

... for a brighter future

# PHEV Vehicle Level Control Strategy Summary

November 2008

A. Rousseau Argonne National Laboratory Sponsored by Lee Slezak



U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

"This presentation does not contain any proprietary or confidential information"



Argonne<sub>llic</sub>



A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

# **Objective: Assess Fuel Displacement Potential of Various PHEVs Control Strategies**

Higher Electric Energy Higher Control Freedom Freedom Potential

- Depending on various driven distance, several possible modes:
  - Below AER (All-Electric Range) : Electric-only (EV)
  - Above AER: EV? CS(Charge Sustaining)? Blended?



**Control Optimization/Design Investigates Strategies Potential** 



# **Innovative 3-way Approach to Control Optimization**

### **Global Optimization**



## **Global Optimization Showed Minimal Fuel Consumption Achieved in Blended Mode**





# **Control Strategy Design Showed Significant** Improvements



Power Split 10 miles AER (Prius), run on several UDDS cycles



# Different Optimization Methods Showed Control Depends on Distance



Small SUV, Parallel Pre-tx, 10 miles AER



# "Engine On" Is Linked to Wheel Power Global Optimization



- Power at wheels above which ICE is on 95% of the time, similar to wheel power threshold used in rule-based controls
- Higher Electric Energy Use  $\rightarrow$  ICE starts "later"
- Wheel Power Threshold follows linear trend
- Little influence of driving cycle



# **Engine Power Depends on Cycle and Electricity Use**



- UDDS: ICE power increases with Wh/km
- LA92: ICE power constant, because cycle is aggressive enough for the ICE to operate efficiently



# Charging from ICE Likely When ICE is Predominant and Wheel Power is Low



UDDS: when ICE is used often, it has to operate often above requested wheel power
LA92: ICE operates efficiently, even in CS mode because average ICE power is high



# 5 Vehicles with Different Energy and AER Global Optimization



Power to meet EV-mode requirements on UDDS...



# For a Given Electric Consumption, AER Has Little Influence on Control

- For a given electric consumption, ICE-On behavior does not depend on the energy sizing...
  - ...but possible electric energy consumption is limited : same electric consumption corresponds to different △SOC



UDDS, 20 mi



# **Minimal Fuel Consumption**

- Distance Traveled < AER</p>
  - On a given cycle, little sensitivity to energy sizing
  - LA92 leads to a 34% increase in electric Wh/km compared to UDDS
- Distance Traveled > AER
  - Decrease in fuel consumption is proportional to increase in AER
  - 1.5 L/100 km difference between UDDS and LA92







# Fuel Consumption Follows a Linear Trend and Depends on Wh/km

- Small AER vehicles consume slightly less fuel due to lower weight, but difference in consumption is minimal
- For a given electric consumption, fuel consumption is comparable
- For 2 vehicles (e.g. AER 30 & AER 40) travelling less than their AER (e.g. 20 mi on UDDS), same EV mode electric consumption





## **5 Vehicles With Different Power**

Same Battery Energy... 🕂 ... Different Electric Power





# Maximum Power Impacts Wheel Power Threshold for Engine ON

The engine starts "earlier" when the electric system has lower power





### Global Optimization Less Electric Power Results in Higher Fuel Consumption

- Especially true on aggressive cycle (LA92), and distance traveled close to AER
- Higher electric power does not significantly reduce fuel consumption
- UDDS seems to be a good choice for power requirements (In terms of energy use)





# **Control Strategy Assessment Provided Insights on PHEVs Optimal Operations**

- When the trip distance is greater than the All Electric Range, using the engine throughout the trip (blended control) is preferable to depleting the battery as fast as possible
- Optimum control depends on the distance
- Engine On/Off is linked to wheel power demand and available electrical energy
- When used, engine should be operated at high efficiency

