg g_1	Magnesium µg g_1	Manganese µg g_1	Mercury µg g ⁻¹
2983 9200 6732 447,000 0.795 1654 50.600 2100 3400 9.700 139.000 0.911 1545 41.400 2100 3400 6.745 386.000 0.819 2158 85.800 2100 35.00 9.200 454.000 0.819 2158 85.800 2100 11.200 11.300 470.000 0.746 2.222 73.100 1500 9.200 9.500 9.500 0.746 2.223 73.000 1500 11.200 11.300 477.000 2.340.00 74.400 76.500 1500 11.200 11.300 477.000 2.329 73.000 76.600 1500 11.200 11.800 477.000 2.329 76.400 76.400 2.816 5.350 5.326 4.400 477.000 2.390 76.400 2.911 36.000 146.000 2.148 144.000 2.160 144.000 2.700			2.500	10.475	153.000	0.164	1798	25.900	0.014
2220 7500 7233 347,000 0.911 1545 41,400 2.710 3.400 9.700 139,000 0.819 2158 85,800 2.724 10.400 6.745 386,000 0.819 2158 85,800 2.207 15.300 8.902 450,000 0.746 2229 79,100 1.500 12.00 11.928 3.44,000 0.746 2229 79,000 1.600 12.00 11.900 4.97,000 244,000 264,000 264,000 1.600 11.000 11.800 4.47,000 2732 196,000 2.700 8.100 0.512 147,000 264,000 264,000 2.876 3.500 6.328 412,000 264,000 264,000 2.700 8.100 8.200 0.512 1671 166,000 2.870 0.8400 0.512 1671 166,000 223,000 2.700 8.100 8.200 0.512 1671		2.983	9.200	6.732	447.000	0.795	1654	50.600	0.01
2.100 3.400 9.700 139.000 1560 34.900 2.724 10.400 6.745 368.000 0.819 2158 85.800 2.207 15.300 8.902 450.000 0.746 368.00 34.900 2.207 15.300 8.902 454.000 0.746 2229 73100 1.500 11.200 11.200 11.300 244.000 274.000 155.000 1.500 11.200 11.300 244.000 274.000 2312 130.000 1.500 11.200 11.800 477.000 2229 78.500 22.900 2.710 8.100 0.538 344.000 2550 53.500 212 167.1 165.000 2.700 8.100 8.200 0.552 147.000 212.90 55.000 2.700 8.100 8.200 4.47.000 1470 52.900 56.000 2.700 8.100 8.200 4.47.000 1470 52.900 56.000 2.700 8.200 12.800 14.800 54.000 14.900		2.220	7.500	7.293	347.000	0.911	1545	41.400	0.01
2724 10.400 6.745 368.000 0.819 2158 85.800 2100 15300 8.902 450.000 0.746 2229 75.000 2100 11500 11300 340.000 0.746 2312 173.000 1500 11200 11300 249.000 249.000 286.000 1890 155.000 1500 11200 11300 249.000 249.000 286.00 78.500 1500 113.00 11.800 477.000 2290 135.000 78.500 1500 113.00 11.800 472.000 0.512 147.000 253.00 2170 8.100 8.400 0.512 147.000 253.00 157.000 156.000 200 8.300 8.200 47.000 0.512 147.000 55.400 55.400 2010 8.300 8.200 4.7000 0.512 147.000 55.400 2010 11400 12.000 12.00 12.00		2.100	3.400	9.700	139.000		1560	34.900	0.02
2724 10,400 67,45 368,000 0.319 2158 85.800 2207 15,300 8,902 450.000 0.746 2229 73100 2163 13,500 11,928 324,000 0.746 2232 150.000 1500 11,200 11,920 344,000 234,000 234,000 2364 156.000 1500 11,200 11,300 244,000 2050 1480 156.000 1500 11,000 11,800 407.000 2290 136.000 200 8,100 8,400 425.000 0.512 147 06.54.00 2700 8,100 8,400 456.000 0.512 147 06.54.00 2700 8,100 8,200 477.000 0.512 1577 65.400 2800 1480 546.000 1260 55.000 1570 55.400 2190 1480 547.000 0.512 1577 1579 56.400 2190									
2.774 10.400 0.745 565.00 0.746 2229 55.00 2.800 11.200 11.302 340.00 0.746 2229 75100 2.150 9.500 9.500 456.000 0.746 2229 75.000 1500 11.200 11.300 344.000 249.000 269.000 268.00 136.000 1500 11.000 11.800 407.000 2528 144.000 268.000 130.000 1500 11.000 11.800 407.000 0.512 14710 56.000 2876 3.500 6.338 344.000 0.512 14710 52.900 3.111 3.600 5.328 412.000 0.512 14710 52.900 2876 9.500 1.500 0.512 14710 52.900 2700 8.100 8.200 475.000 1570 55.400 2700 8.100 9.200 1.500 56.000 56.000 2800 9.900 8.200 475.000 1570 51.400 56.000 2800 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2.207 15.300 8.902 450.000 0.746 2229 79.100 1.500 11.200 11.300 344.000 2312 130.000 1.500 11.200 11.300 344.000 2312 130.000 1.500 11.200 11.300 344.000 2640 196.000 1.500 11.200 11.800 407.000 2030 78.500 1.500 11.800 407.000 2.259 144.000 266.000 3.111 3.600 5.328 412.000 0.512 147.00 2030 78.500 3.111 3.600 8.100 8.400 0.512 147.100 2030 78.500 3.111 3.600 5.328 412.000 0.269 1488 144.000 2.876 5.3500 8.200 4.25.000 1577 65.400 52.900 3.000 8.300 8.200 14.500 212 56.000 56.000 3.000 8.300 8.200 14.600 212 3.600 56.000 1.500 1.500 2		2.124	10.400	0.745	308.000	0.819	8G1.7	008.68	0.01
