A Survey of Chemical Constituents in National Fish Hatchery Fish Feed

Final Report for Science Support Project 01-FH-05

Alec G. Maule
USGS-BRD, WFRC
Columbia River Research Laboratory
5501A Cook-Underwood Rd.
Cook, WA 98605
(509) 538-2299 x 239
alec_maule@usgs.gov
Ann Gannam
US Fish \& Wildlife Service
Abernathy Fish Technology Center
Longview, WA 98632
Jay Davis
US Fish \& Wildlife Service
Western Washington Fish \& Wildlife Office
Lacey, WA 98503

January 2006

Abstract

Recent studies have demonstrated that various fish feeds contain significant concentrations of contaminants, many of which can bioaccumulate and bioconcentrate in fish. It appears that numerous organochlorine (OC) contaminants are present in the fish oils and fish meals used in feed manufacture, and some researchers speculate that all fish feeds contain measurable levels of some contaminants. To determine the presence and concentration of contaminants in feeds used in National Fish Hatcheries managed by the U.S. Fish \& Wildlife Service, we systematically collected samples of feed from 11 hatcheries that raise cold-water species, and analyzed them for a suite of chemical contaminants. All of the samples (collected from October 2001 to October 2003) contained measurable concentrations of at least one dioxin, furan, polychlorinated biphenyl (PCB) congener, or dichlorodiphenyltrichloroethane (DDT) metabolite. All samples which were assayed for all contaminants contained one or more of those classes of compounds and most contained more than one; dioxin was detected in 39 of the 55 samples for which it was assayed, 24 of 55 contained furans and 24 of 55 samples contained DDT or its metabolites. There with 10 - to 150 -fold differences in the range in concentrations of the additive totals for PCBs, dioxins, furans and DDT. Although PCBs were the most commonly detected contaminant in our study (all samples in which it was assayed), the concentrations (range: 0.07 to $10.46 \mathrm{ng} \mathrm{g}^{-1}$ wet weight) were low compared to those reported previously. In general, we also found lower levels of organochlorine contaminants than have been reported previously in fish feed. Perhaps most notable is the near absence of OC pesticides-except for DDT (and its metabolites) and just two samples containing benzene hexachloride (Lindane). While contaminant concentrations were generally low, the ecological impacts can not be determined without a measure of the bioaccumulation of these compounds in the fish and the fate of these compounds after the fish are released from the hatcheries.

Table of Contents

List of Tables 4
List of Figures 6
List of Appendices. 7
Introduction. 8
Materials and Methods 10
Sample collection and handling. 10
Analytical methods 11
Data analyses 12
Results 13
Discussion 14
OC contaminants in fish feed. 14
Metals in fish feed 16
Ecological implications 16
Acknowledgements 19
References. 20
Appendix A. 40

List of Tables

Table 1. U.S. Fish and Wildlife Service Region, National Fish Hatchery (NFH) and fish species reared and fed at those hatcheries during the two-year study.24

Table 2. Metals and other contaminants assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc.; proximate contents assayed by Abernathy Fish Technology Center in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003.25

Table 3. Number of samples distributed to Abernathy Fish Technology Center (Center), National Water Quality Laboratory (USGS Lab) or Severn Trent Laboratory, Inc. (Severn) for analyses of lipids, moisture, ash and protein (proximate analysis), organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), dioxins, furans, and metals. 26
Table 4. Detection limits of assays performed on feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Detection limits of dioxins, furans and PCBs vary between assays; values shown are the highest minimum detection limits for all assays performed. Values for metals and OC pesticides are minimum detection limits for all assays. Assays were conducted at the National Water Quality Laboratory (USGS) or Severn Trent Laboratories, Inc (Severn).
Table 5. Metals and other contaminants for which there was at least one value above detection limits when assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing within classes of compounds. All other totals were determined by independent assays.
Table 6. Summary of dioxins, furans (total samples assayed $=55$), PCBs (total samples assayed $=46$) and organochlorine pesticides (total samples assayed $=55$) detected in fish feed samples assayed by the USGS National Water Quality Lab or Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. DDT contains data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All other totals were determined by independent assays. Differences in the number of samples between the assayed total values and the additive totals are the result of some samples in which assay results are positive for totals in a class compounds, but none of the individual congeners were above detection limits, and vice-versa.
Table 7. World Health Organization (WHO) toxic equivalents (TEQ; $\mathrm{pg} \mathrm{g}^{-1}$) for dioxins (congeners: heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, pentachlorodibenzo-p-dioxins, tetrachlorodibenzo-p-dioxin), furans (congeners: tetrachlorodibenzo furan, octachlorodibenzo furan) and PCBs (congeners: PCB -77, -105, $-114,-118,-123,-126,-$ 156, $-157,-167,-189$) detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Toxic equivalent factors for fish were used in the calculations (Van den Berg et al., 1998).
Table 8. Summary of metals detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. and the National Water Quality Laboratory in fish feed samples collected
from 11 National Fish Hatcheries between October 2001 and October 2003. The labs used different assay methods (see Methods)
Table 9. Mean + standard deviation (SD) of constituents found in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Results for metals and DDT contain data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in parentheses.32

Table 10. Mean + standard deviation (SD) of constituents found in fish feed samples from six manufacturers collected from 11 National Fish Hatcheries between October 2001 and October 2003. Results for metals and DDT contain data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. All other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in parentheses

Table 11. Total PCBs, 14 dioxin-like PCBs (DL-PCBs), toxic equivalents (TEQ; pg g ${ }^{-1}$) for the DL-PCBs, and DDT metabolites ($\mathrm{ng} \mathrm{g}^{-1}$ wet weight) in feed from specific manufacturers (A, B and D) as reported in three studies spanning about 25 years. Values for Pre-1979 are the range of means from Mac et al. (1979); values for 1999 are data from 1 or 2 assays presented in Easton et al. (2002); values for 2001-2003 are ranges of results from this report, not including those below detection levels. Sample sizes are in parentheses; for this report, we also report total number of samples examined.

List of Figures

Figure 1. Fish feed quality control sample analysis form. .. 39

List of Appendices

Appendix A. Raw Data from Contaminants Assays of Feed Collected from National Fish Hatcheries... 40

Introduction

Fish can bioaccumulate, biomagnify and bioconcentrate contaminants that they ingest with their food or take up directly from the water via diffusion across the gills and skin (Gobas et al., 1999). The rate of accumulation is based in part on the quantity and form of the contaminants (Watanabe et al., 1997; Carline et al., 2004), water quality variables, and the age, size and nutritional status of the fish (Patrick and Loutit, 1978; Schaperclaus, 1986; Sorensen, 1991). A wide range of organochlorine chemicals (OCs) and metals have been documented in wild fish populations (deWit et al., 2003; Evenset et al., 2004), and more recently contaminants have been found in fish in aquaculture (Horst et al., 1998; Hites et al., 2004). Horst et al. (1998) found OCs, specifically chlordane compounds, in farmed salmon as well as fish meal, oil and food products made from those fish. Easton et al. (2002) found that the levels of OCs, polybrominated diphenyl ethers (PBDE; flame retardants) and metals detected in farmed salmon were likely a consequence of elevated levels of contamination found in commercial salmon feeds. Several researchers concluded that there was no salmon feed that did not contain significant levels of contaminants, that farmed salmon showed consistently higher levels of contaminants than did wild salmon from the Pacific Coast, and that there may be safety concerns for individuals who regularly consume farmed salmon produced with contaminated feed (Horst et al., 1998; Easton et al., 2002; Hites et al., 2004).

Contaminants enter the aquatic environment from a variety of sources. Many pesticides (including those that are banned in the USA) become bound to the soil and enter the aquatic environment in precipitation run-off or as aerially transported dust (MacLeod and Mackay, 2004; VanCuren, 2003). Other contaminants result from industrial chemicals (including byproducts of incineration), which can enter the atmosphere and be transported throughout the globe before deposition (deWit et al., 2003; Breivik et al., 2004). Many of the contaminants entering freshwater and marine ecosystems are persistent in the environment and, because they are also lipid soluble, tend to accumulate in the lipid depots of animals, and are passed from prey to predators (Muir et al., 1992). This accumulation leads to organisms at higher trophic levels having relatively higher levels of OCs and other lipophilic contaminants through the process of biomagnification. Thus, hatchery diets that contain a high percentage of meal and oil from pelagic, ocean fish will likely contain high amounts of contaminants of global concern.

Hatchery-raised fish might, in effect, be moved to a higher trophic level on the food chain than their wild counterparts by consuming feeds made from oil and meal derived from marine fish, as opposed to their natural food, which is comprised of, at least in part, freshwater invertebrates.

Organochlorine residues have been found in fish oil (Jacobs et al., 1997; Jimenez et al., 1996) and fish meal (Rumsey, 1980) used in fish food. Salmon feed can contain up to 30% fish oil and 50% fish meal, while trout feed generally contains less of both constituents (Horst et al., 1998). A pilot study by National Oceanic and Atmospheric Administration (NOAA) Fisheries measured relatively high levels of selected OCs, especially hexachlorobenzene, in pollock oil that was tested prior to being used as a carrier fluid in a blue mussel contaminant exposure study (G. Ylitalo, NOAA Fisheries, personal communication). Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) have been found in soybean meal (Rappe et al., 1998). Mac et al. (1979) found polychlorinated biphenyls (PCBs) and metabolites of dichlorodiphenyltrichloroethane (DDT), namely dichlorodiphenyltrichloroethylene ($p, p \mathrm{DDE}$), in fish feeds. The levels detected in the feed varied with some lots having almost undetectable amounts while other lots contained levels of concern (R. Carline, USGS-BRD, personal communication). The NOAA Fisheries Science Center in Seattle, Washington, while trying to conduct an organochlorine-dosed feeding study to look at immune suppression in fish by contaminants, detected elevated levels of PCBs in fish feed received directly from the manufacturer (T. Collier, NOAA Fisheries, personal communication).

There are several reasons to be concerned about contaminants in fish feed. The primary concern is the possibility of human health impacts. The concentrations of contaminants in the fish and feeds reported by Hites et al. (2004) were not considered acutely toxic by the Food \& Drug Administration (FDA). The Code of Federal Regulations, 21 CRF 109.30, states that the temporary tolerance for residues of PCBs in finished feed for food producing animals is 0.2 ppm ; tolerance levels for edible portions of the fish is 2.0 ppm . However, the U.S. Environmental Protection Agency (EPA) guidelines and assumptions used by Hites et al. (2004) are designed to manage human health risks by providing risk-based consumption advice regarding contaminated fish. The combined concentrations of contaminants in the fish are what trigger the EPA consumption recommendations. To determine this, the EPA uses a toxic equivalency quotient (TEQ) or cumulative approach when assessing risk from compounds with similar modes of action. Concern for human health arises primarily over fish released for immediate catch and
consumption, fish held for broodstock then released to the public, or returning adult salmon consumed by Native Americans whose diets may contain more fish than other segments of the USA population. It is also likely that the accumulation of contaminants will reduce the quality of the fish in the hatchery and their survival after release, as exposure to certain persistent organic pollutants in urban Puget Sound estuaries have been linked to reduced growth rate and reduced disease resistance in juvenile salmon (Arkoosh et al. 1998, 2001).

