

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

PHEV Battery Requirements

Uncertainty Based on Real World Drive Cycles

EDTA Conference December 03, 2008 Aymeric Rousseau, Sylvain Pagerit, Mohamed Fellah Argonne National Laboratory Ed Nam US. EPA

Sponsored by Lee Slezak (U.S. DOE)

How are The Current Power and Energy Requirements Impacted by Real World Drive Cycles?

How does the Temperature Impacts Fuel Efficiency?

Characteristics at EOL (End of Life)		Short-Term Commercialization	Long-Term Commercialization
Commercialization Target	Year	2012	2016
Peak Pulse Discharge Power (10 sec)	kW	45	38
Peak Regen Pulse Power (10 sec)	kW	30	25
Available Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
Available Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
Minimum Round-trin Energy Efficiency (USABC HEV Cycle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
Calendar Life, 40°C	year	15	15
Maximum System Weight	kg	60	120
Maximum System Volume	Liter	40	80
Maximum Operating Voltage	Vdc	400	400
Minimum Operating Voltage	Vdc	>0.55 x Vmax	>0.55 x Vmax
Maximum Self-discharge	Wh/day	50	50
System Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range	°C	-30 to +52	-30 to +52
Survival Temperature Range	°C	-46 to +66	-46 to +66
Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

<u>Objective:</u> Impact of Real World Drive Cycles on Power and Energy Requirements

Only Hot Conditions Assumed!

Daily Driving Characteristics

111 different drivers – All based on Conventional Vehicles

Trips Characteristics

50% of the Daily Trips Require >100 kW

Distribution of Discharging Peak Power Per Trip

Distribution of Discharging Power (All Points)

Distribution of Charging Peak Power Per Daily Driving Distribution of P_{ess} max charging for Daily Drives

Distribution of Charging Power (All Points)

12 kWh Usable is Required to Complete 50% of the Daily Drives

UDDS Represents only 10% of the Electrical Consumption

Maximum UDDS Power Reached Shortly After Departure

Power Demand >50 kW Occurs for Short Periods of Time

Maximum Power Demand Occurs at Highway Speeds

EV Distance Greatly Varies Depending Upon Cycles

Conclusion

- The PHEV requirements analysis is only valid for the set of drive cycles considered and should not be generalized to the US market.
- Aggressive driving will put limits on all EV range, which in turn favors a blended mode operational strategy.
- When the battery is sized for the UDDS,
 - 3% of the daily driving and 20% of the trips can be completed in EV due to power limitation. However, the power requirements are sufficient 97% of the time.
 - 1.5% (short term goal) and 50% (long term goal) of the daily driving can be completed in EV due to energy limitation
- The real world drive cycles are more aggressive than the UDDS, resulting in larger energy requirements to drive the same distance.
- LA92 better represents current drive cycle aggressiveness.