2:13 13.500 11.928 334.000 2312 130.000 1:500 11.200 11.300 249.000 196.000 1:500 11.200 11.300 249.000 295.00 196.000 1:500 11.000 11.800 249.000 295.00 196.000 1:500 13.100 11.800 247.000 0.269 1488 144.000 2:700 8.100 6.336 364.000 0.512 1671 166.000 2:700 8.100 8.400 425.000 1570 65.400 2:700 8.100 8.400 456.000 1470 52.900 2:700 8.100 8.400 457.000 1570 65.400 2:700 8.100 8.400 477.000 1570 65.400 2:800 9.900 8.200 147.000 52.900 70.400 2:800 9.900 18.00 54.000 1570 65.400 1:900 9.900 14.000 22.00 70.400 22.400 1:900 9.900 17.00 <t< td=""><td></td><td>2.207</td><td>15.300</td><td>8.902</td><td>450.000</td><td>0.746</td><td>2229</td><td>79.100</td><td>0.02</td></t<>		2.207	15.300	8.902	450.000	0.746	2229	79.100	0.02
1500 9.200 9.500 454.000 155.000 1600 11.200 11.300 249.000 2640 196.000 1500 11.000 11.800 407.000 2030 130.000 1500 11.000 11.800 407.000 2030 130.000 2.876 3.500 6.338 364.000 0.509 1488 144.000 2.876 3.500 8.300 0.512 1671 166.000 2300 3.011 3.600 5.328 412.000 0.512 1470 52.900 3.000 8.100 8.200 456.000 1.5170 65.400 2.700 8.100 18.000 547.000 1570 65.400 2.800 9900 8.200 14.6000 27.00 1277 1470 52.900 2.800 14.4000 17.000 416.000 2186 70.400 12.000 2.800 9900 8.200 14.800 54.7000 1749 130.000 2.800 14.800 54.7000 2186 70.400 219.0		2.193	13.500	11.928	324.000		2312	130.000	0.0
1500 11.200 11.300 344.000 2640 196.000 1.500 11.000 11.800 247.000 239.000 78.500 1.500 11.000 11.800 407.000 239.000 78.500 78.500 3.111 3.600 5.328 412.000 0.569 148 144.000 2.700 8.100 8.400 425.000 0.512 1671 166.000 3.000 8.300 8.200 456.000 0.512 144.000 52.900 3.000 8.300 8.200 456.000 0.512 1671 166.000 2.700 8.100 8.200 456.000 0.512 1671 166.000 3.000 8.300 8.200 456.000 1770 52.900 56.000 1.900 9.600 148.000 547.000 1570 56.000 144.000 2.800 7.900 7.706 547.000 1540 61.200 12400 2.600 7.900 <	Ennis	1.500	9.200	9.500	454.000		1890	155.000	0.0
1.200 13.100 10.600 249.000 2390 130.000 1.500 11.000 11.800 407.000 2390 130.000 3.111 3.500 5.328 412.000 0.269 1488 144.000 2.700 8.100 8.400 0.512 1671 166.000 2.700 8.100 8.200 487.000 0.512 1671 166.000 2.700 8.100 8.200 487.000 0.512 1671 166.000 2.700 8.100 8.200 1480 54.000 52.900 52.900 2.700 8.200 14800 547.000 212 3.600 52.400 2.800 9900 7800 78.000 1690 56.000 72.400 2.800 7800 7780 535.000 1570 65.400 72.400 2.900 7300 7700 7700 7700 72.400 72.400 2.900 7700 935.000 0.187 1746 190.000 2.900 2.114 70.000 0.727 <t< td=""><td>Ennis</td><td>1.600</td><td>11.200</td><td>11.300</td><td>344.000</td><td></td><td>2640</td><td>196.000</td><td></td></t<>	Ennis	1.600	11.200	11.300	344.000		2640	196.000	
1.500 11.000 11.800 407.000 2030 78.500 2.876 3.500 6.336 364.000 0.512 1671 166.000 2.876 3.500 6.336 364.000 0.512 1671 166.000 2.876 3.500 8.300 8.400 475.000 0.512 1470 52.900 2.700 8.100 8.400 456.000 0.512 1470 52.900 2.700 8.100 8.200 456.000 1.570 65.400 2.800 9.900 1.203 15.000 1570 65.400 2.800 9.900 1.203 15.000 1690 56.000 2.800 7700 8.200 2180 70.400 2.600 7.900 7.800 535.000 1540 61.200 2.600 7.900 7.800 535.000 1540 61.200 2.600 7.900 7.706 429.000 1749 190.000 2.600 2.900 0.187 1749 190.000 2.100 2.100 <td< td=""><td>Ennis</td><td>1.200</td><td>13,100</td><td>10.600</td><td>249,000</td><td></td><td>2290</td><td>130.000</td><td>0.0</td></td<>	Ennis	1.200	13,100	10.600	249,000		2290	130.000	0.0