The objective of the current study was to determine if fish feed used in some cold-water U.S. Fish \& Wildlife Service (FWS) National Fish Hatcheries (NFHs) across the country contained measurable levels of contaminants. Even though it is possible that contaminants could be found in the water or physical structures of the hatcheries, feeds were chosen because the literature indicated they are a potential point source and they are universally used, i. e. more than one hatchery may use the same feed. Therefore, to reach the objective of this study, we collected samples of feed from six manufacturers used at 11 NFHs ; samples were collected quarterly for two years and were assayed for a variety of OC pesticides, metals, PCBs, dioxins and furans. This work was not meant to be a comparison of feed companies but a survey of feeds that are used by the FWS at some of its facilities.

Materials and Methods

Sample collection and handling

We collected samples of feeds from 11 NFHs in U.S. Fish \& Wildlife Service in the Pacific, Great Lakes, Northeast and Mountain-Prairie Regions (Table 1) over a two year period. All of the diets tested were made at commercial feed mills except the kelt diet (designated feed "C"). This diet was handmade at the hatchery (North Atteboro NFH) using shrimp paste, fish paste, beef liver, a commercial starter diet and the appropriate vitamins and minerals. The large quantity of raw materials gives this diet higher moisture content than the other commercial diets tested. All feeds were sampled according to the Association of Official Analytical Communities (AOAC) guidelines (Horwitz, 2000). Once each quarter beginning in October 2001 through October 2003, a pallet of feed bags (40 bags) was randomly selected at each NFH for sampling. Approximately 50-100 g of feed was collected from every fourth bag from the same lot of feed; thus, 10 samples were collected each quarter from each NFH. To sample bulk feeds, 10 samples
were collected from different parts of the load. A $99-\mathrm{cm}$ (39-inch) Seeburo® chrome-plated trier was used for each bulk feed sampling. After sampling, the trier was disassembled, cleaned with soap and warm water, rinsed thoroughly and allowed to air dry. Each quarter the hatcheries were also provided with 10 chemically clean jars with labels for the feed samples. Samples of frozen fish feeds were placed in water tight containers (e.g., a Styrofoam box) with ice, sealed and placed in a cardboard box for shipping.

For each group of samples the fish-feed-sample analysis form provided by the Abernathy Fish Technology Center (Center) (Figure 1) was completed and included. Feed bag labels were supplied by the NFH when possible. All samples were shipped to the Center where one composite sample per NFH was made by pooling the 10 samples from each NFH and grinding them with a mortar and pestle. The mortar and pestle were cleaned by washing with enzyme soap, rinsing with water, washing with Acitionox soap, rinsing with water, rinsing twice with $10 \% \mathrm{HCl}$, and finally rinsing with acetone. This protocol was followed twice. Each composite feed sample was divided into four glass jars coded with the identifying NFH abbreviation, sample period (i.e., 1 through 8), and sample weight. One of these sub-sample jars was given a composite, as well as, a random number code, and was sent to a certified laboratory for contaminant analyses. The three remaining jars were placed in a $-20^{\circ} \mathrm{C}$ freezer at the Center, where one jar of feed was used to determine proximate analysis. The two remaining jars are being stored as spare, archival samples.

Analytical methods

The feed sub-sample retained for proximate composition was analyzed at the Center for protein, lipid, moisture and ash according to the AOAC methods (Horwitz, 2000). A total of 101 other variables (including the totals of some classes of compounds, and metabolites) were measured on samples collected. Samples were sent to the USGS National Water Quality Laboratory (USGS Lab) for measurement of OC pesticides and trace metals (Table 2). Metals were assayed using the US EPA Method 3052 microwave-assisted, nitric acid digestion procedure (Hoffman, 1996). Aluminum, barium, boron, chromium, copper, iron, magnesium, manganese, strontium and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-OES). Arsenic, beryllium, cadmium, lead, molybdenum, nickel, selenium and vanadium were determined by inductively coupled plasma mass spectrometry (ICP-MS).

Mercury was determined by cold vapor atomic fluorescence (CVAF) following US EPA Method 7474. The analysis of fish feed samples for organochlorine pesticides was accomplished by gas chromatography with electron capture detection (GC/ECD) by USGS Laboratory Schedule 2101 (Leiker et al., 1995). Severn Trent Laboratories, Inc., Sacramento, CA (Severn) analyzed the feed for dioxins and furans (EPA method 8290, US EPA, 1995). Severn Trent Laboratories, Inc., Knoxville, TN (Severn) also assayed some of the feed samples. Severn analyzed for the same suite of OCs and metals as the USGS Lab (Table 2) using standard methods, including metals (except Hg) by US EPA method 6010B (US EPA 1996a), mercury by method 7471A (US EPA, 1995), 14 PCB congeners by US EPA method 1668 (US EPA, 1999), and OC pesticides by EPA SW 846 (US EPA, 1996b). Difficulty with the matrix (fish feed) was noted by both the USGS Lab and Severn.

Data analyses

We sampled different brands and different batches of feed to obtain an overall view, seasonally and through time, of contaminant levels in the feed. The feeds collected were formulated for several different fish life-stages (e.g., fry, parr, and broodstock) and have different compositions. All data were summarized by determining means ($+/-1$ standard deviation, SD) based on the NFH where the samples were collected and by the manufacturer. We also determined the total contents of dioxins, furans, PCBs and DDT metabolites by summing the values from the congener-specific analyses. Our objectives in this study were to determine the presence and concentrations of contaminants in a cross-section of fish feeds used at NFHs. We were not interested in comparing between NFHs or manufacturers; therefore, we did not conduct statistical analyses to identify differences between mean concentrations of contaminants.

In our analyses we do not consider the detection limits of the assays; that is, only assay results that were above detection limits were included in this report and we did not speculate as to the significance of values below the detection limits. Our data summaries contain only positive values when there were often values that may equal " 0 " (i.e. non-detects). We do present the detection limits for the assays conducted and our tabular results do indicate total number of samples assayed as well as the number of positive values (i.e., sample size, N) used in the calculations. Furthermore, Severn attached qualifiers to some values when, after adjusting for
the dilution factor, those values were below the estimated minimum level (EML) or above the upper calibration level (UCL); these values are estimates. We included these values in our analyses. In order to compare our results to others in the literature, we calculated the toxic equivalency quotients (TEQ) for dioxin congeners found in our samples for which there are toxic equivalent factors (TEF) (i.e., 1, 2, 3, 4, 6, 7, $8-\mathrm{HpCDD}$; OCDD). Similar TEQs were calculated for furans (congeners: 2,3,7,8-TCDF; OCDF) and dioxin-like PCBs (congeners: DL-PCB -77, -$105,-114,-118,-123,-126,-156,-157,-167,-189)$ and the total TEQ based on the World Health Organization's established TEFs for fish (Van den Berg et al., 1998).

Results

A total of 77 samples were collected all of which were assayed for proximate analysis (i.e., ash, lipids, moisture and protein content). The disparity in the number of samples received verses the 88 identified in the original design was due to the fact that some hatcheries either did not have fish all year or they did not feed their fish all year so they did not have new feeds to sample every quarter. Metals and other contaminants were measured in 46 to 55 samples (Table 3). Not all samples collected were assayed for all contaminants due to budget constraints. The remaining feed samples are archived at the Center. Detectable values were obtained for 55 of the 101 variables (Table 3). As indicated above, in our results we include only values that were greater than detection levels (Table 4). Excluding the values for proximate analyses and the totals that were the sums of other variables measured (e.g., Total PCBs $=$ sum of the 14 congeners measured) there were 41 contaminants detected in the samples (Table 5). All of the samples contained measurable concentrations of at least one dioxin, furan, PCB congener, or DDT metabolite expressed per wet weight of feed. All samples assayed contained one or more of those compounds; 39 of 55 samples contained dioxins, 24 of 55 contained furans and 24 of 55 samples contained DDT or its metabolites (Table 6). Most of the samples contained more than one of these classes of compounds. There were 10 - to 150 -fold differences in the range in concentrations of the additive totals for PCBs, dioxins, furans and DDT (Table 6). In addition to DDT and its metabolites, the only pesticide detected was benzene hexachloride (BHC, also known as Lindane) found in two samples. Differences in the number of samples between the assayed total values and the additive totals are the result of some samples in which assay results are positive for totals in a class of compounds, but either none of the individual congeners were
above detection limits, and/or homologous congeners were detected. In order to compare our results to others in the literature, we calculated TEQs for dioxins (2,3,7,8, TCDD; 1,2,3,7,8 PeCDD; $1,2,3,4,6,7,8 \mathrm{HpCDD}$; and OCDD) and furans (2,3,7,8-TCDF and OCDF), and dioxinlike PCBs (Table 7). Metals were also present in all 55 samples for which they were assayed (Table 8). Beryllium (Be) was the only metal not found in any sample, and 12 of the other 18 metals were found in all 55 samples (Table 8).

In general, the proximate composition of feed (protein, moisture, lipid, ash) adds up to approximately 100%. However, in some cases, the fiber and nitrogen-free extract (e.g., sugars, starches) that were not measured were in the feed at significant levels and, therefore, made up the difference seen in the proximate compositions (Tables 9 and 10). Table 9 summarizes the concentrations of components and contaminants based on the NFH from which the feed samples were collected, and Table 10 summaries components and contaminants based on the feed manufacturer. As we were not concerned with comparing manufacturers, we have coded the names (A through F). Rather than show all congeners and metabolites in these tables, we present the additive totals for dioxins, furans, PCBs, DDT metabolites and BHC, as well as mean percent composition of ash, lipids, moisture and protein, and mean concentrations of each of the metals. We also compared the results of our study to those reported previously by Mac et al. (1979) and Easton et al. (2002) in Table 11. All individual assay results above the minimum detection levels for the various contaminants are listed by NFH and date that they were received at the Center in Appendix A.

Discussion

OC contaminants in fish feed

In this study we have shown that some form of chemical contaminant occurred in all samples. In general, we found lower levels of OC contaminants than have been reported previously in fish feed. Perhaps most notable is the almost total lack of pesticides-except for DDT (and its metabolites) and just two samples containing BHC. Hites et al. (2004) reported detectable levels of dieldrin and toxaphene in 13 feed samples, which included six from Canada but none from the USA. Jacobs et al. (2002) found hexachlororobenzene (HCBs) and BHCs in eight feed samples of European manufacture. Hilton et al. (1983) formulated five test feeds using fish meal from several sources, and all of the resulting feeds had detectable concentrations
of dieldrin, heptachlor and chlordane. Our samples contained lower concentrations of total DDTs (range: 3.3 to $31.0 \mathrm{ng} \mathrm{g}^{-1}$ wet weight; Table 6) than were reported by Mac et al. (1979) for several lots from one commercial feed manufacturer (means: 80 to $340 \mathrm{ng} \mathrm{g}^{-1}$ wet weight), but our samples contained about the same concentration of DDT as another feed manufacturer they examined (means: 13 to $51 \mathrm{ng} \mathrm{g}^{-1}$ wet weight). Feeds manufactured in Scotland reportedly had levels of total DDT (range: 34 to $52 \mathrm{ng} \mathrm{g}^{-1}$ lipid adjusted; Jacobs et al., 2002), which would be three- or four-fold greater than ours if expressed as wet weight. It appears that the concentrations of DDT metabolites we found in feeds from three manufacturers were lower than those observed by Mac et al. (1979) and Easton et al. (2002) in samples from the same manufacturers several years previous (Table 11).