3.111 3.500 5.328 412.000 0.269 1488 144.000 2.876 3.500 6.336 364.000 0.512 1671 166.000 2.870 8.100 8.400 425.000 0.512 1470 52.900 3.000 8.300 8.200 456.000 1570 65.400 2.700 8.100 8.200 487.000 1570 65.400 3.000 8.200 1.203 15.000 1570 65.400 2.800 9900 8.200 1.870 56.000 1360 1.900 9600 1.4800 547.000 1590 56.000 1.900 9600 14.800 547.000 1590 70.400 2.600 7.900 7.800 535.000 1590 70.400 2.600 7.900 7.800 535.000 1590 61.200 2.600 7.900 7.800 535.000 1540 61.200 2.600 7.900 1740 10.900 2.120 55.400 2.1148 7.300 9	Fnnis	1 500	11 000	11 800	407 000		2030	78,500	
3.111 3.600 5.328 412.000 0.269 1488 144.000 2.876 3.500 6.336 364.000 0.512 1671 166.000 2.870 8.100 8.400 425.000 0.512 1470 52.900 2.700 8.100 8.200 456.000 7570 65.400 3.000 8.200 1.500 456.000 7170 52.900 3.000 9.900 1.203 15.000 71470 52.900 2.800 9.900 1.800 547.000 7123 3600 2.800 7.900 7.900 7.900 7.900 7.900 1.500 11.400 10.000 4.16.000 7.2400 7.2400 2.800 7.900 7.778 328.000 0.187 72.400 2.118 7.300 9.935 4.77000 7.2400 72.400 2.118 7.300 9.935 0.140.000 130.000 130.000 2.118 7.300	Ennis								
2876 3.500 6.336 364.000 0.512 1671 166.000 2.700 8.100 8.400 425.000 1470 52.900 3.000 8.300 8.200 456.000 1570 55.400 3.000 8.300 8.200 456.000 7170 55.000 3.000 9.500 1.203 15.000 1670 56.000 1.900 9.500 1.4800 547.000 1690 56.000 2.800 7.900 14800 547.000 7180 56.000 1.900 9.500 14.800 547.000 7149 56.000 1.900 9.500 7.900 535.000 1690 56.000 1.500 11.400 10.000 416.000 72.400 72.400 2.800 7.900 7.178 328.000 7346 130.000 2.118 7.300 9.935 477.000 72.400 72.400 2.118 7.300 9.935.000 1346 130.000 2100 2.118 7.300 9.420.000 1370 </td <td>Garrison Dam</td> <td>3,111</td> <td>3,600</td> <td>5.328</td> <td>412.000</td> <td>0.269</td> <td>1488</td> <td>144,000</td> <td>50°0</td>	Garrison Dam	3,111	3,600	5.328	412.000	0.269	1488	144,000	50°0
2.700 8.100 8.400 455.000 1470 52.900 3.000 8.300 8.200 456.000 1570 65.400 3.000 8.300 8.200 456.000 1570 65.400 0.246 0.200 1.203 15.000 212 3.600 0.246 0.200 1.203 15.000 212 3.600 2.800 9.900 8.200 487.000 218 70.400 1.900 9.600 14.800 547.000 2180 70.400 2.600 7.900 7.800 547.000 2180 70.400 2.500 7.900 7.800 547.000 2200 74.400 2.900 7.708 328.000 0.187 1746 119.000 2.900 9.300 9.470.000 0.727 1749 119.000 2.100 6.700 7.900 9.42.000 0.720 1320 44.400 2.100 5.500 333.000 1320 1320 33.100 2.200 3.500 3.500 333.000 <td< td=""><td></td><td>2.876</td><td>3.500</td><td>6.336</td><td>364.000</td><td>0.512</td><td>1671</td><td>166.000</td><td>0.13</td></td<>		2.876	3.500	6.336	364.000	0.512	1671	166.000	0.13
2.700 8.100 8.400 425.000 1470 52.900 3.000 8.300 8.200 456.000 1570 65.400 3.000 8.300 8.200 456.000 1570 65.400 0.246 0.200 1.203 15.000 212 3.600 2.800 9.600 14.800 547.000 218 70.400 1.900 9.600 14.800 547.000 2180 70.400 1.900 9.600 14.800 547.000 2180 70.400 2.600 7.900 7.800 535.000 2180 70.400 2.600 7.900 7.800 535.000 2180 70.400 2.600 7.900 7.206 429.000 1540 119.000 2.903 2.300 7.778 328.000 0.787 1749 119.000 2.100 6.700 7.900 9.47.000 0.727 1749 14.400 2.100 7.900 7.900 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td><u>.</u></td></t<>							-		<u>.</u>