Although PCBs were the most commonly detected contaminant in our study (46 of 46 congener-specific analyses), the additive total concentrations of 14 dioxin-like PCB congeners ranged from 0.07 to $10.46 \mathrm{ng} \mathrm{g}^{-1}$ wet weight (Table 6). These were low compared to total PCBs reported by Hites et al. (2004; range: ~ 10 to $95 \mathrm{ng} \mathrm{g}^{-1}$ wet weight), Carline et al. (2004; range: 69 to $126 \mathrm{ng} \mathrm{g}^{-1}$ wet weight), and Mac et al. (1979; means: 54 to $230 \mathrm{ng} \mathrm{g}^{-1}$ wet weight). Hilton et al. (1983) also reported high concentrations of PCBs (100 to 2,120 $\mathrm{ng} \mathrm{g}^{-1}$) but these were expressed in dry weight of feed. It is, however, important to note that these values are probably not directly comparable as the methods used in these other studies considered more PCB congeners than the 14 in our additive totals. Easton et al. (2002) presented data on the same 14 PCB congeners as our study and are thus directly comparable, as is the total PCBs reported for various feeds in the Mac et al. study (1979). The range of total PCBs in feed from manufacturer A sampled in 1999 and reported by Easton et al. (2002) is less than that reported by Mac et al. (1979) (Table 11). Easton et al. (2002) also presented the sums of 14 PCBs for the same feeds and these were greater than what we assayed in our samples (Table 11). Furthermore, the maximum TEQ for PCBs in our samples was about one-half those in Easton et al. (2002) and from one- to two-orders of magnitude less that those reported in European fish feeds (Bell et al., 2005; Isosaari et al., 2004). In fact, the highest value from our samples ($0.44 \mathrm{pg} \mathrm{TEQ} \mathrm{g}^{-1}$) was less than the lowest value ($0.62 \mathrm{pg}^{\mathrm{TEQ} \mathrm{g}} \mathrm{g}^{-1}$) reported in either of the European studies.

Bell et al. (2005) and Isosaari et al. (2004) combined TEQs for dioxins and furans in fish feeds and reported a range of 0.16 to 4.9 pg TEQ g $^{-1}$ in eight samples. In the present study, the mean dioxin plus furan TEQ was 0.227 and the maximum value was $3.98 \mathrm{pg} \mathrm{TEQ} \mathrm{g}^{-1}$ (Table 7).

It should be noted, however, that these values are skewed by two samples (out of 42) that contained 2.5 and $3.9 \mathrm{pg} 1,2,3,7,8 \mathrm{PeCDD} \mathrm{g} \mathrm{g}^{-1}$, which has a toxic equivalent factor of 1.0 (fish TEF value), as compared to TEFs ≤ 0.05 (Van den Berg et al., 1998) for all other dioxin and furan congeners in our samples. For example, one sample had an absolute concentration of 350 pg OCDD g^{-1} but because its TEF $=0.0001$, it contributes $0.035 \mathrm{pg} \mathrm{TEQ} \mathrm{g}^{-1}$. If these two PeCDD values are excluded, the mean dioxin/furan TEQ is $0.077 \mathrm{pg} \mathrm{TEQ}_{\mathrm{g}}{ }^{-1}$ and the maximum value is 0.581 pg TEQ g ${ }^{-1}$. Bell et al. (2005) reported that the European Union allows up to 2.25 pg TEQ g ${ }^{-1}$ in fish feed. Hites et al. (2004) presented combined dioxin, furan and dioxin-like PCB TEQs in 13 fish feed samples collected from Scotland, Canada and Chile. He reported TEQs of about 0.5 to $7.0 \mathrm{pg}^{\mathrm{TEQ}} \mathrm{g}^{-1}$, as compared to our range of 0.0005 to $3.98 \mathrm{pg} \mathrm{TEQ} \mathrm{g}^{-1}$. Again, in the present study, two samples with PeCDD skew these comparisons.

Metals in fish feed

Metals found commonly in fish feed are contributed by the ingredients and by a mineral pack added by the manufacturer. Shearer et al. (1994) analyzed eight feeds from a Norwegian feed manufacturer for select metals. Generally, their results $\left[\mathrm{Cu}, 1.3-29.2 \mathrm{ppm}\right.$ (i.e., $\mu \mathrm{g} \mathrm{g}^{-1}$); Fe , 68.7-353 ppm; Mg, 1860-2100 ppm; Mn, 5-120 ppm; $\mathrm{Zn}, 170-380 \mathrm{ppm}$] were slightly higher than the values we report here (Table 7). In addition, guidelines from the Association of Feed Control Officials Official Publication (Hanks, 2000) indicate the maximum tolerable levels are for $\mathrm{Cd}, 0.5 \mathrm{ppm} ; \mathrm{Hg}, 2.0 \mathrm{ppm} ; \mathrm{Se}, 2.0 \mathrm{ppm} ; \mathrm{Cu}, 25 \mathrm{ppm}$; and $\mathrm{Pb}, 30.0 \mathrm{ppm}$. These dietary levels in the feed, for a limited period, will not affect animal performance and should not produce unsafe residues in human food derived from the animal. Generally, our metal results fall below these tolerable levels. Many gaps exist in our understating of essential minerals for fish (i.e., without them there are clinical signs of deficiency); however, it appears that $\mathrm{B}, \mathrm{Ca}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}$, $\mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{P}, \mathrm{Se}$, and Zn are essential. The levels of these metals required by each species fish have not been defined.

Ecological implications

The presence of OCs and heavy metals (e.g., mercury) in fish food is of great concern because of human health implications, but also because of the effects of these compounds on the survival of fish after release from hatcheries, and impacts on the ecosystem into which they are released. Millions of dollars are spent each year in US Fish \& Wildlife Service hatcheries to
provide fish for recreational and commercial fisheries, and to supplement natural production of stocks listed under the Endangered Species Act. Most of the compounds measured in this study, including some of the metals, are known to bioaccumulate and biomagnify up the food web. However, to determine the level of bioaccumulation or the effects of these feeds on the fish, we would need information about the specific amounts of each feed fed to a specific group of fish throughout their life cycle and the levels of contaminants in the fish tissues. Macek (1968) reported that brook trout (Salvelinus fontinalis) fed DDT ($2 \mathrm{mg} \mathrm{kg}^{-1}$ body weight week ${ }^{-1}$) for 31 weeks had 20 -fold greater accumulated DDT than did control fish. Isosaari et al. (2004) reported that from 43% to 83% of the total mass of dioxins, furans, and PCBs fed to Atlantic salmon (Salmo salar) over 30 weeks accumulated in the tissue of the fish.

The majority of OCs are persistent in the environment and, because they are lipid soluble, tend to accumulate in the lipid depots of animals, and biomagnify up the food chain. Because of this biomagnification, hatchery fish that are fed for 6 to 24 months in a hatchery may accumulate OC concentrations in their flesh that are significantly higher than that in the feed (Isosaari et al., 2004; Lundebye et al., 2004). Well-fed fish will accumulate these lipophilic contaminants in fat depots in muscle and viscera where the toxic effects are muted. When fish stop feeding, however, the lipids are mobilized as an energy source and the OCs are redeposited in vital organs (e.g., brain, liver, heart, kidney; Jørgensen et al., 2002). Recent work with Arctic charr dramatically illustrates the impacts of this mobilization of OCs on physiological processes. Anadromous charr normally feed for only 6 to 8 weeks in the ocean-where they can accumulate OCs -and fast for the remaining 10 months of the year in freshwater. In a series of experiments, Jørgensen and colleagues contaminated charr with PCBs, fasted or fed the fish for 5 months, and then measured physiological responses. Contaminated charr had impaired responses to stress (Jørgensen et al., 2002), reduced immune responses leading to decreased disease resistance (Maule et al., 2005), and reduced growth and survival in saltwater a year after contamination (Jørgensen et al., 2004). It appeared that one mechanism of PCB's effect is interference with hormonal regulation of physiological processes at the level of the brain or pituitary (Aluru et al., 2004). These results suggest strongly that PCBs will reduce the fitness and survival of fish in the wild.

Hatchery fish released into the wild can be caught immediately in recreational fisheries or survive to grow. Grown fish might either be caught in tribal, commercial or recreational
fisheries, or survive to reproduce. Feeding these fish contaminated food can have negative impacts on the success of NFH operations, and the health of the ecosystem. For example, in the Pacific Northwest salmon are raised in hatcheries for 6 to 18 months and are released to emigrate to the ocean. Survival of these hatchery fish may be $<0.1 \%$ as compared to estimated survival as high as 10% in some emigrating wild salmon stocks. Upon release from hatcheries, these salmon do not feed while they adjust to the new environment and new food resources in rivers and streams. Lipid reserves in these fish decline for at least the first month after release possibly due to less efficient prey capture but also metabolic and biochemical changes due to smoltification (Rondorf et al. 1985; Hoar 1988). If there are OCs in lipid depots, they will be mobilized and re-deposited in organs where they will impair physiological functions necessary for survival (e.g., respond to stresses such as dam passage, entering the saltwater, resisting fish pathogens). If the availability of food is reduced-for example if poor ocean upwelling reduces nutrients available for the near-shore food web-more fats will be mobilized, increasing the deposition of contaminants in the organs, leading to greater physiological dysfunction and reduced survival. Some hatchery fish also become prey when released and will add any contaminants they contain to the food web-expanding the ecological impacts of these contaminants.

There are several experiments that could address the ecological impacts of exposing soon-to-be-released salmonids to contaminants: (1) measure the flow of contaminants from food to fish by assaying body burdens in fish during hatchery rearing; (2) measure contaminants in other parts of the rearing environment and determine the fish's uptake of them; (3) measure flow of contaminants within fish by simulating the period of fasting after release and measuring contaminants in muscle, brain, liver, and kidney over several months; (4) determine the impact of observed body burdens and organ levels of contaminants by conducting performance tests (i.e., predator avoidance, saltwater growth and survival, stress challenge and disease challenge) and measuring physiological functions (e.g., osmoregulation, physiological stress responses, immune responses); (5) determine the impact of contaminants on migration rates and survival after fish are released; (6) assess the movement of contaminants in the ecosystem.

Acknowledgements

We wish to thank the managers and employees of the eleven NFHs involved in this study-without their cooperation and help this study would not have been possible. We also thank the staffs of the USFWS Abernathy Fish Technology Center, the USGS National Water Quality Laboratory, and Severn Trent Laboratories, Inc for performing assays on samples. Jennifer Bayer, Michael Meeuwig, and James Seelye of the USGS Columbia River Research Laboratory were instrumental in developing the study design and early data analyses. We are grateful for the valuable reviews of this report provide by Gina Ylitalo of NOAA-Fisheries, and George Noguchi, James Haas, Dave Devault, Mike Millard and Judy Gordon of USFWS. The use of trade names does not imply endorsement by the U.S. Federal government. The findings and conclusions in the report are those of the authors and do not necessarily represent the views of the US Fish \& Wildlife Service.

References

Aluru, N., E.H. Jorgensen, A.G. Maule, and M. M. Vijayan. 2004. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr. American Journal of Physiology: Regulatory, Integrated and Comparative Physiology 287:R787-R793.

Arkoosh, M. R, E. Casillas, P. Huffman, E. Clemons, J. Evered, J.E. Stein, and U. Varanasi. 1998. Increased susceptibility of juvenile chinook salmon from a contaminated estuary to the pathogen Vibrio anguillarum. Transactions of the American Fisheries Society. 127:360-374.

Arkoosh, M. R., E. Casillas, E. Clemons, P. Huffman, A. N. Kagley, T. Collier and J. E. Stein. 2001. Increased susceptibility of juvenile Chinook salmon (Oncorhynchus tshawytscha) to vibriosis after exposure to chlorinated and aromatic compounds found in contaminated urban estuaries. Journal of Aquatic Animal Health 13:257-268.

Bell, J.G. F. McGhee, J. R. Dick, D.R. Tocher. 2005. Dioxin and dioxin-like polychlorinated biphenyls (PCBs) in Scottish farmed salmon (Salmo salar): effects of replacement of dietary marine fish oil with vegetable oils. Aquaculture 243: 305-314.

Breivik, K., R. Alcockb, Y.-F. Lic, R. E. Baileyd, H. Fiedlere, and J.M. Pacynaa. 2004. Primary sources of selected POPs: regional and global scale emission inventories. Environmental Pollution 128: 3-16.

Carline, Robert of the U.S. Geological Survey - BRD in University Park, Pennsylvania Personal Communication on May 15, 2000.

Carline, R. F., P. M. Barry and H. G. Ketola. 2004. Dietary uptake of polychlorinated biphenyls (PCBs) by rainbow trout. North American Journal of Aquaculture 66: 91-99.

Collier, Tracy of the National Marine Fisheries Service - Environmental Conservation Division in Seattle, Washington - Personal Communication on May 12, 2000.
de Wit, C.A., Fisk, A.T., K. E. Hobbs, K.E., Muir, D.C.G., Gabrielsen, G.W., Kallenborn, R., Krahn, M.M., Norstrom, R.J., Skaare, J.U. 2003. Persistent Organic Pollutants Report, AMAP Assessment Report Phase II, Arctic Monitoring and Assessment Program. Oslo. Norway.

Easton, M. D. L., D. Luszniak and E. Von der Geest. 2002. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed. Chemosphere 46: 1053-1074.

Evenset, A., Christensen G.N., Stokvold, T., Fjed, E., Schlabach, M., Wartena, E., Grgor, D. 2004. A comparison of organic contaminants in two high Artic lake ecosystems, Bjørnøya (Bear Island), Norway. Science of the Total Environment 318: 125-141.

Gobas, F.A.P.C., J.B. Wilcockson, R.W. Russell, and G.D. Haffner. 1999. Mechanism of biomagnification in fish under laboratory and field conditions. Environmental Science and Technology 33:133-141.

Hanks, A. 2000. Mineral feed contaminants. Pages 265-269 In, Official Publication of the Association of Feed Control Officials, Inc., Oxford, IN

Hilton, J. W., P. V. Hodson, H. E. Braun, J. L. Leatherland and S. J. Slinger. 1983. Contaminant accumulation and physiological response in rainbow trout (Salmo gairdneri) reared on naturally contaminated diets. Can. J. Fish. Aquat. Sci. 40: 1987-1994.

Hites, R., J. Foran, D. Carpenter, M. Hamilton, B. Knuth, S. Schwager. 2004. Global assessment of organic contaminants in farmed salmon. Science 303: 226-229.

Hoar, W. S. 1988. The physiology of smolting salmonids. Pages 275-343 In, Fish Physiology Volume XI. The physiology of developing fish, Part B Viviparity and posthatching juveniles, W. S. Hoar and D. J. Randall, eds. Academic Press, Inc., New York.

Hoffman, G.L. 1996. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory--Preparation procedure for aquatic biological material determined for trace metals: U.S. Geological Survey Open-File Report 96-362, 42 p.

Horst, K., I. Lehmann and K. Oetjen. 1998. Levels of chlordane compounds in fish muscle, meal, -oil, and-feed. Chemosphere 36: 2819-2832.

Horwitz, W (editor). 2000. Official Methods of Analysis of AOAC International, 17th Ed. Association of Official Analytical Communities International, 481 N. Frederick Ave., Suite 500, Gaithersburg, MD 20877-2417, publishers, 2200 pp.

Isosaari, P., H. Kiviranta, O. Lie, A-K. Lundebye, G. Ritchie, and T. Vartianen. 2004. Accumulation and distribution of polychlorinated dibenzo-p-dioxin, dibenzofuran, and polychlorinated biphenyl congeners in Atlantic salmon (Salmo salar). Environmental Toxicology and Chemistry 23: 1672-1679.

Jacobs, M. N., P. A. Johnston, C. L. Wyatt, D. Santillo and M. C. French. 1997. Organochlorine pesticide and PCB residues in pharmaceutical, industrial and food grade fish oils. Int. J. Environment and Pollution 8: 74-93.

Jimenez, B., C. Wright, M. Keely, and J. R. Startin. 1996. Levels of PCDDs, PCDFs and Nonortho PCBs in dietary supplement fish oil obtained in Spain. Chemosphere 32: 461-467.

Jørgensen, E. H., Ø. Ass-Hansen, A. Maule, J. Espen Tau Strand and M. M. Vijayan. 2004. PCB impairs smoltification and seawater performance in anadromous Arctic charr (Salvelinus alpinus). Comparative Biochemistry and Physiology, C 138: 203-212.

Jørgensen, E. H., M. M. Vijayan, N. Aluru and A.G. Maule. 2002. Fasting modifies Aroclor 1254 impact on plasma cortisol, glucose and lactate responses to a handling disturbance in Arctic charr. Comparative Biochemistry and Physiology, C 132: 235-245.

Leiker, T.J., Madsen, JE; Deacon, JR; Foreman, WT. 1995. Methods of analysis of the U.S. Geological Survey National Water Quality Laboratory - determination of chlorinated pesticides in aquatic tissue by capillary-column gas chromatography with electron-capture detection. U.S. Geological Survey, Earth Science Information Center, Denver, CO. 42 pp .

Lundebye, A., M. Berntssen, O. Lie, G. Ritchie, P. Isosaari, H. Kiviranta, and T. Vartiainen. 2004. Dietary uptake of dioxins (PCDD/PCDFs) and dioxin-like PCBs in Atlantic salmon (Salmo salar). Aquaculture Nutrition 10: 199-207.

Mac, M. J., L. W. Nicholson and C. A. McCauley. 1979. PCBs and DDE in commercial fish feeds. The Progressive Fish-Culturist 4: 210-211.

Macek, K. J. 1968. Growth and resistance to stress in brook trout fed sublethal levels of DDT. J. Fish. Research Board of Canada 25:2443-2451.

MacLeod, M., and D. Mackay. 2004. Modeling transport and deposition of contaminants to ecosystems of concern: a case study for the Laurentian Great Lakes. Environmental Pollution 28: 241-250.

Maule, A.G., E. H. Jørgensen, M.M. Vijayan, and J.-E. A. Killie. 2005. Aroclor 1254 exposure reduces disease resistance and innate immune responses in fasted Arctic charr. Environmental Toxicology and Chemistry 24:117-124.

Muir, D.C.G., Wagemann, R., Hargrave, B.T., Thomas, D.J., Peakall, D.B., Norstrom, R.J., 1992. Arctic marine ecosystem contamination. Science of the Total Environment 122: 75134.

Patrick, F. M. and M. W. Loutit. 1978. Passage of metals to freshwater fish from their food. Water Research 12: 395-398.

Rappe, C., S. Bergek, H. Feidler and K. R. Cooper. 1998. PCDD and PCDF contamination in catfish feed from Arkansas, USA. Chemosphere 36: 2705-2720.

Rondorf, D.W., M.S. Dutchuk, A.S. Kolok and M.L. Gross. 1985. Bioenergetics of juvenile salmon during the spring outmigration. Annual Report 1983. Bonneville Power Administration Contract DE-AI79-82BP35346. http://www.efw.bpa.gov/Publications/D35346-1.pdf.

Rumsey, G. L. 1980. Adventitious toxins in feeds. In, Fish Feed Technology, Lectures from the FAO/UNDP Training Course in Fish Feed Technology, University of Washington, Seattle, WA October 9-December 15, 1978.

Schaperclaus, W. 1986. Fish Diseases, Volume 2. Amerind Publishing Co. Pvt. Ltd., New Delhi.

Shearer, K. D. T. Åsgård, G. Andorsdöttir and G. H. Aas. 1994. Whole body elemental and proximate composition of Atlantic salmon (Salmo salar) during the life cycle. Journal of Fish Biology 44: 785-797.

Sorensen, E. M. B. 1991. Metal poisoning in fish. CRC Press, Boca Raton, FL. pp. 374.
US EPA. 1995. Test Methods for Evaluating Solid Waste, SW-846. Third Edition. March 1995 Method 8290: Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by High Resolution Gas Chromatography/High Resolution Mass Spectrometry.

US EPA. 1996a Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, Final Update III, Revision 2, December 1996, Method 6010B.

US EPA. 1996b. Test Methods for Evaluating Solid Waste, SW-846. Update III. December 1996 Method 8081: Organochlorine Pesticides by Gas Chromatography.

US EPA. 1999. Method 1668, Revision A: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by HRGC/HRMS. EPA-821-R-00-002.

VanCuren, RA. 2003. Asian aerosols in North America: Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States. Journal of Geophysical Research, D. Atmospheres 108: 20.

Van den Berg M., Birnbaum L., Bosveld A.T.C., Brunstrőm B., Cook P., Feeley M., Giesy P., Hanberg A., Hasegawa, R., Kennedy S.W., Kubiak T., Larsen J.C., van Leeuwen F.X.R., Liem A.K.D., Nolt C., Peterson R.E., Poellinger L., Safe S., Schrenk D., Tillitt D., Tysklind M., Younes M., Wærn F., Zacharewski T. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, and PCDFs for humans and wildlife. Environmental Health Perspectives 106:775-792.

Watanabe, T., V. Kiron and S. Satoh. 1997. Trace minerals in fish nutrition. Aquaculture 151:185-207.

Ylitalo, Gina of the National Marine Fisheries Service-Environmental Conservation Division in Seattle, Washington-Personal Communication on May 10, 2004.

Table 1. U.S. Fish and Wildlife Service Region, National Fish Hatchery (NFH) and fish species reared and fed at those hatcheries during the two-year study.

Table 2. Metals and other contaminants assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc.; proximate contents assayed by Abernathy Fish Technology Center in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003.

Percent Ash	PCB 77	Aldrin
Percent Lipids	PCB 81	Chlordane (technical)
Percent Moisture	PCB 105	DCPA (Dacthal)
Percent Protein	PCB 114	Dieldrin
1,2,3,4,6,7,8-HpCDD	PCB 118	Endosulfan I
1,2,3,4,6,7,8-HpCDF	PCB 123	Endosulfan II
1,2,3,4,7,8,9-HpCDF	PCB 126	Endosulfan sulfate
1,2,3,4,7,8-HxCDD	PCB 156	Endrin
1,2,3,4,7,8-HxCDF	PCB 157	Endrin aldehyde
1,2,3,6,7,8-HxCDD	PCB 167	alpha-BHC
1,2,3,6,7,8-HxCDF	PCB 169	beta-BHC
1,2,3,7,8,9-HxCDD	PCB 170	delta-BHC
1,2,3,7,8,9-HxCDF	PCB 180	gamma-BHC (Lindane)
1,2,3,7,8-PeCDD	PCB 189	cis-Chlordane
1,2,3,7,8-PeCDF	PCB-Total	cis-Nonachlor
2,3,4,6,7,8-HxCDF	Aluminum (Al)	o,p'-Methoxychlor
2,3,4,7,8-PeCDF	Arsenic (As)	p,p'-Methoxychlor
2,3,7,8-TCDD	Barium (Ba)	trans-Chlordane
2,3,7,8-TCDF	Beryllium (Be)	trans-Nonachlor
OCDD	Boron (B)	Toxaphene
OCDF	Cadmium (Cd)	Heptachlor
Total HpCDD	Chromium (Cr)	Heptachlor Epoxide
Total HpCDF	Copper (Cu)	Hexachlorobenzene (HCB)
Total HxCDD	Iron (Fe)	Methoxychlor
Total HxCDF	Lead (Pb)	Mirex
Total PeCDD	Magnesium (Mg)	Oxychlordane
Total PeCDF	Manganese (Mn)	Pentachloroanisole (PCA)
Total TCDD	Mercury (Hg)	Decachlorobiphenyl
Total TCDF	Molybdenum (Mo)	4,4'-DDD
	Nickel (Ni)	4,4'-DDE
	Selenium (Se)	4,4'-DDT
	Strontium (Sr)	Total DDT
	Vanadium (V)	
	Zinc (Zn)	

Table 3. Number of samples distributed to Abernathy Fish Technology Center (Center), National Water Quality Laboratory (USGS Lab) or Severn Trent Laboratory, Inc. (Severn) for analyses of lipids, moisture, ash and protein (proximate analysis), organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), dioxins, furans, and metals.