3.000 8.300 8.200 456.000 1570 65.400 3.000 8.300 9.500 487.000 212 3.600 2.800 9.900 8.200 487.000 1690 56.000 2.800 9.900 8.200 487.000 212 3.600 2.800 9.900 8.200 487.000 2180 70.400 1.900 9.600 14.800 547.000 2180 70.400 1.900 9.600 14.800 535.000 1540 61.200 2.600 7.300 7.800 535.000 2180 70.400 2.600 7.300 9.935 477.000 2200 72.400 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.903 2.300 12.100 384.000 0.727 1749 119.000 2.100 6.700 7.900 333.000 1320 33.100 33.100 2.200 3.500 8.600 333.000 33.100 33.100 33.100		2.700	8.100	8.400	425,000		1470	52,900	00
0.246 0.200 1.203 15.000 212 3.600 2.800 9.900 8.200 487.000 1690 56.000 2.800 9.600 14.800 547.000 1690 56.000 1.900 9.600 14.800 547.000 2180 70.400 2.600 7.900 7.800 535.000 2180 70.400 2.600 7.900 7.800 535.000 2180 70.400 2.600 7.900 7.800 535.000 2180 70.400 2.600 7.900 7.800 535.000 2180 70.400 2.600 7.778 328.000 0.187 1749 130.000 2.903 2.300 7.778 328.000 0.727 1749 119.000 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.100 5.100 3.33.000 0.787 1200 85.400 2.100 3.500 8.600 <		3.000	8.300	8.200	456.000		1570	65.400	0.0
0.246 0.200 1.203 15.000 212 3.600 2.800 9.600 8.200 487.000 1690 56.000 1.900 9.600 14.800 547.000 1690 56.000 1.900 9.600 14.800 547.000 70.400 56.000 2.600 7.900 7.800 535.000 1540 61.200 2.600 7.900 7.800 535.000 1540 61.200 2.600 7.900 7.700 416.000 72.400 72.400 2.903 2.200 7.778 328.000 0.187 1746 130.000 2.903 2.300 7.778 328.000 0.187 1749 119.000 2.903 2.993 477.000 0.727 1749 119.000 2.900 7.900 7.900 333.000 333.000 33.100 33.100 2.200 3.500 8.600 333.000 1320 1300 33.100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2.800 9.900 8.200 487.000 1690 56.000 1.900 9.600 14.800 547.000 2180 70.400 2.600 7.900 7.800 535.000 1540 61.200 2.600 7.900 7.800 535.000 1540 61.200 1.500 11.400 10.000 416.000 2200 72.400 1.500 7.778 328.000 0.187 1766 98.200 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.100 6.700 7.900 84000 0.727 1749 119.000 2.100 6.700 7.900 333.000 1320 33.100 33.100 2.200 3.500 3.33.000 1300 33.100 33.100 33.100	Genoa	0.246	0.200	1.203	15.000		212	3.600	
1.900 9.600 14.800 547.000 2180 70.400 2.600 7.900 7.800 535.000 1540 61.200 1.500 11.400 10.000 416.000 22200 72.400 1.500 11.400 10.000 416.000 2200 72.400 1.500 11.400 10.000 416.000 2200 72.400 2.903 2.300 7.778 328.000 0.187 1749 119.000 2.903 2.300 7.778 328.000 0.187 1749 119.000 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.118 7.300 12.100 384.000 0.727 1749 119.000 2.100 6.700 7.900 442.000 1320 44.400 1320 33.100 2.200 3.500 8.600 333.000 1300 33.100 33.100		2.800	9.900	8.200	487.000		1690	56.000	0.01
1.900 9.600 14.800 547.000 2180 70.400 2.600 7.900 7.800 535.000 1540 61.200 1.500 11.400 10.000 416.000 2200 72.400 1.500 11.400 10.000 416.000 2200 72.400 1.500 11.400 10.000 416.000 2200 72.400 2.903 2.200 7.778 328.000 0.187 1766 98.200 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.100 6.700 7.900 442.000 1200 85.400 1320 2.100 6.700 7.900 333.000 1320 44.400 2.200 3.500 8.600 333.000 1300 33.100	Genoa								
2.600 7.900 7.800 535.000 1540 61.200 1.500 11.400 10.000 416.000 2200 72.400 1.500 11.400 10.000 416.000 2200 72.400 2.903 2.300 7.206 429.000 0.187 1766 98.200 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.903 2.300 7.778 328.000 0.727 1749 119.000 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.100 6.700 7.900 442.000 1320 44.400 2.200 3.500 8.600 333.000 1320 33.100 2.200 3.500 8.600 333.000 1300 33.100	Genoa	1.900	9.600	14.800	547.000		2180	70.400	0.010
1.500 11.400 10.000 416.000 2200 72.400 4.064 2.200 7.206 429.000 0.187 1346 130.000 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.903 2.300 1.778 328.000 0.187 1766 98.200 2.918 7.300 9.935 477.000 0.727 1749 119.000 2.100 6.700 7.900 442.000 1320 44.400 2.100 5.700 3.500 3.33.000 1320 33.100 2.200 3.500 3.500 3.33.000 1300 33.100	Genoa	2.600	7.900	7.800	535.000		1540	61.200	0.016
4.064 2.200 7.206 429.000 1346 130.000 2.903 2.300 7.778 328.000 0.187 1766 98.200 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.118 7.300 9.935 447.000 0.727 1749 119.000 2.100 6.700 7.900 442.000 1320 444.400 2.100 5.700 3.500 3.33.000 1320 444.400 2.200 3.500 8.600 333.000 1300 33.100	Genoa	1.500	11.400	10.000	416.000		2200	72.400	
2.903 2.300 7.778 328.000 0.187 1766 98.200 2.118 7.300 9.935 477.000 0.727 1749 119.000 2.110 5.100 12.100 384.000 0.727 1749 119.000 2.600 4.000 12.100 384.000 12100 85.400 2.100 6.700 7.900 442.000 1320 44.400 2.200 3.500 8.600 333.000 1300 33.100		4.064	2.200	7.206	429.000		1346	130.000	0.0
2.118 7.300 9.935 477.000 0.727 1749 119.000 2.600 4.000 12.100 384.000 1200 85.400 2.100 6.700 7.900 442.000 1320 44.400 2.100 3.500 8.600 333.000 1320 33.100 444.400 3.500 8.600 333.000 1300 33.100	Hagerman	2.903	2.300	7.778	328.000	0.187	1766	98.200	0.05
2.600 4.000 12.100 384.000 12.00 85.400 2.100 6.700 7.900 442.000 1320 44.400 2.200 3.500 8.600 333.000 1300 33.100		2.118	7.300	9.935	477.000	0.727	1749	119.000	0.03
2.100 6.700 7.900 442.000 44.400 2.200 3.500 8.600 333.000 1300 33.100 44 44 44 44 44 44 2.200 3.500 8.600 333.000 1300 33.100 44 44 44 44 44		2.600	4.000	12.100	384.000		1200	85.400	0.06
2.200 3.500 8.600 333.000 1300 33.100 33.100	Hagerman	2.100	6.700	7.900	442.000		1320	44.400	0.01
2.200 3.500 8.600 3.3.000 1300 33.100 4.4	Hagerman								
		2.200	3.500	8.600	333.000		1300	33.100	0.0
44	Hagerman								
44									
						44			

Tot DDT µg kg ⁻¹)	8.400 7.600		5.400	4.400					21.000	29.000				6.900					20.000	9.500	4.600					
p,p-DDE µg kg ⁻¹)) -	8.400 7.600		5.400	4.400					21.000	29.000				6.900					20.000	9.500	4.600					
4,4-DDE µg kg ⁻¹) -																										
DeltaBHC µg kg ⁻¹) -																										
alphaBHC µg kg ⁻¹)) -																						24.000				
Zinc µg g-1	108.478	132.932 115.246	105.000	216.390	210.827 164.900	164.000	184.000 101 000	203 000	000	149.761	172.479	146.000	155.000		14.205	142.000	155.000	138.000	148.000	139.286	139.114	150.785	175.000	107.000	110.000		
Nickel µg g-1	3.084	2.757 3.112	1.200	3.162	4.439 1.317	1.600	2.600	2.100 2.400	0	1.640	1.784	2.000	2.200		0.464	2.700	2.000	1.800	2.400	1.559	1.776	4.923	1.200	1.800	0.910		
Molybd µg g-1	0.416	0.699 0.550	0.350	0.877	0.919 0.283	0.710	0.920	0.900	2		0.178	0.540	0.590			0.600	1.100	0.800	1.400		0.158	1.008	0.230	0.980	0.220		
HATCHERY (NFH)	Coleman	Coleman Coleman	Coleman Coleman Coleman	Ennis	Ennis Ennis	Ennis	Ennis	Ennis	Ennis	Garrison Dam	Garrison Dam Garrison Dam	Garrison Dam	Garrison Dam	Garrison Dam	Genoa	Genoa Genoa	Genoa	Genoa	Genoa	Hagerman	Hagerman	Hagerman	Hagerman	Hagerman	Hagerman	Hagerman Hagerman	5

Tot HpCDF pg g ⁻¹																																		
Tot HpCDD pg g ⁻¹								11.000										9.800																
OCDF pg g ⁻¹																																		
OCDD pg g ⁻¹	8.300 8.300	7.700	5.200					54.000			19.000						6.700	56.000			5.500	9.100					7.200	5.600			6.200			
TCDF pg g ⁻¹	0.640					0 700	000	0.690			0.830			0.760	0.670												1.800							
TCDD pg g ⁻¹	0.550																																	