	Center	USGS Lab	Severn		Total Samples
Proximate analysis	77	--	--	--	77
PCB congeners	--	--	46	--	46
OCs	--	29	26	--	55
Dioxins, Furans	--	--	55	--	55
Metals	--	29	26	--	55
Sample not analyzed	--	--	--	22	22
No sample received	--	--	--	11	11

Table 4. Detection limits of assays performed on feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Detection limits of dioxins, furans and PCBs vary between assays; values shown are the highest minimum detection limits for all assays performed. Values for metals and OC pesticides are minimum detection limits for all assays. Assays were conducted at the National Water Quality Laboratory (USGS) or Severn Trent Laboratories, Inc (Severn).

Table 5. Metals and other contaminants for which there was at least one value above detection limits when assayed by the National Water Quality Laboratory or Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing within classes of compounds. All other totals were determined by independent assays.

$1,2,3,4,6,7,8-\mathrm{HpCDD}$	PCB 156	Lead (Pb)
$1,2,3,7,8-\mathrm{PeCDD}$	PCB 157	Magnesium (Mg)
$2,3,7,8-\mathrm{TCDD}$	PCB 167	Manganese (Mn)
$2,3,7,8-\mathrm{TCDF}$	PCB 170	Mercury (Hg)
OCDD	PCB 180	Molybdenum (Mo)
OCDF	PCB 189	Nickel (Ni)
Total HpCDD	Aluminum (Al)	Selenium (Se)
Total HpCDF	Arsenic (As)	Strontium (Sr)
Total PeCDD	Barium (Ba)	Vanadium (V)
Total PeCDF	Boron (B)	Zinc (Zn)
Total TCDD	Cadmium (Cd)	alpha-BHC
Total TCDF	Chromium (Cr)	delta-BHC
PCB 77	Copper (Cu)	4,4'-DDE
PCB 81	Iron (Fe)	Total DDT
PCB 105		Total Dioxins
PCB 114		Total Furans
PCB 118		Total PCBs
PCB 123		
PCB 126		

$\mathrm{SD}=$ standard deviation; $\mathrm{N}=$ number of samples with detectable values; $\mathrm{SE}=$ standard error of the mean

Table 7. World Health Organization (WHO) toxic equivalents (TEQ; $\mathrm{pg} \mathrm{g}^{-1}$) for dioxins (congeners: heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, pentachlorodibenzo-pdioxins, tetrachlorodibenzo-p-dioxin), furans (congeners: tetrachlorodibenzo furan, octachlorodibenzo furan) and PCBs (congeners: PCB -77, -105, -114, -118, -123, -126, -156, 157, -167, -189) detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Toxic equivalent factors for fish were used in the calculations (Van den Berg et al., 1998).

	Mean	SD	N	SE	Min	Max
Dioxin TEQ	0.208	0.739	39	0.1183	0.0005	3.9486
Furan TEQ	0.064	0.041	22	0.0087	0.0320	0.1900
PCB TEQ	0.061	0.085	46	0.0125	0.0026	0.4144
Dioxin + Furan	0.227	0.708	42	0.1092	0.0005	3.9486
Total TEQs	0.237	0.647	52	0.0897	0.0006	3.9811

$\mathrm{SD}=$ standard deviation; $\mathrm{N}=$ number of samples with detectable values, each of the 52 total samples could contain 1, 2 or 3 of the classes of contaminants; $\mathrm{SE}=$ standard error of the mean; Min = minimum value detected above detection limits; $\operatorname{Max}=$ maximum value detected.
Table 8. Summary of metals detected in 55 fish feed samples assayed by Severn Trent Laboratories, Inc. and the National Water Quality Laboratory in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. The labs used different assay methods (see Methods).

Metal Units	$\begin{gathered} \mathrm{Al} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{As} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \text { B } \\ \mu \mathrm{g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{\mu g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\underset{\mu \mathrm{Hg} \mathrm{~g}^{-1}}{\mathrm{H}}$	$\begin{gathered} \mathrm{Mo} \\ { }^{1} \mathrm{\mu g} \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\stackrel{\mathrm{Ni}}{\mu \mathrm{~g} \mathrm{~g}^{-1}}$	$\begin{gathered} \mathrm{Se} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} V \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \mu \mathrm{~g} \mathrm{~g}^{-1} \\ \hline \end{gathered}$
Mean	61.50	2.62	6.67	5.28	0.39	1.50	10.54	353.9	0.78	1763	84.31	0.03	0.76	2.35	2.48	45.94	2.07	142.76
SD	50.30	1.37	3.97	2.23	0.21	0.74	5.43	134.9	1.11	429	45.94	0.03	0.52	1.39	0.68	26.06	1.78	42.36
N	55	55	55	55	41	53	55	55	25	55	55	52	2 47	55	55	55	54	55
SE	6.78	0.18	0.54	0.30	0.03	0.10	0.73	18.2	0.22	58	6.19	0.00	0.08	0.19	0.09	3.51	0.24	5.71
Max value	226.00	8.17	15.30	9.80	0.89	4.70	29.83	622.0	5.82	2640	196.00	0.12	2.28	7.80	3.80	117.00	9.44	258.54
Min value	1.94	0.25	0.20	0.63	0.08	0.67	1.20	15.0	0.10	212	3.60	0.01	0.16	0.42	0.25	4.52	0.22	14.20

$\mathrm{SD}=$ standard deviation; $\mathrm{N}=$ number of samples with detectable values; $\mathrm{SE}=$ standard error of the mean
Table 9. Mean + standard deviation (SD) of constituents found in fish feed samples collected from 11 National Fish Hatcheries between October 2001 and October 2003. Results for metals and DDT contain data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes of compounds. other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in parentheses

Hatchery	$\begin{aligned} & \text { Ash } \\ & (\%) \end{aligned}$	Lipids (\%)	Moisture (\%)	Protein (\%)	Total Dioxins (pg g ${ }^{-1}$)	Total Furans (pg g ${ }^{-1}$)	$\begin{gathered} \hline \text { Total } \\ \text { PCB } \\ \left(\mathrm{ng} \mathrm{~g}^{-1}\right) \end{gathered}$	Total DDT ($\mu \mathrm{g} / \mathrm{kg}$)	$\begin{aligned} & \text { BHC } \\ & (\mu \mathrm{g} / \mathrm{kg}) \end{aligned}$
Coleman (6)	8.4 ± 0.4 (6)	18.7 ± 2.3 (6)	13.4 ± 9.4 (6)	45.9 ± 2.0 (6)	$\begin{aligned} & 9.50 \pm 4.04 \\ & \text { (3) } \end{aligned}$	$\begin{gathered} 0.92 \\ (1) \end{gathered}$	1.24 ± 0.89 (4)	8.00 ± 0.57 (2)	--
Ennis (8)	8.5 ± 1.1 (8)	12.9 ± 1.0 (8)	9.0 ± 0.7 (8)	43.9 ± 2.7 (8)	13.05 ± 4.16 (4)	0.73 (1)	0.53 ± 0.42 (5)	4.90 ± 0.71 (2)	--
Garrison Dam (6)	8.5 ± 0.4 (6)	19.5 ± 0.7 (6)	11.7 ± 7.1 (6)	47.1 ± 1.0 (6)	$\begin{gathered} 168.9 \pm \\ 171.5 \\ (4) \end{gathered}$	0.96 ± 0.33 (3)	1.86 ± 1.58 (3)	25.00 ± 5.66 (2)	--
Genoa (6)	$\begin{gathered} 8.2 \pm 0.9 \\ (6) \end{gathered}$	17.0 ± 1.8 (6)	8.1 ± 1.0 (6)	44.7 ± 2.3 (6)	$\begin{gathered} 19.82 \pm 7.87 \\ \text { (5) } \end{gathered}$	$1.15 \pm .07$ (2)	$\begin{gathered} 1.59 \pm 1.49 \\ \text { (5) } \end{gathered}$	$\begin{gathered} 6.90 \\ (1) \end{gathered}$	--
Hagerman (8)	8.5 ± 1.7 (8)	15.5 ± 2.8 (8)	7.6 ± 1.3 (8)	47.5 ± 3.4 (8)	34.5 ± 40.3 (4)	1.17 ± 0.30 (3)	2.17 ± 1.70 (5)	11.37 ± 7.87 (3)	$\begin{gathered} 24.0 \\ (1) \end{gathered}$
Jordan River (7)	$\begin{gathered} 9.0 \pm 0.9 \\ (7) \end{gathered}$	14.8 ± 2.6 (6)	7.4 ± 1.2 (6)	47.4 ± 3.6 (6)	$\begin{aligned} & 7.51 \pm 1.61 \\ & \text { (3) } \end{aligned}$	$\begin{gathered} 0.64 \\ (1) \end{gathered}$	0.24 ± 0.10 (4)	$\begin{aligned} & 5.83 \pm 0.67 \\ & \text { (3) } \end{aligned}$	--
Leavenworth (8)	$\begin{gathered} 7.9 \pm 1.5 \\ (8) \end{gathered}$	18.9 ± 3.7 (8)	15.2 ± 8.5 (8)	48.3 ± 3.4 (8)	$\begin{gathered} 39.75 \pm \\ 29.34 \end{gathered}$	0.74 ± 0.08 (3)	1.88 ± 0.59 (4)	$\begin{gathered} 20.47 \pm \\ 10.81 \\ \text { (3) } \end{gathered}$	--
North Attleboro (5)	6.7 ± 0.3 (5)	9.5 ± 0.7 (5)	42.8 ± 1.6 (5)	34.8 ± 2.3 (5)	35.45 ± 40.7 (2)	0.72 ± 0.06 (2)	1.43 ± 0.37 (4)	--	$\begin{gathered} 19.0 \\ (1) \end{gathered}$
Quilcene (8)	8.3 ± 1.2 (8)	20.4 ± 2.3 (8)	6.0 ± 1.0 (8)	51.0 ± 1.6 (8)	$\begin{gathered} 5.7 \pm 3.3 \\ \text { (3) } \end{gathered}$	--	1.73 ± 0.90 (4)	$\begin{gathered} 4.00 \\ (1) \end{gathered}$	--
Spring Creek (7)	8.5 ± 1.1 (7)	17.5 ± 2.5 (7)	12.7 ± 6.8 (7)	48.1 ± 1.3 (7)	6.33 ± 0.81 (3)	$\begin{gathered} 1.80 \\ (1) \end{gathered}$	1.09 ± 1.92 (4)	9.77 ± 5.69 (3)	--
White Sulphur Springs (8)	$\begin{gathered} 7.7 \pm 1.2 \\ (8) \end{gathered}$	17.0 ± 2.4 (8)	7.5 ± 2.0 (8)	43.2 ± 18 (7)	60.25 ± 91.2 (4)	5.18 ± 4.84 (4)	9.87 ± 0.52 (3)	10.75 ± 5.88 (4)	--