PeCDD pg g ⁻¹																		3.900								2.500								
HpCDD pg g ⁻¹								6.500										4.300																
HATCHERY (NFH)	Jordan River Jordan River	Jordan Kiver Leavenworth	Leavenworth	North Attleboro	Quilcene	Spring Creek	* Date received																											
DATE*	12/19/01 12/19/01	04/08/02	09/19/02	07/23/03	07/23/03	01/29/03	04/22/02	05/08/02	06/21/02	10/30/02	02/06/03	04/30/03	07/29/03	01/16/02	04/16/02	06/25/02	01/23/03	07/15/03	10/05/01	02/22/02	04/10/02	06/25/02	10/29/02	02/27/03	05/23/03	07/29/03	12/31/01	01/21/02	04/04/02	12/14/02	02/04/03	04/29/03	12/27/03	

HATCHERY (NFH)	Jordan River	Leavenworth	North Attleboro	Quilcene	Spring Creek																														
Tot PeCDD Tot TCDD pg g ⁻¹ pg g ⁻¹																				19.000								13.000							
		0.550																																	
Tot TCDF pgg ⁻¹		0.640						0.700		0.690			1.600			0.760	0.670		0.870										1.800						
Tot dioxin Tot Furans pg g ⁻¹ pg g ⁻¹	8.300	8.850	7.700	5.200						60.500			19.000						6.700	64.200			5.500	9.100				2.500	7.200	5.600			6.200		
Tot Furans pg g ⁻¹		0.640						0.700		0.690			0.830			0.760	0.670												1.800						
PCB105 ng g ⁻¹	0.038		0.036	0.073				0.230	0.190	0.350			0.260			0.190	0.220		0.260	0.130				0.130		0.120	0.170	0.180	0.590				0.043	0.030	
PCB114 ngg ⁻¹										0.024																			0.040						
PCB118 ng g ⁻¹	0.120		0.074	0.160	0.073			0.690	0.450	0.940			0.750			0.570	0.580		0.780	0.410				0.380		0.320	0.430	0.470	1.600		0.051		0.110	0.061	
PCB 123 ng g ⁻¹																			0.013								0.021								
PCB 126 ng g ⁻¹																																			
PCB 156 ng g ⁻¹				0.023				0.086	0.077	0.130			0.100			0.063	0.080		0.094	0.043				0:050		0.087	0.082	0.070	0.190						

Aluminum 110/0	103.000	46.500	42.900	45.500	62.200			9.600	8.880	14.900			29.600			23.600	32.900		20.900	28.600	10.400	8.850	9.710	14.000		33.200	22.700	19.700	95.200	89.600	45.200		50.900	86.200	
Protein /	55.200	45.100	44.800	45.700	47.000	48.100	45.600	48.700	49.800	43.300	51.300	43.600	51.700	46.800	51.100	37.000	35.400	36.200	34.400	31.200	49.300	53.900	49.600	51.600	49.700	50.600	52.800	50.600	46.800	46.300	48.200	50.400	48.400	48.100	48.300
Moisture %	6.100	8.400	9.200	7.200	7.000	7.600	6.000	23.000	8.700	24.400	7.700	6.300	21.500	23.500	6.700	41.900	42.100	42.400	42.100	45.700	7.400	6.200	5.400	6.600	5.900	4.000	5.800	6.900	20.300	15.500	7.600	22.700	7.300	8.300	6.900
Lipids 1 %	20.500	14.900	13.200	13.700	13.900	13.100	14.400	17.000	19.400	18.400	19.500	26.800	13.900	16.700	19.200	9.300	8.900	10.800	9.400	9.200	19.700	24.900	21.900	19.300	19.800	21.600	18.000	17.900	21.400	19.400	17.200	13.600	18.400	16.300	16.100
Ash %	10.400	8.200	8.900	7.700	9.100	9.400	9.300	7.900	7.200	8.100	7.100	7.300	11.100	8.300	5.800	6.800	6.400	6.300	7.100	6.800	7.600	7.000	7.800	7.200	7.900	9.000	9.100	10.400	9.100	7.100	7.800	10.100	7.900	8.200	9.600
Tot PCB	0.278		0.182	0.365	0.137			1.597	1.214	2.565			2.143			1.335	1.518		1.885	0.995				0.904		2.996	1.618	1.383	3.968		0.093		0.196	0.091	
PCB 77 nd n ⁻¹	ת ת																																		
PCB 189 nn n ⁻¹	ת היי																																		
PCB 180	0.120		0.072	0.086	0.064			0.340	0.310	0.730			0.670			0.310	0.380		0.460	0.260				0.210		1.800	0.590	0.420	1.000		0.042		0.043		
PCB 170 ng n ⁻¹	ת ת -							0.130	0.110	0.190			0.220			0.110	0.140		0.150	0.085				0.084		0.520	0.210	0.140	0.270						
PCB 167	ת בת ב							0.035		0.071			0.043			0.029	0.038		0.034	0.024						0.062	0.033	0.033	0.088						