Table 9. Continued

Hatchery	Aluminum $\left(\mu \mathrm{g} \mathrm{g}^{-1}\right)$	$\begin{aligned} & \text { Arsenic } \\ & \left(\mu \mathrm{g} \mathrm{~g} \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Barium } \\ & \left(\mu \mathrm{g} \mathrm{~g} \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Boron } \\ & \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { Cadmium } \\ \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Chromium } \\ \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Copper } \\ & \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { Iron } \\ \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Lead } \\ \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{gathered}$
Coleman	67.58 ± 61.88 (4)	2.35 ± 0.43 (4)	5.65 ± 3.22 (4)	5.61 ± 2.04 (4)	0.38 ± 0.17 (3)	1.43 ± 0.67 (4)	8.55 ± 1.82 (4)	271.5 ± 150.7 (4)	0.62 ± 0.40 (3)
Ennis	82.00 ± 41.74 (7)	1.85 ± 0.54 (7)	11.96 ± 2.1 (7)	7.51 ± 1.28 (7)	0.32 ± 0.24 (4)	1.52 ± 0.61 (7)	10.11 ± 1.87 (7)	370.9 ± 73.3 (7)	$\begin{gathered} 0.78 \pm 0.05 \\ \text { (2) } \end{gathered}$
Garrison Dam	67.18 ± 62.50 (4)	2.92 ± 0.18 (4)	5.88 ± 2.69 (4)	5.21 ± 2.48 (4)	$\begin{gathered} 0.42 \pm 0.29 \\ \text { (3) } \end{gathered}$	$\begin{gathered} 1.32 \pm 0.29 \\ \text { (3) } \end{gathered}$	7.07 ± 1.49 (4)	414.3 ± 38.3 (4)	0.39 ± 0.17 (2)
Genoa	$\begin{aligned} & 92.45 \pm 61.23 \\ & (58) \end{aligned}$	1.81 ± 1.02 (5)	7.80 ± 4.43 (5)	$\begin{aligned} & 6.75 \pm 3.56 \\ & \text { (5) } \end{aligned}$	$\begin{gathered} 0.09 \pm 0.01 \\ \text { (2) } \end{gathered}$	2.60 ± 1.40 (4)	8.40 ± 4.89 (5)	$\begin{gathered} 400.0 \pm 221.3 \\ (5) \end{gathered}$	--
Hagerman	56.43 ± 46.69 (5)	2.66 ± 0.76 (5)	4.33 ± 2.19 (5)	4.03 ± 1.69 (5)	0.53 ± 0.40 (3)	1.53 ± 0.56 (5)	8.92 ± 1.82 (5)	398.8 ± 60.8 (5)	0.46 ± 0.38 (2)
Jordan River	60.02 ± 25.19 (5)	2.34 ± 1.15 (5)	9.30 ± 3.03 (5)	6.09 ± 1.70 (5)	0.31 ± 0.12 (4)	1.43 ± 0.51 (5)	12.55 ± 4.75 (5)	388.7 ± 109.6 (5)	1.06 ± 0.42 (4)
Leavenworth	15.75 ± 9.62 (4)	2.73 ± 0.81 (4)	2.83 ± 1.28 (4)	2.96 ± 0.70 (4)	0.46 ± 0.30 (4)	1.09 ± 0.47 (4)	7.65 ± 1.63 (4)	275.8 ± 115.9 (4)	0.46 ± 0.08 (2)
North Attleboro	26.50 ± 5.33 (4)	6.19 ± 2.23 (4)	1.75 ± 0.33 (4)	3.64 ± 0.75 (4)	0.37 ± 0.07 (4)	1.54 ± 1.21 (4)	25.68 ± 5.42 (4)	202.3 ± 134.1 (4)	0.10 ± 0.01 (2)
Quilcene	16.94 ± 8.89 (7)	1.89 ± 0.46 (7)	2.91 ± 0.58 (7)	3.96 ± 1.42 (7)	0.48 ± 0.11 (7)	1.01 ± 0.21 (7)	$\begin{gathered} 8.89 \pm 2.49 \\ (7) \end{gathered}$	206.9 ± 51.6 (7)	0.29 ± 0.02 (2)
Spring Creek	73.42 ± 23.47 (5)	2.98 ± 0.92 (5)	9.02 ± 1.32 (5)	4.76 ± 1.87 (5)	0.33 ± 0.17 (5)	1.89 ± 0.66 (5)	$\begin{aligned} & 9.71 \pm 3.50 \\ & \text { (5) } \end{aligned}$	474.8 ± 95.8 (5)	0.40 ± 0.15 (3)
White Sulphur Springs	$128.45 \pm$ 76.41 (4)	2.44 ± 0.53 (4)	$\begin{gathered} 10.43 \pm \\ 1.19 \\ (4) \\ \hline \end{gathered}$	7.11 ± 1.00 (4)	$\begin{gathered} 0.34 \\ (1) \end{gathered}$	1.38 ± 0.57 (4)	10.94 ± 4.95 (4)	444.0 ± 35.4 (4)	2.39 ± 2.98 (3)

Table 9. Continued

	$\begin{aligned} & \infty \\ & \underset{\sim}{+} \\ & +1 \\ & \stackrel{N}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$				$\underset{\sim}{\underset{\sim}{n}}$		$\begin{aligned} & \infty \\ & \underset{\oplus}{\infty} \\ & +1 \\ & \stackrel{+}{8} \pm \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\mathrm{O}} \\ & \stackrel{1}{+} \\ & \stackrel{1}{6} \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{N} \\ & +1 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$
	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & + \\ & + \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{1}{+} \\ & +\underset{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$			$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{+}{+} \\ & \underset{\sim}{N} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{+}{+1} \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{+} \\ & \stackrel{+}{\circ} \\ & \stackrel{\oplus}{i} \end{aligned}$
		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & +1 \\ & + \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \\ & +1 \\ & \underset{\sim}{\infty} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\dot{j}} \\ & +1 / 2 \\ & \stackrel{n}{N} \\ & \stackrel{m}{m} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & +1 \\ & + \\ & \dot{\Phi} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{-}{m} \\ & \stackrel{+}{+} \\ & \stackrel{\rightharpoonup}{\mathrm{j}} \end{aligned}$		$\begin{aligned} & \stackrel{N}{\sim} \\ & \stackrel{+}{+} \\ & \stackrel{+}{ \pm} \\ & \stackrel{y}{\sim} \end{aligned}$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & +1 \cong \\ & 0 \\ & \text { i } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{-} \\ & + \\ & +16 \\ & \stackrel{n}{i} \end{aligned}$	$\begin{aligned} & \dot{o} \\ & \dot{1} \\ & +1 \text { § } \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{6}{0} \\ & \dot{0} \\ & +1! \\ & \stackrel{0}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{o} \\ & +1 \\ & +\underset{~}{0} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \dot{\circ} \\ & +1 \\ & \dot{\oplus} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { on } \\ & 0 \\ & +1 \\ & \stackrel{1}{6} \\ & \stackrel{0}{i} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{0} \\ & +1 \cong \\ & \underset{0}{0} \\ & \dot{i} \end{aligned}$	

Table 10. Mean + standard deviation (SD) of constituents found in fish feed samples from six manufacturers collected from 11 National Fish Hatcheries between October 2001 and October 2003. Results for metals and DDT contain data from the two labs using different assays (see Methods). Total DDT, Total Dioxins, Total Furans and Total PCBs were determined by summing across classes
of compounds. All other variables were determined by independent assays. Numbers (n) of samples positive for the variable are in parentheses.

Feed Manufacturer	$\begin{aligned} & \text { Ash } \\ & (\%) \end{aligned}$	Lipids (\%)	Moisture (\%)	Protein (\%)	Total Dioxins (pg g ${ }^{-1}$)	Total Furans (pg g ${ }^{-1}$)	$\begin{gathered} \hline \text { Total } \\ \text { PCB } \\ \left(\mathrm{ng} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { DDT } \\ \left(\mathrm{ng} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{BHC} \\ \left(\mathrm{ng} \mathrm{~g}^{-1}\right) \\ \hline \end{gathered}$
$\begin{gathered} \text { A } \\ (10) \end{gathered}$	8.9 ± 1.0 (10)	$\begin{gathered} 17.2 \pm 2.3 \\ (10) \end{gathered}$	$\begin{aligned} & 22.8 \pm 2.0 \\ & (10) \end{aligned}$	$\begin{gathered} 46.9 \pm 2.7 \\ (10) \end{gathered}$	$\begin{gathered} 28.52 \pm \\ 19.34 \\ (6) \end{gathered}$	1.04 ± 0.43 (6)	2.56 ± 1.07 (6)	$\begin{gathered} 18.83 \pm \\ 9.18 \\ \text { (7) } \end{gathered}$	--
$\begin{gathered} \text { B } \\ (14) \end{gathered}$	7.8 ± 1.1 (14)	20.8 ± 2.5 (14)	6.6 ± 1.2 (14)	$\begin{gathered} 49.9 \pm 2.7 \\ (14) \end{gathered}$	5.83 ± 2.71 (4)	--	$\begin{gathered} 1.32 \pm 0.84 \\ (7) \end{gathered}$	$\begin{gathered} 4.00 \\ (1) \end{gathered}$	--
$\begin{gathered} \text { C } \\ (5) \end{gathered}$	6.7 ± 0.3 (5)	9.5 ± 0.7 (5)	42.8 ± 1.6 (5)	34.8 ± 2.3 (5)	$\begin{gathered} 36.20 \pm \\ 39.60 \end{gathered}$ (2)	0.72 ± 0.06 (2)	1.02 ± 0.57 (4)	--	--
$\begin{gathered} \mathrm{D} \\ (21) \end{gathered}$	$\begin{gathered} 8.8 \pm 1.0 \\ (21) \end{gathered}$	$\begin{gathered} 16.8 \pm 2.3 \\ (21) \end{gathered}$	$\begin{gathered} 7.9 \pm 1.3 \\ (21) \end{gathered}$	46.6 ± 2.8 (19)	$\begin{gathered} 54.83 \pm \\ 106.48 \\ (15) \end{gathered}$	$\begin{gathered} 0.93 \pm 0.42 \\ (10) \end{gathered}$	$\begin{gathered} 1.85 \pm 1.38 \\ (14) \end{gathered}$	8.97 ± 5.69 (6)	$\begin{gathered} 24.0 \\ (1) \end{gathered}$
$\begin{gathered} E \\ (19) \end{gathered}$	8.4 ± 0.9 (19)	$\begin{gathered} 15.2 \pm 2.5 \\ (19) \end{gathered}$	$\begin{gathered} 8.2 \pm 2.1 \\ (19) \end{gathered}$	46.1 ± 3.3 (19)	$\begin{gathered} 20.95 \pm \\ 37.70 \\ (7) \end{gathered}$	$\begin{gathered} 0.64 \\ (1) \end{gathered}$	$\begin{aligned} & 0.41 \pm 0.52 \\ & (12) \end{aligned}$	6.57 ± 3.80 (6)	$\begin{gathered} 19.0 \\ (1) \end{gathered}$
$\begin{gathered} \text { F } \\ (8) \end{gathered}$	7.7 ± 1.3 (8)	17.0 ± 2.5 (8)	$\begin{gathered} 7.5 \pm 2.0 \\ (8) \end{gathered}$	43.2 ± 1.8 (8)	$60.25 \pm$ 91.19 (4)	5.18 ± 4.84 (4)	$\begin{aligned} & 9.87 \pm 0.52 \\ & \text { (3) } \end{aligned}$	$10.75 \pm$ 5.88 (4)	--

Table 10. Continued

Feed Manufacturer	Aluminum ($\mu \mathrm{g} \mathrm{g}^{-1}$)	Arsenic ($\mu \mathrm{g} \mathrm{g}^{-1}$)	$\begin{aligned} & \text { Barium } \\ & \left(\mu g^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Boron } \\ & \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{aligned}$	Cadmium ($\mu \mathrm{g} \mathrm{g}^{-1}$)	$\begin{gathered} \text { Chromium } \\ \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{gathered}$	Copper ($\mu \mathrm{g} \mathrm{g}^{-1}$)	$\begin{gathered} \text { Iron } \\ \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Lead } \\ & \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{aligned}$
A	$\begin{gathered} 45.14 \pm \\ 51.55 \\ (7) \end{gathered}$	3.11 ± 0.30 (7)	4.93 ± 3.31 (7)	4.33 ± 2.36 (7)	0.48 ± 0.26 (6)	1.54 ± 0.60 (6)	6.57 ± 1.06 (7)	$\begin{gathered} 374.29 \pm \\ 91.71 \end{gathered}$	0.53 ± 0.19 (5)
B	$\begin{gathered} 16.12 \pm \\ 9.34 \\ (10) \end{gathered}$	$\begin{gathered} 1.90 \pm 0.40 \\ (10) \end{gathered}$	$\begin{aligned} & 2.93 \pm 0.52 \\ & (10) \end{aligned}$	$\begin{gathered} 3.86 \pm 1.20 \\ (10) \end{gathered}$	$\begin{gathered} 0.45 \pm 0.13 \\ (10) \end{gathered}$	$\begin{gathered} 1.03 \pm 0.24 \\ (10) \end{gathered}$	$\begin{gathered} 9.18 \pm 2.10 \\ (10) \end{gathered}$	$\begin{gathered} 190.70 \pm \\ 49.96 \\ (10) \end{gathered}$	0.29 ± 0.10 (4)
C	$\begin{array}{r} 28.75 \pm \\ 3.88 \end{array}$ (4)	5.66 ± 3.09 (4)	4.18 ± 4.69 (4)	4.82 ± 1.77 (4)	0.37 ± 0.07 (4)	3.40 ± 3.23 (4)	21.98 ± 8.95 (4)	$267.8 \pm$ 119.0 (4)	$\begin{gathered} 0.10 \pm 0.01 \\ \text { (2) } \end{gathered}$
D	$\begin{gathered} 89.88 \pm \\ 48.72 \\ (15) \end{gathered}$	$\begin{gathered} 2.34 \pm 0.86 \\ (15) \end{gathered}$	7.44 ± 4.18 (15)	6.19 ± 2.85 (15)	0.35 ± 0.36 (7)	$\begin{gathered} 1.92 \pm 0.93 \\ (14) \end{gathered}$	$\begin{gathered} 8.60 \pm 3.01 \\ (15) \end{gathered}$	$395.13 \pm$ 124.34 (15)	0.67 ± 0.33 (4)
E	$\begin{gathered} 61.89 \pm \\ 29.69 \\ (15) \end{gathered}$	$\begin{gathered} 2.39 \pm 0.97 \\ (15) \end{gathered}$	8.87 ± 3.21 (15)	$\begin{gathered} 5.40 \pm 1.71 \\ \text { (15) } \end{gathered}$	$\begin{gathered} 0.32 \pm 0.17 \\ \text { (13) } \end{gathered}$	$\begin{gathered} 1.42 \pm 0.60 \\ (15) \end{gathered}$	$\begin{gathered} 12.06 \pm 5.09 \\ (15) \end{gathered}$	$\begin{gathered} 411.0 \pm \\ 131.2 \\ (15) \end{gathered}$	0.80 ± 0.46 (7)
F	$\begin{array}{r} 128.45 \pm \\ 76.41 \end{array}$ (4)	2.44 ± 0.53 (4)	10.43 ± 1.19 (4)	7.11 ± 1.00 (4)	$\begin{gathered} 0.34 \\ (1) \end{gathered}$	1.38 ± 0.57 (4)	10.94 ± 4.95 (4)	$444.00 \pm$ 35.36 (4)	$\begin{gathered} 2.39 \pm 2.98 \\ (3) \end{gathered}$

Table 10. Continued

Feed Manufacturer	Magnesium ($\mu \mathrm{g} \mathrm{g}^{-1}$)	Manganese ($\mu \mathrm{g} \mathrm{g}^{-1}$)	Mercury ($\mu \mathrm{g} \mathrm{g} \mathrm{g}^{-1}$)	Molybdenum ($\mu \mathrm{g} \mathrm{g} \mathrm{g}^{-1}$)	$\begin{aligned} & \text { Nickel } \\ & \left(\mu \mathrm{g} \mathrm{~g}^{-1}\right) \end{aligned}$	Selenium $\left(\mu g^{-1}\right)$	Strontium $\left(\mu \mathrm{g} \mathrm{~g}^{-1}\right)$	Vanadium ($\mu \mathrm{g} \mathrm{g}^{-1}$)	$\underset{\left(\mu \mathrm{ginc} \mathrm{~g}^{-1}\right)}{\text { (}}$
A	1579 ± 158 (7)	$\begin{gathered} 91.84 \pm \\ 49.93 \\ (7) \end{gathered}$	0.06 ± 0.04 (7)	0.93 ± 0.62 (4)	$\begin{gathered} 2.38 \pm 1.27 \\ (7) \end{gathered}$	2.71 ± 0.89 (7)	$\begin{gathered} 65.58 \pm \\ 29.26 \\ (7) \end{gathered}$	2.56 ± 2.35 (7)	$\begin{gathered} 129.71 \pm \\ 26.62 \end{gathered}$ (7)
B	$\begin{gathered} 1737 \pm 333 \\ (10) \end{gathered}$	$\begin{gathered} 31.04 \pm \\ 10.70 \\ (10) \end{gathered}$	$\begin{gathered} 0.03 \pm 0.02 \\ (10) \end{gathered}$	$\begin{aligned} & 0.41 \pm 0.21 \\ & \text { (10) } \end{aligned}$	$\begin{gathered} 1.75 \pm 0.92 \\ (10) \end{gathered}$	$\begin{gathered} 2.54 \pm 0.56 \\ (10) \end{gathered}$	$\begin{gathered} 47.76 \pm \\ 12.18 \\ (10) \end{gathered}$	2.06 ± 1.27 (9)	$\begin{gathered} 106.80 \pm \\ 14.27 \\ (10) \end{gathered}$
C	2099 ± 552 (4)	$113.95 \pm$ 57.64 (4)	0.05 ± 0.02 (3)	0.51 ± 0.36 (3)	1.65 ± 0.91 (4)	2.99 ± 0.82 (4)	$86.37 \pm$ 36.19 (4)	1.22 ± 0.77 (4)	$208.74 \pm$ 53.69 (4)
D	$\begin{gathered} 1629 \pm 526 \\ (15) \end{gathered}$	$\begin{gathered} 67.56 \pm \\ 29.43 \\ \text { (15) } \end{gathered}$	$\begin{gathered} 0.04 \pm 0.03 \\ (13) \end{gathered}$	$\begin{gathered} 0.68 \pm 0.36 \\ (13) \end{gathered}$	$\begin{gathered} 2.14 \pm 0.98 \\ (15) \end{gathered}$	$\begin{gathered} 2.39 \pm 0.65 \\ (15) \end{gathered}$	$\begin{gathered} 36.57 \pm \\ 27.54 \\ (15) \end{gathered}$	$\begin{gathered} 1.31 \pm 0.84 \\ (15) \end{gathered}$	$147.14 \pm$ 48.68 (15)
E	$\begin{gathered} 1953 \pm 391 \\ (15) \end{gathered}$	$\begin{gathered} 123.02 \pm \\ 33.86 \\ (15) \end{gathered}$	$\begin{gathered} 0.02 \pm 0.01 \\ (15) \end{gathered}$	$\begin{gathered} 0.88 \pm 0.46 \\ (13) \end{gathered}$	$\begin{gathered} 3.26 \pm 1.90 \\ (15) \end{gathered}$	$\begin{gathered} 2.35 \pm 0.65 \\ (15) \end{gathered}$	$\begin{gathered} 40.68 \pm \\ 12.49 \\ (15) \end{gathered}$	$\begin{gathered} 2.80 \pm 2.48 \\ (15) \end{gathered}$	$\begin{gathered} 160.00 \pm \\ 21.47 \\ (15) \end{gathered}$
F	1609 ± 287 (4)	$\begin{gathered} 92.38 \pm \\ 14.06 \\ (4) \\ \hline \end{gathered}$	0.01 ± 0.00 (4)	1.55 ± 0.81 (4)	1.90 ± 0.36 (4)	2.19 ± 0.66 (4)	$21.42 \pm$ 4.32 (4)	2.15 ± 0.88 (4)	$\begin{gathered} 108.60 \pm \\ 23.06 \end{gathered}$ (4)

Table 11. Total PCBs, 14 dioxin-like PCBs (DL-PCBs), toxic equivalents (TEQ; $\mathrm{pg} \mathrm{g}^{-1}$) for the DLPCBs, and DDT metabolites ($\mathrm{ng} \mathrm{g}^{-1}$ wet weight) in feed from specific manufacturers (A, B and D) as reported in three studies spanning about 25 years. Values for Pre-1979 are the range of means from Mac et al. (1979); values for 1999 are data from 1 or 2 assays presented in Easton et al. (2002); values for 2001-2003 are ranges of results from this report, not including those below detection levels. Sample sizes are in parentheses; for this report, we also report total number of samples examined.

	Pre-1979	1999	2001-2003
A			
Total PCBs	100-230 ($\mathrm{n}=3-4$)	43 \& 107 (2 samples)	ND
14 DL-PCBs	ND	6.7 \& 4.4	1.4-4.0 ($\mathrm{n}=6$ of 10)
TEQ	ND	0.312 \& 0.261	0.046 to 0.135
DDT metabolites	10-340 ($n=3-4$)	50 \& 50 (2 samples)	$8.4-31.0$ ($\mathrm{n}=7$ of 10)
B			
Total PCBs	ND	90.2 (1 sample)	ND
14 DL- PCBs	ND	5.2	0.4-3.0 ($\mathrm{n}=7$ of 14)
TEQ (mean \pm SE)	ND	0.177	0.015 to 0.041
DDT metabolites	ND	30.7 (1 sample)	4.0 ($n=1$ of 14)
D			
Total PCBs	54-60 ($\mathrm{n}=3$)	ND	ND
14 DL-PCBs	ND	ND	0.6-4.8 ($\mathrm{n}=14$ of 19)
TEQ	ND	ND	0.004 to 0.125
DDT metabolites	13-51 ($n=3$)	ND	4.4-20.0 ($\mathrm{n}=6$ of 19)

Figure1. Fish feed quality control sample analysis form.

Abernathy Fish Technology Center Nutrition Program Fish Feed Quality Control Sample Analysis Form	
Hatchery Name:	Hatchery Contact Person:
Today's Date:	Feed Manufacturer:
Date of Feed Manufacture:	Date Feed Received:
Lot Number (if any):	Size of Feed:
Comments (i.e. Have any problems been observed with the fish? Why are you sending this sample in?): Please provide the name of the feed.	