PCB 157 1	ת קת			0.023				0.086	0.077	0.130			0.100			0.063	0.080		0.094	0.043				0:050		0.087	0.082	0.070	0.190						
HATCHERY (NFH)	Jordan River	Leavenworth	North Attleboro	Quilcene	Spring Creek																														

Mercury µg g ^{_1}	0.037	0.013	0.019	0.030	0.016			0.064	0.029	0.051			0.037			0.064	0.071		0.042	0.028	0.010	0.034	0.019	0.026		0.036	0.029	0.065	0.016	0.044	0.007		0.027	0.012	
Manganese µg g ^{_1}	123.000	119.000	110.000	125.000	124.000			90.700	29.200	39.400			106.000			100.000	98.900		58.800	60.900	25.800	15.400	27.100	18.700		42.700	44.600	46.100	46.200	137.100	147.000		143.000	180.000	
Magnesium µg g ⁻¹	1601	2247	2424	2060	2210			1536	1593	1293			1630			2168	2258		1210	1330	1777	1374	1822	1280		1750	1940	2480	1784	1514	2366		1980	2120	
Lead µg g ^{_1}	1.142	0.623	0.860		1.600				0.402	0.513						0.104	0.096				0.273		0.308						0.568	0.306	0.319				
lron µg g ^{_1}	374.000	470.000	527.600	330.000	522.000			319.000	167.000	198.000			419.000			119.000	381.100		82.200	227.000	202.000	123.000	195.000	277.000		261.000	213.000	177.000	461.000	506.000	405.000		380.000	622.000	
Copper µg g ^{_1}	5.195	16.086	17.362	12.100	12.000			6.966	9.331	5.715			8.600			28.900	29.826		26.100	17.900	5.332	6.074	8.848	9.400		12.100	11.300	9.200	6.335	6.051	10.754		11.100	14.300	
Chromium µg g ⁻¹	2.217	1.334	0.891	1.100	1.600			1.801	0.901	0.852			0.810			0.800	3.317		0.740	1.300	0.894	1.024	1.290	0.670		1.200	1.100	0.920	1.774	3.048	1.538		1.400	1.700	
Cadmium µg g ^{_1}	0.445	0.371		0.180	0.250			0.886	0.380	0.177			0.380			0.446	0.422		0.300	0.320	0.396	0.513	0.467	0.290		0.540	0.480	0.640	0.290	0.610	0.352		0.160	0.240	
Boron µg g ^{_1}	3.383	5.929	7.238	6.100	7.800			2.282	3.048	2.594			3.900			3.863	4.504		2.700	3.500	4.037	2.017	3.445	3.300		3.600	4.700	6.600	7.316	3.288	3.573		3.400	6.200	
Barium µg g ^{_1}	4.200	11.600	9.600	9.500	11.600			2.600	3.000	1.300			4.400			1.800	2.200		1.500	1.500	2.300	2.500	3.500	2.800		3.300	2.300	3.700	9.900	6.800	10.100		000.6	9.300	
Arsenic µg g ^{_1}	4.205	1.988	2.584	1.500	1.400			3.118	1.615	3.489			2.700			8.174	7.970		3.700	4.900	1.517	1.803	2.392	1.200		2.300	1.700	2.300	3.485	2.440	4.260		1.900	2.800	
HATCHERY (NFH)	Jordan River	Leavenworth	North Attleboro	Quilcene	Spring Creek																														

Tot DDT µg kg ⁻¹	6.400	5.100	6.000					9.400		21.000			31.000										4.000						12.000	3.300	14.000				
p,p-DDE µg kg ⁻¹		5.100	6.000					9.400		21.000													4.000						12.000	3.300	14.000				
4,4-DDE µg kg ⁻¹													31.000																						
DeltaBHC µg kg ⁻¹																			19.000																
alphaBHC µg kg ⁻¹																																			
Zinc µg g ^{_1}	164.271	155.884	141.701	160.000	169.000			120.733	115.706	86.998			122.000			247.400	258.539		141.000	145.000	92.332	84.973	126.222	87.300		121.000	116.000	111.000	123.033	158.321	173.798		184.000	204.000	
/anadium µg g ^{_1}	3.049	3.376	2.072	0.980	2.600			1.161	2.943	4.403			0.330			1.344	1.216		0.230	0.220	3.638	1.571	1.396	2.700		0.310	0.280	2.100	6.949	5.694	9.438		1.800	2.800	
Strontium Vanadium µg g ⁻¹ µg g ⁻¹	53.168	32.643	36.230	29.600	37.300			99.560	55.083	43.284			65.300			117.004	116.369		65.900	67.300	24.925	63.789	52.252	45.700		37.900	45.800	59.100	42.303	52.479	32.614		53.900	26.300	
Selenium S µg g ⁻¹	2.858	1.377	1.458	2.300	2.500			3.312	1.862	1.672			3.000			3.559	3.798		2.000	2.100	2.008	2.727	1.877	3.600		2.900	2.600	3.000	1.861	3.549	2.105		2.800	2.800	
Nickel 5 µg g ⁻¹	3.671	3.900	2.151	2.600	2.700			1.814	3.231	3.608			0.680			1.665	1.933		7.800	0.420	2.622	1.633	1.598	1.400		0.770	0.580	1.400	4.371	2.961	3.323		1.500	6.600	
Molybd µg g ^{_1}		0.698	2.250	0.690	1.000				0.976	1.591						0.278	0.332				0.432	0.299	0.208	0.310		0.360	0.370	0.340	1.258	0.566	0.693		0.640	0.950	
HATCHERY (NFH)	Jordan River	Leavenworth	North Attleboro	Quilcene	Spring Creek																														

PCB 126
ш. Ц
PCB 123
PCB118
PCB114
PCB105
Tot Furans F
Tot dioxin
Tot TCDF
Tot TCDD
Tot PeCDD
ERY
HATCHERY

		PCB 156 ng g ⁻¹	0.370	0.380		0.3/0	
		PCB 126 ng g ⁻¹					
		PCB 123 ng g ⁻¹		0.053		0.003	
		PCB118 ng g ⁻¹	3.600	3.700		4. 100	
		PCB114 ng g ⁻¹	0.067	0.059		U.U04	
12.000		PCB105 ng g ⁻¹	0.940	0.930	7	000.1	
3.000		Tot Furans pg g ⁻¹	1.600 12.300	3.800		3.000	
		Tot dioxin pg g ⁻¹	15.000 197.000	17.000		12.000	
		Tot TCDF pg g ⁻¹	2.200 2.300	3.800		3.000	
ი ი ი ი ი ი	thy FTC	Tot TCDD pg g ⁻¹					
Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	* Date received at Abernathy FTC	Tot PeCDD pg g ⁻¹					
05/06/02 Wt. 09/16/02 Wt. 11/22/02 Wt. 02/13/03 Wt. 10/14/03 Wt.	* Date rece	HATCHERY (NFH)	Sulphur Springs Sulphur Springs	Sulphur Springs	Sulphur Springs	wr. sulpnur springs Wt. Sulphur Springs Wt. Sulphur Springs	
05/2 09/1 11/2 02/1 10/1		-	Wt.	Wt.	Wt.	Wt. :	

Aluminum µg g ^{_1}	83.800 150.000 226.000	54.000	Mercury µg g ^{_1}	0.014 0.011 0.009
Protein ⊿ %	41.100 42.400 42.600 40.700 44.000	45.300 44.300 45.400		105.000 81.700 78.800
Moisture %	10.200 9.300 9.000 7.800 4.300	5.600 6.700 6.900	M	1970 1 1618 1577
Lipids %	11.500 17.200 17.200 17.400 19.600	17.900 17.700 17.800	Magnesium µg g ⁻¹	35 20 15
Ash %	6.800 8.200 8.300 10.300 7.100	7.100 6.900 6.900	Lead µg g ⁻¹	0.435 0.920 5.815
	9.632 9.522	10.464	lron µg g ^{_1}	485.000 461.000 422.000
-	0 0	0.170	Copper µg g ⁻¹	17.452 5.790 8.929
89 PCB 77 -1 ng g ⁻¹	~	0.040	Chromium µg g ⁻¹	1.891 1.857 0.926
0 PCB 189 ng g ⁻¹	0 0		Cadmium Cr µg g ⁻¹	0.344
PCB 180 ng g ⁻¹		3.100		6.782 8.398 7.259
PCB 170 ng g ⁻¹	0.890 0.880	0.930	Boron µg g ⁻¹	
PCB 167 ng g ⁻¹	0.230 0.220	0.240	Barium µg g ⁻¹	10.100 12.100 9.300
PCB 157 PCB 167 ng g ⁻¹ ng g ⁻¹	0.370 0.380	0.370	Arsenic Jug g ⁻¹	2.146 2.590 1.908
HATCHERY (NFH)	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	HATCHERY (NFH)	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs

Mercury µg g ⁻¹	0.014 0.011	0.009	0.012	
Manganese µg g ^{_1}	105.000 81.700	78.800	104.000	
Magnesium Manganese µg g ⁻¹ µg g ⁻¹	1970 1618	1577	1270	
Lead µg g ^{_1}	0.435 0.920	5.815		
Iron µg g ^{_1}	485.000 461.000	422.000	408.000	
Copper µg g ^{_1}	17.452 5.790	8.929	11.600	
Cadmium Chromium Copper рд g ⁻¹ рд g ⁻¹	1.891 1.857	0.926	0.860	
Cadmium (µg g ^{_1}		0.344		
Boron µg g ^{_1}	6.782 8.398	7.259	6.000	
Barium µg g ^{_1}	10.100 12.100	9.300	10.200	
Arsenic µg g ^{_1}	2.146 2.590	1.908	3.100	
HATCHERY (NFH)	Wt. Sulphur Springs Wt. Sulphur Springs	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	

Tot DDT µg kg ⁻¹	5.100 9.800 9.100	19.000	
p,p-DDE µg kg ⁻¹	5.100 9.800 9.100		
4,4-DDE µg kg ^{-l}		19.000	
DeltaBHC µg kg ^{_1}			
alphaBHC µg kg ^{.i}			
Zinc µg g ^{.1}	138.886 93.257 88.250	114.000	
Vanadium µg g ^{_1}	3.267 1.813 2.333	1.200	
selenium Strontium Vanadium <u>Jg g⁻¹ Jg g⁻¹</u>	26.451 21.862 21.455	15.900	
Selenium $\mu g g^{-1}$	1.690 1.563 2.714	2.800	
Nickel µg ^{g_1}	2.109 2.201 1.878	1.400	
Molybd µg g ⁻¹	2.279 2.044 0.478	1.400	
HATCHERY (NFH)	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs Wt. Sulphur Springs	