Appendix A
Raw Data from Contaminants Assays of Feed Collected from National Fish Hatcheries
(values > minimum detection levels; assays conducted at several laboratories, some using different methods; please see Methods)

DATE*	HATCHERY (NFH)	$\begin{aligned} & \mathrm{HpCDD} \\ & \mathrm{pg} \mathrm{~g}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{PeCDD} \mathrm{D} \\ & \mathrm{pg} \mathrm{~g}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{TCDD} \\ & \mathrm{pgg}^{-1} \end{aligned}$	$\begin{aligned} & \text { TCDF } \\ & \mathrm{pg} \mathrm{~g}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{OCDD} \\ & \mathrm{pg} \mathrm{~g}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{OCDF} \\ & \mathrm{pg} \mathrm{~g}^{-1} \end{aligned}$	$\begin{gathered} \text { Tot } \mathrm{HpCDD} \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \text { Tot } \\ \text { HpCDF } \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{gathered}$
11/09/01	Coleman								
02/01/02	Coleman					14.000			
05/23/02	Coleman				0.920	8.300			
09/12/02	Coleman					6.200			
02/19/03	Coleman								
05/07/03	Coleman								
10/16/01	Ennis				0.730	17.000			
12/19/02	Ennis					11.000			
04/08/02	Ennis								
06/22/02	Ennis								
10/30/02	Ennis					8.200			
02/10/03	Ennis								
	Ennis					16.000			
07/30/03	Ennis								
11/19/01	Garrison Dam	3.100			1.300	31.000		3.100	
11/19/01	Garrison Dam	3.300			0.930	33.000		3.300	
09/13/02	Garrison Dam								
12/23/02	Garrison Dam	44.000			0.640	350.000		66.000	
07/14/03	Garrison Dam	11.000				200.000		19.000	
12/19/03	Garrison Dam								
10/25/01	Genoa	3.300			1.100	20.000		6.100	
09/26/02	Genoa				1.200	17.000			
09/26/02	Genoa								
02/14/03	Genoa					12.000			
02/14/03	Genoa					15.000			
07/12/02	Genoa	4.800				27.000		8.000	
12/31/01	Hagerman				1.100	12.000			
01/02/02	Hagerman				0.890	19.000			
04/19/02	Hagerman								
06/28/02	Hagerman				1.600	16.000			
11/18/02	Hagerman	6.400				100.000		11.000	3.000
02/18/03	Hagerman								
07/02/03	Hagerman				1.100	19.000			
08/08/03	Hagerman								

DATE*	$\begin{aligned} & \text { HATCHERY } \\ & \text { (NFH) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{HpCDD} \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{gathered}$	$\begin{aligned} & \text { PeCDD } \\ & \mathrm{pg} \mathrm{~g}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{TCDD} \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TCDF } \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OCDD } \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OCDF } \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Tot } \\ \text { HpCDD } \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \text { Tot } \\ \text { HpCDF } \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{gathered}$
12/19/01	Jordan River					8.300			
12/19/01	Jordan River			0.550	0.640	8.300			
04/08/02	Jordan River					7.700			
09/19/02	Jordan River					5.200			
07/23/03	Jordan River								
07/23/03	Jordan River								
07/29/03	Jordan River								
01/23/02	Leavenworth				0.700				
04/22/02	Leavenworth								
05/08/02	Leavenworth	6.500			0.690	54.000		11.000	
06/21/02	Leavenworth								
10/30/02	Leavenworth								
02/06/03	Leavenworth				0.830	19.000			
04/30/03	Leavenworth								
07/29/03	Leavenworth								
01/16/02	North Attleboro				0.760				
04/16/02	North Attleboro				0.670				
06/25/02	North Attleboro								
01/23/03	North Attleboro					6.700			
07/15/03	North Attleboro	4.300	3.900			56.000		9.800	
10/05/01	Quilcene								
02/22/02	Quilcene								
04/10/02	Quilcene					5.500			
06/25/02	Quilcene					9.100			
10/29/02	Quilcene								
02/27/03	Quilcene								
05/23/03	Quilcene								
07/29/03	Quilcene		2.500						
12/31/01	Spring Creek				1.800	7.200			
01/21/02	Spring Creek					5.600			
04/04/02	Spring Creek								
12/14/02	Spring Creek								
02/04/03	Spring Creek					6.200			
04/29/03	Spring Creek								
12/27/03	Spring Creek								
	* Date rece								

HATCHERY (NFH)	$\begin{gathered} \text { PCB } 157 \\ \mathrm{ng} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \text { PCB } 167 \\ \mathrm{ng} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \text { PCB } 170 \\ \mathrm{ng} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \text { PCB } 180 \\ \mathrm{ng} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \text { PCB } 189 \\ \mathrm{ng} \mathrm{~g}^{-1} \end{gathered}$	$\begin{gathered} \text { PCB } 77 \\ \mathrm{ng} \mathrm{~g}^{-1} \end{gathered}$	Tot PCB $\mathrm{ng} \mathrm{~g}^{-1}$	Ash $\%$	Lipids \%	Moisture \%	Protein \%	Aluminum $\mu \mathrm{g} / \mathrm{g}$
Jordan River				0.120			0.278	10.400	20.500	6.100	55.200	103.000
Jordan River								8.200	14.900	8.400	45.100	46.500
Jordan River				0.072			0.182	8.900	13.200	9.200	44.800	42.900
Jordan River	0.023			0.086			0.365	7.700	13.700	7.200	45.700	45.500
Jordan River				0.064			0.137	9.100	13.900	7.000	47.000	62.200
Jordan River								9.400	13.100	7.600	48.100	
Jordan River								9.300	14.400	6.000	45.600	
Leavenworth	0.086	0.035	0.130	0.340			1.597	7.900	17.000	23.000	48.700	9.600
Leavenworth	0.077		0.110	0.310			1.214	7.200	19.400	8.700	49.800	8.880
Leavenworth	0.130	0.071	0.190	0.730			2.565	8.100	18.400	24.400	43.300	14.900
Leavenworth								7.100	19.500	7.700	51.300	
Leavenworth								7.300	26.800	6.300	43.600	
Leavenworth	0.100	0.043	0.220	0.670			2.143	11.100	13.900	21.500	51.700	29.600
Leavenworth								8.300	16.700	23.500	46.800	
Leavenworth								5.800	19.200	6.700	51.100	
North Attleboro	0.063	0.029	0.110	0.310			1.335	6.800	9.300	41.900	37.000	23.600
North Attleboro	0.080	0.038	0.140	0.380			1.518	6.400	8.900	42.100	35.400	32.900
North Attleboro								6.300	10.800	42.400	36.200	
North Attleboro	0.094	0.034	0.150	0.460			1.885	7.100	9.400	42.100	34.400	20.900
North Attleboro	0.043	0.024	0.085	0.260			0.995	6.800	9.200	45.700	31.200	28.600
Quilcene								7.600	19.700	7.400	49.300	10.400
Quilcene								7.000	24.900	6.200	53.900	8.850
Quilcene								7.800	21.900	5.400	49.600	9.710
Quilcene	0.050		0.084	0.210			0.904	7.200	19.300	6.600	51.600	14.000
Quilcene								7.900	19.800	5.900	49.700	
Quilcene	0.087	0.062	0.520	1.800			2.996	9.000	21.600	4.000	50.600	33.200
Quilcene	0.082	0.033	0.210	0.590			1.618	9.100	18.000	5.800	52.800	22.700
Quilcene	0.070	0.033	0.140	0.420			1.383	10.400	17.900	6.900	50.600	19.700
Spring Creek	0.190	0.088	0.270	1.000			3.968	9.100	21.400	20.300	46.800	95.200
Spring Creek								7.100	19.400	15.500	46.300	89.600
Spring Creek				0.042			0.093	7.800	17.200	7.600	48.200	45.200
Spring Creek								10.100	13.600	22.700	50.400	
Spring Creek				0.043			0.196	7.900	18.400	7.300	48.400	50.900
Spring Creek							0.091	8.200	16.300	8.300	48.100	86.200
Spring Creek								9.600	16.100	6.900	48.300	

			$\begin{aligned} & \hat{0} \\ & \stackrel{O}{0} \end{aligned}$	莫合	00000	웅 정 응응 $\underset{寸}{寸}$ 옹 $\bigcirc 0^{\circ} 0000$	No No
					웅ㅇㅇㅇㅇㅇㅇㅁㅇㅁㅁ 		
			OO	$\stackrel{\infty}{\stackrel{\infty}{N} \stackrel{\infty}{N}} \stackrel{\sim}{N}$			$\stackrel{\circ}{\circ} \stackrel{\sim}{N}$
	$\underset{\sim}{\text { F }} \underset{\sim}{\sim}$	No m			$\stackrel{N}{N}$		
응			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \dot{j} \\ & \dot{j} \end{aligned}$				
			$\begin{aligned} & \stackrel{8}{8} \\ & \infty \\ & \infty \end{aligned}$				
	$\underset{\sim}{\wedge} \underset{\sim}{\sim} \underset{\sim}{\sim}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & 0 \end{aligned}$	OiN			$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
	导皆		$\stackrel{\otimes}{\infty}$				$\stackrel{\circ}{\circ}$
			$\begin{aligned} & \text { ®- } \\ & \text { + } \end{aligned}$				
			$\begin{aligned} & \underset{寸}{\dot{G}} \\ & \underset{子}{2} \end{aligned}$				
			$\stackrel{\mathrm{O}}{\stackrel{\rightharpoonup}{\mathrm{~N}}}$				$\stackrel{\text { ®－}}{\stackrel{\circ}{\circ} \mathrm{O}}$

DATE*	$\begin{gathered} \text { HATCHERY } \\ (\mathrm{NFH}) \end{gathered}$	$\begin{array}{r} \text { HpCDD } \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{array}$	$\begin{array}{r} \text { PeCDD } \\ \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{array}$	$\begin{aligned} & \text { TCDD } \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TCDF } \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OCDD } \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OCDF} \\ & \mathrm{pg} \mathrm{~g}^{-1} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Tot } \quad \text { Tot } \\ \mathrm{HpCDD}^{\mathrm{HpCDF}} \\ \mathrm{pg} \mathrm{~g}^{-1} \mathrm{pg} \mathrm{~g}^{-1} \\ \hline \end{gathered}$
11/14/01	Wt. Sulphur Springs				1.600	15.000		
02/27/02	Wt. Sulphur Springs	17.000			2.300	180.000	10.000	32.000
05/06/02	Wt. Sulphur Springs				3.800	17.000		
09/16/02	Wt. Sulphur Springs							
11/22/02	Wt. Sulphur Springs							
02/13/03	Wt. Sulphur Springs				3.000	12.000		
05/21/03	Wt. Sulphur Springs							
10/14/03	Wt. Sulphur Springs							

	$\stackrel{\circ}{C} \stackrel{\circ}{i}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$
		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\mathrm{j}} \end{aligned}$
		$\begin{aligned} & \stackrel{O}{O} \\ & \dot{+} \\ & \dot{~} \end{aligned}$
		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{M}}}{\underset{\sim}{~}}$
		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { í } \end{aligned}$
	$\stackrel{\circ}{\mathrm{N}} \stackrel{-}{\stackrel{\sim}{i}} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$	$\underset{\underset{i}{\circ}}{\underset{\sim}{2}}$
		$\begin{aligned} & \underset{子}{\underset{~}{4}} \end{aligned}$
		흥 흥 흥 そ 3

